Onsager-theory-based tensor model for nematic phases of bent-core molecules

Jie Xu, Purdue University

Collaborators: Pingwen Zhang (Peking University) Fangfu Ye (Institute of physics, Chinese Academy of Sciences) Yixiang Luo (Courant Institute)

Nov. 27, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Liquid crystals

Display, Biology, Medical & Nano- materials

Rigid molecules

Rod-like molecules (achiral)

Nematic: only uniaxial

Smectic A & C

Bent-core molecules

Uniaxial, Biaxial & modulated nematic phases

Polar & chiral structure

Features of bent-core molecules

Phase behaviors could vary with minor change on molecular architecture.

Goal of Modeling: Microscopic interaction \rightarrow Macroscopic phases & properties

Rods: models at different level

• Molecular model: $f(\boldsymbol{x}, \boldsymbol{m})$, $\boldsymbol{m} \in S^2$.

$$\frac{F[f]}{k_BT} = \int \mathrm{d}\boldsymbol{m} f \log f + \frac{c}{2} \int \mathrm{d}\boldsymbol{m} \mathrm{d}\boldsymbol{m'} f(\boldsymbol{m}) G(\boldsymbol{m}, \boldsymbol{m'}) f(\boldsymbol{m'}).$$

MD/Monte-Carlo: time-consuming; small systems.

▶ Tensor model: $Q = \int dm \ (mm - I/3)f(m) = \langle mm - I/3 \rangle$. Sketch of *f*. Landau-de Gennes.

$$\begin{split} F[Q] &= \int \mathrm{d}\boldsymbol{x} \ a_2 \mathrm{tr}(Q^2) - a_3 \mathrm{tr}(Q^3) + a_4 (\mathrm{tr}(Q^2))^2 \\ &+ L_1 |\nabla Q|^2 + L_2 \partial_i Q_{jk} \partial_j Q_{ik} + L_3 \partial_i Q_{ik} \partial_j Q_{jk} + L_4 Q_{ij} \partial_i Q_{kl} \partial_j Q_{kl}. \end{split}$$

Connection between phenomenological coefficients and molecular interaction?

• Vector model: uniaxial Q = s(nn - I/3). Oseen-Frank.

$$F[\boldsymbol{n}] = \frac{1}{2} \int d\boldsymbol{x} \ K_1(\nabla \cdot \boldsymbol{n})^2 + K_2(\boldsymbol{n} \cdot (\nabla \times \boldsymbol{n}))^2 + K_3 |\boldsymbol{n} \times (\nabla \times \boldsymbol{n})|^2.$$

 K_i : measurable elastic constants.

Elasticity for the uniaxial nematic phase.

Systematic modeling

- Molecular symmetry \longrightarrow Order parameters & Form of tensor model
- Phase symmetry —> Form of orientational elasticity
- $\blacktriangleright \text{ Molecular parameters} \longrightarrow \text{Coefficients in tensor model} \longrightarrow \text{Elastic constants}$

э

J. Han, Y. Luo, W. Wang, P. Zhang and Z. Zhang, ARMA(2015).

Contents

Tensor model

Nematic phases

Dynamic model

Fast algorithm for Bingham closure

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Contents

Tensor model

Nematic phases

Dynamic model

Fast algorithm for Bingham closure

Representation of orientation

• Body-fixed frame: $(\hat{O}; \boldsymbol{m}_i)$. Density: $f(\boldsymbol{x}, P)$.

$$P = (\boldsymbol{m}_1, \boldsymbol{m}_2, \boldsymbol{m}_3) = \begin{pmatrix} m_{11} & m_{21} & m_{31} \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} \end{pmatrix} \in SO(3).$$

Representation by Euler angles:

 $\begin{pmatrix} \cos \alpha & -\sin \alpha \cos \gamma & \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \cos \alpha \cos \beta \cos \gamma - \sin \beta \sin \gamma & -\cos \alpha \cos \beta \sin \gamma - \sin \beta \cos \gamma \\ \sin \alpha \sin \beta & \cos \alpha \sin \beta \cos \gamma + \cos \beta \sin \gamma & -\cos \alpha \sin \beta \sin \gamma + \cos \beta \cos \gamma \end{pmatrix}.$

$$\mathrm{d}P = \frac{1}{8\pi^2} \sin\alpha \mathrm{d}\alpha \mathrm{d}\beta \mathrm{d}\gamma.$$

・ロト・西ト・モン・モー もくの

Order parameters: intuitive

• Body-fixed frame: $(\hat{O}; \boldsymbol{m}_i)$. Density: $f(\boldsymbol{x}, P)$.

$$P = (\boldsymbol{m}_1, \boldsymbol{m}_2, \boldsymbol{m}_3) = \begin{pmatrix} m_{11} & m_{21} & m_{31} \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} \end{pmatrix} \in SO(3).$$

▶ Tensors for bent-core molecules: $m_2 \rightarrow -m_2$ symmetry. First order: $p = \langle m_1 \rangle$. Necessary for polar order. Second order: $Q_1 = \langle m_1 m_1 \rangle$, $Q_2 = \langle m_2 m_2 \rangle$. Need both for biaxial nematic phase.

$$(Q_3 = \langle \boldsymbol{m}_3 \boldsymbol{m}_3 \rangle = I - Q_1 - Q_2)$$

Let
$$\boldsymbol{r} = \boldsymbol{x}' - \boldsymbol{x}$$
.

$$\frac{F[f]}{k_B T} = \int dP d\boldsymbol{x} f \log f + \frac{1}{2} \int dP d\boldsymbol{x} dP' d\boldsymbol{x}' f(\boldsymbol{x}, P) G(\boldsymbol{r}, P, P') f(\boldsymbol{x}', P').$$

Concentration: $c(\mathbf{x}) = \int dP f(\mathbf{x}, P) = c_0$. Orientational density: $\rho(\mathbf{x}, P) = f(\mathbf{x}, P)/c(\mathbf{x})$.

- Kernel function: $G(\mathbf{r}, P, P') = 1 \exp(-U(\mathbf{r}, P, P')/k_BT)$.
- ► U(r, P, P'): pairwise molecular interaction. Hardcore:

 $U = \begin{cases} +\infty, \text{ if two molecules touch,} \\ 0, & \text{elsewhere.} \end{cases}$

Lennard-Jones; Electromagnetics, ...

Spatial and orientational expansion

• Expand f about r = x' - x. Spatial moments

$$M^{(k)}(P,P') = \int G(\boldsymbol{r},P,P') \underbrace{\boldsymbol{r} \dots \boldsymbol{r}}_{k \text{ times}} \mathrm{d}\boldsymbol{r}.$$

$$\frac{F[f]}{k_B T} = \int \mathrm{d}P \mathrm{d}\boldsymbol{x} f \log f + \sum_k \frac{1}{2k!} \int \mathrm{d}\boldsymbol{x} \mathrm{d}P \mathrm{d}P' f(\boldsymbol{x}, P) M^{(k)}(P, P') \nabla^k f(\boldsymbol{x}, P').$$

▶ Expand $M^{(k)}(P, P')$. Determined by molecular symmetry & truncation. Relative orientation: $\bar{P} = P^{-1}P' = (p_{ij})_{3\times 3} = (\boldsymbol{m}_i \cdot \boldsymbol{m}'_j)$.

$$\hat{M}^{(0)} = c_{00} + c_{01}p_{11} + c_{02}p_{11}^2 + c_{03}p_{22}^2 + c_{04}(p_{12}^2 + p_{21}^2),$$

$$\hat{M}^{(1)} = -c_{10}(\boldsymbol{m}_1 - \boldsymbol{m}_1') - c_{11}p_{11}(\boldsymbol{m}_1 - \boldsymbol{m}_1') - c_{12}(p_{21}\boldsymbol{m}_2 - p_{12}\boldsymbol{m}_2'),$$

$$\hat{M}^{(2)} = -\left(c_{20} + c_{21}p_{11} + c_{22}p_{11}^2 + c_{23}p_{22}^2 + c_{24}(p_{12}^2 + p_{21}^2)\right)I$$

$$- c_{25}(\boldsymbol{m}_1\boldsymbol{m}_1 + \boldsymbol{m}_1'\boldsymbol{m}_1') - c_{26}(\boldsymbol{m}_2\boldsymbol{m}_2 + \boldsymbol{m}_2'\boldsymbol{m}_2')$$

$$- (c_{27} + c_{28}p_{11})(\boldsymbol{m}_1\boldsymbol{m}_1' + \boldsymbol{m}_1'\boldsymbol{m}_1) - c_{29}p_{22}(\boldsymbol{m}_2\boldsymbol{m}_2' + \boldsymbol{m}_2'\boldsymbol{m}_2)$$

$$- c_{2,10}\left[p_{12}(\boldsymbol{m}_1\boldsymbol{m}_2' + \boldsymbol{m}_2'\boldsymbol{m}_1) + p_{21}(\boldsymbol{m}_2\boldsymbol{m}_1' + \boldsymbol{m}_1'\boldsymbol{m}_2)\right].$$

Separate variables

The term
$$-p_{12}^2 I$$
 in $\hat{M}^{(2)}$ generates $abla(cQ_1):
abla(cQ_2).$

$$\int d\mathbf{x} dP dP' - (\mathbf{m}_1 \cdot \mathbf{m}_2')^2 I : f(\mathbf{x}, P) \nabla^2 f(\mathbf{x}, P')$$
$$= -\int d\mathbf{x} \left(c(\mathbf{x}) \int dP m_{1i} m_{1j} \rho(\mathbf{x}, P) \right) \partial_{kk} \left(c(\mathbf{x}) \int dP' m_{2i}' m_{2j}' \rho(\mathbf{x}, P') \right)$$
$$= -\int d\mathbf{x} \left(c(\mathbf{x}) \langle m_{1i} m_{1j} \rangle \right) \partial_{kk} \left(c(\mathbf{x}) \langle m_{2i} m_{2j} \rangle \right),$$

=(integration by parts, boundary terms discarded)

$$= \int \mathrm{d}\boldsymbol{x} \partial_k \left(c(\boldsymbol{x}) Q_{1ij} \right) \partial_k \left(c(\boldsymbol{x}) Q_{2ij} \right).$$

Free energy

Nematic phases:
$$c = c_0$$
.

$$\frac{F[\mathbf{p}(\mathbf{x}), Q_1(\mathbf{x}), Q_2(\mathbf{x})]}{k_B T}$$

$$= \int d\mathbf{x} \Big\{ c(\mathbf{b} \cdot \mathbf{p} + B_1 : Q_1 + B_2 : Q_2 - \log Z) \rightarrow \mathsf{Quasiequilibrium Closure} \\
+ \frac{c^2}{2} (c_{01} |\mathbf{p}|^2 + c_{02} |Q_1|^2 + c_{03} |Q_2|^2 + 2c_{04}Q_1 : Q_2) \\
+ c^2 (c_{11} p_j \partial_i Q_{1ij} + c_{12} p_j \partial_i Q_{2ij}) \\
+ \frac{c^2}{4} [c_{21} |\nabla \mathbf{p}|^2 + c_{22} |\nabla Q_1|^2 + c_{23} |\nabla Q_2|^2 + 2c_{24} \partial_i Q_{1jk} \partial_i Q_{2jk} \\
+ 2c_{27} \partial_i p_i \partial_j p_j + 2c_{28} \partial_i Q_{1ik} \partial_j Q_{1jk} \\
+ 2c_{29} \partial_i Q_{2ik} \partial_j Q_{2jk} + 4c_{2,10} \partial_i Q_{1ik} \partial_j Q_{2jk} \Big] \Big\}.$$

 c_{kj} : those in $\hat{M}^{(k)}$. Coupling of p and $\partial_i Q_{\alpha ij} \Rightarrow$ Modulated phases

Jie Xu and Pingwen Zhang. Sci. China Math.(2014). Jie Xu, Fangfu Ye and Pingwen Zhang, MMS, in revision, arXiv:1408:3722v2.

Coefficients

Minimize

$$\int_{SO_3} \mathrm{d}\bar{P} || M^{(k)}(P, P'; \{l, D, \theta\}) - \hat{M}^{(k)}(P, P'; \{c_{kj}\}) ||_F^2,$$

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 … 釣んで

- Functions of molecular parameters: $c_{kj} = l^{k+3}c_{kj}(\eta,\theta)$, $\eta = D/l$.
- Nondimensionalization: x → x/l, c → α = πc(l + l₂)D²/4.
 Dimensionless molecular parameters: volume fraction α, thickness η, bending angle θ, and l₂/l.

Quasiequilibrium Closure Approximation

Minimize the entropy term with given value of (\mathbf{p}, Q_1, Q_2) .

$$\rho(P) = \frac{1}{Z} \exp(\boldsymbol{b} \cdot \boldsymbol{m}_1 + B_1 : \boldsymbol{m}_1 \boldsymbol{m}_1 + B_2 : \boldsymbol{m}_2 \boldsymbol{m}_2).$$
$$(\boldsymbol{p}, Q_1, Q_2) = \frac{1}{Z} \int dP \ \rho(P)(\boldsymbol{m}_1, \boldsymbol{m}_1 \boldsymbol{m}_1, \boldsymbol{m}_2 \boldsymbol{m}_2).$$

Approximation: shared eigenframe $T(x) \in SO(3)$ (proved for homogeneous phases^{*}),

$$\begin{split} & \pmb{p} = T(s,0,0)^T, & \pmb{b} = T(b_1,0,0)^T, \\ & Q_1 = T \mathsf{diag}(q_{11},q_{12},q_{13})T^T, & B_1 = T \mathsf{diag}(b_{11},b_{12},0)T^T, \\ & Q_2 = T \mathsf{diag}(q_{21},q_{22},q_{23})T^T, & B_2 = T \mathsf{diag}(b_{21},b_{22},0)T^T. \end{split}$$

Physical range of eigenvalues:

$$\begin{aligned} q_{ij} &> 0, s^2 < q_{11}, \\ q_{11} + q_{12}, q_{11} + q_{21}, q_{12} + q_{22}, q_{21} + q_{22} < 1, \\ q_{11} + q_{12} + q_{21} + q_{22} > 1. \end{aligned}$$

Bijection: $(s, q_{ij}) \leftrightarrow (b_1, b_{ij}) \Rightarrow \rho(P)$ is determined by the tensors.

* Jie Xu and Pingwen Zhang, Comm. Math. Sci.(2017)

Reduce to rod-like molecules

When $\theta = \pi$.

- ▶ Pairwise interaction: coefficients involving p and Q_1 are zero.
- Entropy: Bingham closure.
- ► Free energy:

$$\frac{F[Q_2]}{k_B T} = \int \mathrm{d}\boldsymbol{x} \Big\{ c(B_2 : Q_2 - \log Z) + \frac{c^2}{2} c_{03} |Q_2|^2 \\ + \frac{c^2}{4} \left(c_{23} |\nabla Q_2|^2 + 2c_{29} \partial_i Q_{2ik} \partial_j Q_{2jk} \right) \Big\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Contents

Tensor model

Nematic phases

Dynamic model

Fast algorithm for Bingham closure

Nematic phases (restrained to 1D periodic)

- Isotropic phase (I): $p = 0, Q_1 = Q_2 = \frac{I}{3}$.
- Uniaxial nematic phase (N): p = 0. $Q_3 = \langle m_3 m_3 \rangle = I Q_1 Q_2$.

$$Q_i = s_i(nn - \frac{I}{3}) + \frac{I}{3}, \quad i = 1, 2, 3.$$

Only one s_i positive. $s_i > 0 \rightarrow N_i$.

- ▶ Biaxial nematic phase (B): p = 0; $q_{ii} > q_{ij}$ ($j \neq i$).
- Twist-bend phase (N_{tb}) . (s, q_{ij}) constant, $p \neq 0$. Chiral.

$$T(x) = (\boldsymbol{n}_1, \boldsymbol{n}_2, \boldsymbol{n}_3) = \begin{pmatrix} 0 & \cos\gamma & \sin\gamma \\ \cos\frac{-2\pi x}{L} & -\sin\gamma\sin\frac{-2\pi x}{L} & \cos\gamma\sin\frac{-2\pi x}{L} \\ \sin\frac{-2\pi x}{L} & \sin\gamma\cos\frac{-2\pi x}{L} & -\cos\gamma\cos\frac{-2\pi x}{L} \end{pmatrix}$$

L: pitch; γ : cone angle.

Red: n_1 ; Blue: n_2 .

- 日本 - 4 日本 - 4 日本 - 日本

Phases diagram w.r.t molecular parameters

Include all the nematic phases confirmed experimentally.

Figure : Bent-core molecules ($\eta = 1/40$) and star molecules ($\eta = 1/40$, $\theta = 2\pi/3$).

Figure : Cone angle and pitch of bent-core molecules $(\eta = 1/40, \alpha = 0.7)$.

Orientational elasticity

Phase symmetry \Rightarrow elasticity.

Uniaxial nematic phase: Oseen-Frank.

$$F_{OF} = \int \mathrm{d}\boldsymbol{x} \, \frac{1}{2} \left[K_1 (\nabla \cdot \boldsymbol{n})^2 + K_2 (\boldsymbol{n} \cdot \nabla \times \boldsymbol{n})^2 + K_3 |\boldsymbol{n} \times (\nabla \times \boldsymbol{n})|^2 \right]$$

▶ Derivatives of $T(x) = (n_1(x), n_2(x), n_3(x))$: nine degrees of freedom.

$$\begin{split} D_{11} &= n_{1i}n_{2j}\partial_i n_{3j}, \ D_{12} &= n_{1i}n_{3j}\partial_i n_{1j}, \ D_{13} &= n_{1i}n_{1j}\partial_i n_{2j}, \\ D_{21} &= n_{2i}n_{2j}\partial_i n_{3j}, \ D_{22} &= n_{2i}n_{3j}\partial_i n_{1j}, \ D_{23} &= n_{2i}n_{1j}\partial_i n_{2j}, \\ D_{31} &= n_{3i}n_{2j}\partial_i n_{3j}, \ D_{32} &= n_{3i}n_{3j}\partial_i n_{1j}, \ D_{33} &= n_{3i}n_{1j}\partial_i n_{2j}. \end{split}$$

Biaxial nematic phase: $n_i
ightarrow -n_i$ symmetry.

$$F_{Bi}[T(\boldsymbol{x})] = \int d\boldsymbol{x} \; \frac{1}{2} \Big[K_{1111} D_{11}^2 + K_{2222} D_{22}^2 + K_{3333} D_{33}^2 \longrightarrow \mathbb{T}_i \\ + K_{1212} D_{12}^2 + K_{2121} D_{21}^2 + K_{2323} D_{23}^2 \\ + K_{3232} D_{32}^2 + K_{3131} D_{31}^2 + K_{1313} D_{13}^2 \\ + K_{1221} D_{12} D_{21} + K_{2332} D_{23} D_{32} + K_{1331} D_{13} D_{31} \Big].$$

Elastic constants

- Twelve elastic constants.
- If Q_i uniaxial: Biaxial elasticity \Rightarrow Oseen-Frank. If we set $n = n_1$.

 $K_{2323} = K_{3232} = K_1, \ K_{2222} = K_{3333} = K_2, \ K_{1212} = K_{1313} = K_3,$ $K_{2332} = 2(K_2 - K_1), \ K_{1111} = K_{2121} = K_{3131} = K_{1221} = K_{1331} = 0.$

Elastic constants

- ▶ For uniaxial & biaxial nematics: p = 0, $Q_i = T \operatorname{diag}(q_{i1}, q_{i2}, q_{i3})T^T$. Let q_{ij} be equilibrium values \implies Elasticity of T
- $K = K(q_{ij}, c_{2k})$. Solve $q_{ij} = q_{ij}(c_{0k}) \Rightarrow K = K(c_{0k}(\alpha, \eta, \theta), c_{2k}(\alpha, \eta, \theta))$

Figure : Elastic constants with $\eta = 1/20$, $cl^2D = 20.0$ and $\theta = 2\pi/3$ (star molecules).

Jie Xu and Pingwen Zhang. Liquid Crystals, online.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Contents

Tensor model

Nematic phases

Dynamic model

Fast algorithm for Bingham closure

Differential operators on SO(3)

 $L_j = \partial_{X'_j}$: derivative along infinitesimal rotation about m_j .

$$L_{1} = \frac{\partial}{\partial\gamma},$$

$$L_{2} = \frac{-\cos\gamma}{\sin\alpha} \left(\frac{\partial}{\partial\beta} - \cos\alpha\frac{\partial}{\partial\gamma}\right) + \sin\gamma\frac{\partial}{\partial\alpha},$$

$$L_{3} = \frac{\sin\gamma}{\sin\alpha} \left(\frac{\partial}{\partial\beta} - \cos\alpha\frac{\partial}{\partial\gamma}\right) + \cos\gamma\frac{\partial}{\partial\alpha}.$$

 $L = (L_1, L_2, L_3)$: 'gradient' in SO(3).

Smoluchowski equation:

$$\frac{\partial f}{\partial t} + \nabla \cdot (\boldsymbol{v}f) = \nabla \cdot (\boldsymbol{J}f\nabla\mu) + L \cdot (\boldsymbol{D}fL\mu) - L \cdot (\boldsymbol{g}f), \ \mu = \frac{\delta F}{\delta f}.$$

Navier-Stokes:

$$\rho_s \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla p + \nu \Delta \boldsymbol{v} + \nabla \cdot (\tau_e + \tau_v) + \boldsymbol{F}_e,$$
$$\nabla \cdot \boldsymbol{v} = 0.$$

Molecule consists of spheres.

Sphere–fluid friction $m{F}=\zetam{v}$

Rotational convection
$$\boldsymbol{g}$$

Diffusion coefficients
 $\boldsymbol{D} = D_0 \boldsymbol{I}^{-1}$
 $\boldsymbol{J} = \sum \gamma_j^{-1} \boldsymbol{m}_j \boldsymbol{m}_j$
viscous stress τ_v

- ▶ Moment of inertia: $I = \text{diag}(I_{11}, I_{22}, I_{33})$ bent-core: $\propto l^2 \text{diag}(4 \sin^2 \frac{\theta}{2}, \cos^2 \frac{\theta}{2}, 1 + 3 \sin^2 \frac{\theta}{2})$; star: depend on l, l_2, θ .
- Rotation: $\kappa = \nabla v$.

$$m{g} = (\kappa : m{m}_2 m{m}_3) m{m}_1 - (\kappa : m{m}_1 m{m}_3) m{m}_2 \ + rac{1}{I_{11} + I_{22}} (I_{22} \kappa : m{m}_1 m{m}_2 - I_{11} \kappa : m{m}_2 m{m}_1) m{m}_3.$$

Viscous stress:

$$\begin{split} \tau_v = & c\zeta\kappa: \Big[I_{22} \left< \boldsymbol{m}_1 \boldsymbol{m}_1 \boldsymbol{m}_1 \boldsymbol{m}_1 \right> + I_{11} \left< \boldsymbol{m}_2 \boldsymbol{m}_2 \boldsymbol{m}_2 \boldsymbol{m}_2 \right> \\ & + \frac{I_{11}I_{22}}{I_{11} + I_{22}} \left< (\boldsymbol{m}_1 \boldsymbol{m}_2 + \boldsymbol{m}_2 \boldsymbol{m}_1) (\boldsymbol{m}_1 \boldsymbol{m}_2 + \boldsymbol{m}_2 \boldsymbol{m}_1) \right> \Big]. \end{split}$$

 $\begin{array}{l} \bullet \quad \mbox{Principle of virtual work} \Longrightarrow \mbox{Elastic stress } \tau_e \mbox{ \& Body force } F_e \\ \mbox{Elastic stress: } \tau_e^{\alpha\beta} = c k_B T \left< \alpha_i^{\alpha\beta} L_i \mu \right>, \end{array}$

$$\alpha_1 = m_2 m_3, \quad \alpha_2 = -m_1 m_3,$$

 $\alpha_3 = \frac{1}{I_{11} + I_{22}} (I_{22} m_1 m_2 - I_{11} m_2 m_1).$

Body force: $F_e = -ck_BT \langle \nabla \mu \rangle$. Depend on $I_{ii} \& \mu$. $\mu = \delta F / \delta f$ determined by molecular architecture.

Jie Xu and Pingwen Zhang, JNNFM, online.

Tensor model

Multiply the Smoluchowski equation with m₁, m₁m₁, m₂m₂ and integrate over SO₃, assume c is constant,

$$\frac{\partial A}{\partial t} + \boldsymbol{v} \cdot \nabla A = \mathcal{N}_A + \mathcal{M}_A + \mathcal{V}_A, \qquad A \in \{\boldsymbol{p}, Q_1, Q_2\}.$$

 \mathcal{N}_A : spatial diffusion; \mathcal{M}_A : rotational diffusion; \mathcal{V}_A : rotational convection.

•
$$\mathcal{M}_A$$
, \mathcal{V}_A , τ_e , τ_v , F_e : functions of tensors up to 4th order.

 \mathcal{N}_A : functions of tensors up to 6th order.

Express high-order tensors: quasiequilibrium closure approximation.

$$\rho(P) = \frac{1}{Z} \exp(\boldsymbol{b} \cdot \boldsymbol{m}_1 + B_1 : \boldsymbol{m}_1 \boldsymbol{m}_1 + B_2 : \boldsymbol{m}_2 \boldsymbol{m}_2).$$

Advantage: keep energy dissipation.

Energy dissipation of molecular model:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\int \mathrm{d}\boldsymbol{x} \frac{\rho}{2} |\boldsymbol{v}|^2 + k_B T \int \mathrm{d}\nu f \log f + F_r \right)$$
$$= \int \mathrm{d}\boldsymbol{x} \mathrm{d}\nu f \left[-k_B T \left((L\mu)^T D_0 \boldsymbol{I}^{-1} L\mu - (\nabla \mu)^T \boldsymbol{J} \nabla \mu \right) -2\eta \frac{\kappa + \kappa^T}{2} : \frac{\kappa + \kappa^T}{2} - \kappa : \tau_{vf} \right].$$

Shear flow problem

- Assume κ₁₂ = ∂_yv_x = k constant, (p, Q₁, Q₂) spatially homogeneous.
 Solve Smochulowski equation only.
- ► Rescale $\tilde{t} = (\zeta l^2/48k_BT)^{-1}t$, $\tilde{\boldsymbol{x}} = \boldsymbol{x}/l$. Dimensionless parameters: k, $\alpha = \pi cD^2(l+l_2)/4$, θ , l_2/l , $\eta = D/l$.

• Choose
$$\eta = 1/40$$
, $\alpha = 0.33, 0.39$.

Alter θ , l_2/l : N_2 -B- N_3 transition.

Classification of flow modes: motion of the principal eigenvectors q₁, q₂.
 In equilibrium q₁ ⊥ q₂; In shear flow, they are approximately vertical.

Flow modes

- Steady states.
 - Log-rolling (LR): q_2 along z (vortex), q_1 in x-y (shear plane).
 - Flow-aligning (FA): q₂ in x-y near x, q₁ may be in x-y near y (FA-y) or along z (FA-z).
- Periodic modes.

Flow mode sequences when k increases

Molecular model:

- N₂ region: LR K-Q₂ T W-A W-W FA-y FA-z. Some may be missing. No switch. Look at q₂: similar to rod-like molecules.
- ▶ N₃ region: FA-z.

Tensor model:

- N₂ region: part of the sequence at lower shear rates.
- ▶ N_3 region: FA-z.

B region: star molecules with $\theta = 2\pi/3$. Only molecular model. Let l_2/l vary. Delicately dependent on shape.

- ▶ 0.125: LR K- Q_2 W-W FA-y FA-z;
- ▶ 0.15, 0.175: LR K- Q_2 W-W FA-y K- Q_1 FA-z;

- ▶ 0.2: LR W-W FA-y K- Q_2 K- Q_1 FA-z;
- ▶ 0.225: K- Q_2 W-W FA-y K- Q_2 LR FA-z;
- ▶ 0.25: K- Q_2 W-W FA-y LR FA-z;
- ▶ 0.275: DS FA-y LR FA-z.

Contents

Tensor model

Nematic phases

Dynamic model

Fast algorithm for Bingham closure

Fast algorithm for Bingham closure

Smoluchowski equation for rods: $Q = \langle \boldsymbol{mm} \rangle$, $R = \langle \boldsymbol{mmmm} \rangle$,

$$(Q_t)_{ij} = \left[-6(Q_{ij} - \frac{\delta_{ij}}{3}) + \alpha(Q_{ik}Q_{kj} - Q_{kl}R_{ijkl})\right] + \kappa_{ik}Q_{kj} + Q_{ik}\kappa_{kj} - \kappa_{kl} : R_{ijkl}.$$

• Bingham distribution $f_B = \frac{1}{Z} \exp(B : \boldsymbol{m} \boldsymbol{m})$, such that

$$Q = \langle \boldsymbol{mm} | f_B \rangle, \ R = \langle \boldsymbol{mmm} | f_B \rangle.$$

Compute R = R(B(Q)).

• Polynomial fitting. Error $\approx 10^{-4}$.

$$R_{ijkl} = \beta_1 S(\delta_{ij}\delta_{kl}) + \beta_2 S(\delta_{ij}Q_{kl}) + \beta_3 S(Q_{ij}Q_{kl}) + \beta_4 S(\delta_{ij}Q_{km}Q_{ml}) + \beta_5 S(Q_{ij}Q_{km}Q_{ml}) + \beta_6 S(Q_{im}Q_{mj}Q_{kn}Q_{nl}).$$

M. Grosso, P. L. Maffettone, F. Dupret, Rheol. Acta(2000).

Fast algorithm for Bingham closure

Sometimes need to compute $B \leftrightarrow Q$.

• Diagonalize: $f = \frac{1}{Z} \exp(b_1 m_1^2 + b_2 m_2^2), \ b_1, b_2 \le 0.$

$$q_i(b_1, b_2) = \frac{1}{Z} \int \mathrm{d}\boldsymbol{m} \exp(b_1 m_1^2 + b_2 m_2^2) m_i^2.$$

Direct computation: 2D integration.

• Piecewise rational approximation: 'integration free' $B \rightarrow Q, \langle mmmm \rangle, \langle mmmmmm \rangle, \dots$ Absolute error $< 5 \times 10^{-8} \& 10^4$ times faster than numerical integration.

Yixiang Luo, Jie Xu and Pingwen Zhang. J. Sci. Comput., online. Package: https://github.com/yixiangLuo/Bingham-moment-function/

Application: Defects of rod-like molecules in a sphere

Free energy

$$F = \int_{\Omega} \mathrm{d}x \mathrm{d}y \mathrm{d}z \left[(B : (Q + \frac{I}{3}) - \log Z) - \frac{1}{2}\alpha_1 |Q|^2 + \frac{1}{2}\alpha_2 |\nabla Q|^2 \right] + F_p,$$

Surface energy: let $Q \approx \lambda(\mathbf{r})(\mathbf{rr} - I/3)$.

$$F_p = \int_{\partial\Omega} dS \left[Q_{11}xy - Q_{12}(x^2 - \frac{1}{3}) \right]^2 + \left[Q_{12}z - Q_{13}y \right]^2 + \left[Q_{22}xy - Q_{12}(y^2 - \frac{1}{3}) \right]^2 + \left[Q_{12}z - Q_{23}x \right]^2,$$

Typically take 1 hour. Would take >1 year without fast algorithm.

Summary & Future works

From molecular theory to tensor model:

Molecular symmetry \longrightarrow Order parameters & Form of free energy

 $\mathsf{Molecular}\ \mathsf{parameters}\ \longrightarrow\ \mathsf{Coefficients}$

Nematic phase diagram & Elasticity

Dynamic model; shear flow problem

Fast algorithm for Bingham closure

- High-dimensional structures; Defects; Fast closure approximation for bent-core molecules.
- Same molecular symmetry, Different shape & interactions
 Same Model, Different coefficients

▶ Include concentration variation \Rightarrow Extend to smectics.