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Ericksen-Leslie System

General EL system is given by :
∂tn + u · ∇n − Ωn + λ2

λ1
An = 1

|λ1|
(
∆n + |∇n|2n

)
+ λ2

λ1
〈An, n〉 n;

∂tu + u · ∇u +∇p = −∇ · (∇n �∇n) +∇ · σL;

divu = 0;

.

Here σL is the Leslie stress tensor which can be read as :

α1 〈An, n〉 n⊗n+α2N⊗n+α3n⊗N+α4A+α5(An)⊗n+α6n⊗(An).
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Simplified EL system

To simplify and meanwhile preserve the dissipative properties of
EL, the following simplified system was proposed by LIN in 1991:

∂t φ+ v · ∇φ−∆φ = |∇φ |2φ , in Rn × (0,∞);

∂t v + v · ∇v −∆v = −∇p −∇ ·
(
∇φ�∇φ

)
, in Rn × (0,∞);

∇ · v = 0, in Rn × (0,∞).

Here v is velocity. φ is the orientation variable. n = 2, 3.
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This system is a coupled system with Navier-Stokes equation and
the transported heat flow of harmonic maps. We review some
known results in heat flow of harmonic maps.
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(1). Guan-Gustafuson-Tsai and Gustafuson-Nakanishi-Tsai studied
global m-equivariant solution of the heat flow of harmonic maps in
2D. Solution constructed exist globally in time if |m| ≥ 2. When
|m| ≥ 3, asymptotic limit exists. When |m| = 2, solution exists
globally in time, but can osciallate or blow up at t =∞. When
|m| = 1, they find a solution blow up at finite time. The spatial
domain considered by the authors is R2;

(2). For the bounded domain case, Ding et. al. showed the
existence of blow-up at finite time. The optimal blow-up rate for
the heat flow of harmonic maps on 2D bounded domain were
shown by Raphaël-Schweyer (2011);

(3). Angenent-Hulshof (2005) constructed a solution which exists
globally in time and blows up as t →∞;
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Navier-Stokes Equation in R2

(1). As far as the existence result for the vorticity formulation of
Navier-Stokes equation be concerned, Giga-Miyakawa-Osada
proved in 1988 the global well-posedness in R2 with a given initial
vorticity in measure space;

(2). In 1994 Ben-Artzi showed that for any given L1 vorticity, the
Navier-Stokes equation can be solved globally in 2-D;

(3). The result in (2) has been generalized to include any positive
Radon measure valued initial vorticity in a book by Ben-Artzi.



Global Instabilities in Nematic Liquid Crystals

(4). Giga-Kambe (1988) considered stability of Oseen vortices.
They assumed the smallness of the circulation Reynolds number;

(5). Later in 2005, Galley-Wayne dropped the smallness
assumption on the circulation Reynolds number. They obtained
global stability result for the Oseen vortices in 2D.



Global Instabilities in Nematic Liquid Crystals

Ericksen-Leslie Equation

Employing methods from harmonic maps, Ginzburg-Landau
approximation and Navier-Stokes, many authors have studied the
well-posedness of Ericksen-Leslie system in both 2-D and 3-D, for
both strong solution and global weak solution. Some results are
listed as follows.

(1). In 2-D bounded domain case, Lin-Lin-Wang in 2010 proved
the global existence of weak solutions for the simplified
Ericksen-Leslie system. The solution obtained by them might blow
up at finite times;
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(2). As for the 3-D case, in 2013, the existence theory of the
Ericksen-Leslie system has been established by
Wang-Zhang-Zhang. In 2014, Lin-Wang considered global
existence of the simplified (EL) system in 3-D with initial director
field being in S2

+;
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(3). Recently finite-time blow-up solutions in 3D bounded domain
have also been found by Huang-Lin-Liu-Wang;

(4). In the Ginzburg-Landau approximation of the general
Ericksen-Leslie system, some stability results have also been
established by Wu-Xu-Liu (2013).
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(6). Uniqueness of the Ericksen-Leslie system is also considered by
Lin-Wang and Li-Titi-Xin;

(5). Compressible Ericksen-Leslie system is also considered by
Hu-Wu (2013), Huang-Wang-Wen (2012), Jiang-Jiang-Wang
(2014) and Li-Xu-Zhang.
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What happens when vorticity meets orientation variable ?
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Vorticity Formulation of Simplified EL System

Taking curl on both sides of the second equation yields:{
∂t φ+ v · ∇φ−∆φ = |∇φ |2φ , in R2 × (0,∞);

∂t ω + v · ∇ω −∆ω = −∇×∇ ·
(
∇φ�∇φ

)
, in R2 × (0,∞).

Here the velocity v can be recovered by the Biot-Savart law:

v = K ∗ ω, where K(x) =
1

2π

x⊥

|x |2
.
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Theorem (Chen-Y.)

Suppose that (φ0, ω0) is an initial data in H1
e

(
R2; S2

)
× L1

(
R2
)
.

Then there exists a T∗ > 0 and a smooth solution, denoted by
(φ, ω), of the vorticity formulation of EL on (0,T∗) so that

(i). As t ↓ 0, we have(
φ(·, t)− e, ω(·, t)

)
−→

(
φ0 − e, ω0

)
, strongly in H1 × L1.

The velocity v = K ∗ ω satisfies

v (·, t) −→ v0 = K ∗ ω0, strongly in
(
L1 ∩ Lp

)∗
, for all p > 2.
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Moreover we also have(
φ− e, ω

)
∈ L∞

(
[0,T∗]; H

1
(
R2
))
× L∞

(
[0,T∗]; L

1
(
R2
))
.

(ii). Fixing a τ ∈ (0,T∗) and denoting by ω̄ the unique mild
solution of the following initial value problem:

∂t ω̄ −∆ω̄ + v̄ · ∇ω̄ = 0, on R2 × (τ,∞);

ω̄(·, τ) = ω(·, τ); v̄ = K ∗ ω̄,

then we can decompose the velocity field v into the sum

v = v̄ + v∗, on R2 × [τ,T∗]. (1)
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The velocity field v∗ lies in the space

L∞
(

[τ,T∗]; L
2
(
R2
))
∩ L2

(
[τ,T∗]; H

1
(
R2
))

and satisfies the global energy inequality given below:∫
R2×{t2}

∣∣v∗∣∣2 +
∣∣∇φ ∣∣2 +

∫ t2

t1

∫
R2

∣∣∇v∗
∣∣2 +

∣∣∆φ+ |∇φ |2φ
∣∣2

≤ exp

{
c

∫ t2

t1

∥∥∇v̄
∥∥
∞

} ∫
R2×{t1}

∣∣v∗∣∣2 +
∣∣∇φ ∣∣2.

Moreover as t ↓ τ , v∗(·, t) converges to 0 strongly in L2.
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(iii). If ω0 ∈ L1 ∩ Lp for some p > 1, then τ in part (ii) can take
value 0. The decomposition of the velocity field v in (1) holds on
R2 × [0,T∗].
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The solution obtained in the last theorem can be extended globally.

Theorem (Chen-Y.)

The solution obtained in the last theorem exists on R2 × (0,∞) if∥∥∇φ0

∥∥
2
≤ ε.

Here ε > 0 is a number suitably small. Moreover on (0,∞), the
extended solution is smooth.
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Using the energy inequality in (ii) of the first theorem, we have

Theorem (Chen-Y.)

Given (φ0, ω0) ∈ H1
e

(
R2; S2

)
× L1

(
R2
)
, there exists a global weak

solution of the vorticity formulation of the simplified EL equation.
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How about explicit long-time descriptions of solutions ?
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I. Oscillation Instability
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Suppose the following m-equivariant ansatz for solutions:

v =
x⊥

|x |2
w (r , t) and φ = emθRψ(r , t).

Simple calculations imply that(
0, emθR+αR h

( r
σ

))
is an equilibrium solution of the simplified EL system. Here α ∈ R
and σ > 0 are two constants. R is the generator of the horizontal
rotations. The vector field h is a 3-vector with

h1(r) =
2

r |m| + r−|m|
, h2(r) ≡ 0, h3(r) =

r |m| − r−|m|

r |m| + r−|m|
.
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Theorem (Chen-Y.)

Suppose the following perturbation on the equilibrium solutions:

Win(r) = ω
(

1− e−r
2/4
)︸ ︷︷ ︸

OS Vortices with Reynolds Number ω

+ W ∗
in(r),

ψin(r) = h(r) + γ(r)h(r) + z1(r)e2 + z2(r) h(r)× e2.

Then

(i). The simplified EL admits a classical global solution;

(ii). For all t ≥ 0, the solution W can be decomposed by

W = W os + W ∗
1 + W ∗

2 ,
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where

W os = ω

(
1− e−r

2
/

4(t+1)

)
︸ ︷︷ ︸

Main Flow with ∞-Kinetic Energy

,

W ∗
1 = β

(
r

t + 1

)2

e−r
2
/

4(t+1)︸ ︷︷ ︸
Secondary Flow with 1/t2 - decay Kinetic Energy

, with β =
1

8

∫ ∞
0

W ∗
in.

W ∗
1

/
r2 - heat kernel in R4. Moreover for all t ≥ 0, it holds∥∥∥∥W ∗

2

r

∥∥∥∥2

L2

. (1 + t)−(p−1), for some p > 3;
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(iii). There exist (α(t), σ(t)) with (αin, σin) = (0, 1) and

z (ρ, t) = z1(ρ, t) + i z2(ρ, t) with ρ = r
/
σ(t),

by which ψ can be expressed as follows:

ψ(r , t) = eα(t)R

{
h(ρ) + γ(ρ, t)h(ρ) + z1(ρ, t)e2 + z2(ρ, t) h(ρ)× e2

}
. (2)

For all t ≥ 0, z satisfy the time-decay estimate given as below:

‖z ‖X . (1 + t)−(p−1)
/

2, for some p > 3;
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(iv). As t →∞, we have

σ(t) −→ σ∞ > 0 and α(t) +
mω

4
ln t −→ α∞.

It is the second limit above generate the oscillation instability of
the simplified EL system. The orientation variable rotates
counterclockwisely or clockwisely depends on the sign of mω.
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II. Concentration Instability
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Consider the equation of simplified EL on R3 and use the following
twisted m-equivariant ansatz:

v =
W (r , t)

r2

 −x2

x1

0

+

 0
0

V (r , t)

 , ψ = e µx3R+mθRϕ(r , t).

Here µ > 0 is the twisted rate. Our solution constructed is twisted
and periodic along the x3 - axis.
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Theorem (Chen-Kim-Y.)

Under similar perturbation assmptions as the last theorem, we have

(i). Solution exists classically and globally.

(ii). The functions W and V can be decomposed into

W = W os + W ∗
1 + W ∗

2 and V = V1 + V2,

respectively. Moreover V1, V2, W ∗
1 , W ∗

2 satisfy

‖V1‖2
L∞ +

∥∥∥∥W ∗
1

r2

∥∥∥∥
L∞

. t−1, ‖V2‖L2 +

∥∥∥∥W ∗
2

r

∥∥∥∥
L2

. (1 + t)−1;
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(iii). The variable z can be estimated by∫ ∞
0

exp

{
2µ2

m2
s

}
‖z(·, s)‖2

X ds . 1;

(iv). The scaling function σ decays exponentially:

σ(t) ∼ exp

{
− µ

2

m2
t

}
, as t →∞.

Remark 1 It is this exponential decay that makes the orientation
variable blow up at t =∞.
Remark 2 One can also observe that as t →∞, the orientation
variable will converges to e3 for all r > 0. At r = 0, the orientation
variable equals to −e3. In other words the solution will blow up to
a constant map exponentially. The bubble is m-equivariant
harmonic map.
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Remark 3 For the work of Gustafuson et al. they found a global
solution of heat flow of harmonic maps in 2-D, which do not blow
up at t =∞. The reason for our blow-up is also different from the
work Angenent-Hulshof. Ours is due to non-zero twist rate.
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Remark 4 Compare our two results, when the twist rate µ = 0,
the problem without twist is reduced to the oscillation problem.
But we find that the two system behave quite different when
t →∞. In fact

Twist Model
µ −→ 0−−−−→ Vorticity formulation of EL in 2-Dy t →∞

y t →∞

Blow up Slow oscillation

Therefore even for µ > 0 suitably small, the twist model should
not be regarded as a perturbation system of the un-twist case.
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In the following, we take a brief look at the proofs of the above
consequences.

(1). We take initial data so that

ϕin(r) = eΘinR
{

h(ρ) + γin(ρ)h(ρ) + z1,in(ρ)e2 + z2,in(ρ)h(ρ)× e2

}
, where ρ =

r

σin
.
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(2). We assume the solution satisfy the ansatz:

ϕ(r , t) = eΘ(t)R
{

h(ρ) + γ(ρ, t)h(ρ) + z1(ρ, t)e2 + z2(ρ, t)h(ρ)× e2

}
, where ρ =

r

σ(t)
.

Then the z variable satisfies the equation

∂t z +
1

σ2
Nz = Mod + HT, where

Mod := −
{(

1 + γ
)
h1 + ih3z

}(
Θ′ + µV +

mW

r2

)
+
σ′

σ

{
i
(
1 + γ

)
mh1 + ρ∂ρz

}
+ µ2

{
i
(
1 + γ

)
h1h3 + ih2

1z2 − h2
3 z
}

;

HT :=
i

σ2

2mh1

ρ
∂ργ

+

(
m2

ρ2σ2
+ µ2

)
z
{
z2

1 +
(
γh1 − z2h3

)2
+ 2h1

(
γh1 − z2h3

)}

+
1

σ2

{(
∂ργ −

mh1

ρ
z2

)2

+
(
∂ρ z1

)2
+

(
∂ρz2 +

mh1

ρ
γ

)2

+
2mh1

ρ

(
∂ρz2 +

mh1

ρ
γ

)}
z .
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(3). The operator N is given by

−N := −L∗hLh = ∂ρρ+
1

ρ
∂ρ+

m2

ρ2

(
2h2

1−1
)
, where Lh = ∂ρ+

m

ρ
h3(ρ).

The kernel space of operator N is non-trvial. It is spanned by h1.
If we force z to be orthogonal to h1, then we take inner product
with h1 on both sides of the equation for z . The equation satisfied
by σ(t) and Θ(t) can be estimated as follows:
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‖z ‖X
∣∣Θ′ ∣∣ . ‖z ‖X t−1/2 + ‖z ‖2

X + ε∗σ
−2‖z ‖2

X

+ ‖z ‖2
X

∣∣∣∣ σ′σ +
µ2

m2

∣∣∣∣+ ε−1
∗

∫ ∞
0

V 2
2 +

(
∂rW

∗)2

r2
,

and∣∣∣∣ σ′σ +
µ2

m2

∣∣∣∣ . ‖z ‖X+‖z ‖X t−1/2+σ−2‖z ‖2
X+ε−1

∗

∫ ∞
0

V 2
2 +

(
∂rW

∗)2

r2
.

Here we have used the following nonlinear cancellation∫ ∞
0

h2
1 h3ρdρ = m−1

∫ ∞
0

h2
1ρdρ.
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(4). We also need the following weighted energy estimate for z

d

dt

[
σ2

∫ ∞
0
|z |2ρdρ

]
+ µ2σ2

∫ ∞
0
|z |2ρdρ+ c∗‖z ‖2

X

. σ2‖z ‖X + σ2‖z ‖X t−1/2 + σ2 ε−1
∗

∫ ∞
0

V 2
2 +

(
∂rW

∗)2

r2
.
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Now we make our bootstrap assumption:

(A.1).
(
1− ε/2

)
e−

µ2

m2 tσin ≤ σ ≤
(
1 + ε/2

)
e−

µ2

m2 tσin;

(A.2).

∫ ∞
0

V 2
2 ≤ ε

3/2
∗

1

(1 + t)2
.

Here V2 = V − V1, where V1 is the solution of the standard heat
equation with V1(0) = Vin.
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(5). Employing the energy estimate for z twice and using
(A.1)-(A.2), we get the weighted X -norm estimate of z :∫ t

0
σ−2‖z ‖2

X ds . ε
1/2
∗

+

∫ ∞
0

∣∣zin(ρ)
∣∣2ρdρ+

(
σ2
in ε

1/2
∗ + σ2

in

∫ ∞
0

∣∣zin(ρ)
∣∣2ρdρ)1/2

.

Here X is the space endowed with the following norm

‖z ‖2
X =

∫ ∞
0

(∣∣∂ρz∣∣2 +
|z |2

ρ2

)
ρdρ.
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(6). This estimate together with the estimates for σ imply∫ t

0

∣∣∣∣ σ′σ +
µ2

m2

∣∣∣∣ � 1,

which improves the assumption (A.1).
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(7). To improve (A.2), we perform a Schonbek type estimate and
obtain

d

dt

∫ ∞
0

V 2
2 + R2

∗

∫ ∞
0

V 2
2 . ‖z ‖2

X + R6
∗ ε

2
∗σ

2
in.

Taking R∗ = 3(1 + t)−1 and solving the resulting inequality, we
can improve the assumption (A.2). In fact we have∫ ∞

0
V 2

2 ≤
ε2
∗

(1 + t)2
.

This decay is better than the one in (A.2).
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To prove oscillation instability, more will be involved. The main
observation is the following linearized equation of fluid. That is

∂tW
∗ = ∂rrW

∗ − ∂rW
∗

r
+ ...

Oseen vortex solution is automatically a solution. But there is
another one. One can easily calculate that W ∗/r2 satisfies

∂t

(
W ∗

r2

)
= ∆4

(
W ∗

r2

)
+ ....
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Therefore we can split W ∗ into two parts W ∗ = W ∗
1 + W ∗

2 , where

W ∗
1 = β r2 Γ4, with Γ4 the heat kernel in R4.

The coefficient β is chosen so that∫
R4

W ∗
2

r2
= 0,

which provides better time decay for W ∗
2 /r

2 than W ∗
1 /r

2. The
rigorous proof needs to apply Schonbek type estimate and
bootstrap it twice.
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III. Fréedericksz transition



Global Instabilities in Nematic Liquid Crystals

There is a third instability called Fréedericksz transition. It is
generated in terms of the external magnetic field. Assuming the
one-constant approximation in the Oseen-Frank theory, the free
energy functional for a nematic liquid crystal with a magnetic field
potential is given by

1

2

∫
Ω
|∇n|2 +

{
|H|2 − (n ·H)2

}
.

Here H is the applied magnetic field.
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On the space time Ω× R+, the simplified Ericksen-Leslie equation
with applied magnetic field can be read as follows:

∂t n + u · ∇n−∆n = |∇n|2n +
[(

n ·H
)
H−

(
n ·H

)2
n
]

;

∂tu + u · ∇u −∆u = −∇p −∇ ·
(
∇n�∇n

)
;

divu = 0.

Here Ω is a smooth, bounded domain in R2.
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If we assume bend geometry as an ansatz for the system (book of
Stewart), that is

n =

 sinφ
cosφ

0

 , u =

 u1

u2

0

 and H = H

 1
0
0

 ,

then the above equation can be reduced to
∂t φ+ u · ∇φ−∆φ =

H2

2
sin 2φ;

∂tu + u · ∇u −∆u = −∇q−
(

∆φ+
H2

2
sin 2φ

)
∇φ;

divu = 0.

Here q is given by p +
1

2
|∇φ|2 +

H2

4
cos 2φ.
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Supplied the above equation with u = 0 and φ = 0 on boundary, it
is clear that (0, 0) is a trivial equilibrium state of the system. If we
let H2

c be the first Dirichlet eigenvalue on Ω, then we can easily
have
(i). when H < Hc , this equilibrium state is locally stable;
(ii). if H > Hc , then this equilibrium is linearly unstable. Indeed by
W. M. Ni et al, when H > Hc , the elliptic sine-gordon equation
admits a positive solution φ∗.
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The Fréedericksz transition studied in [Chen, Kim, Y., 2017] is
about the nonlinear transition from (0, 0) state to (0, φ∗) state.
Here φ∗ is the unique positive solution of the sine-Gordon equation
with zero Dirichlet data.
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General results on long time behavior of (u, φ) system.

Let (u, φ) be a global solution to the (u, φ) system with the initial
data (φin, uin) ∈

{
H1

0 (Ω) ∩ H2(Ω)
}
× H1

0 (Ω). Then there exist a
smooth solution φ∞ to the elliptic sine-Gordon problem and a
constant θ ∈ (0, 1/2) such that∥∥u(t)

∥∥
H1(Ω)

+
∥∥φ(t)− φ∞

∥∥
H2(Ω)

≤ C (1 + t)−
θ

1−2θ ∀t > 0.

(3)
Here constants C and θ depend on Ω, H and the initial data
(φin, uin).
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This result is quite similar to the one studied by Lin-Liu and Wu et
al for the Ginzburg-Landau relaxation of the Ericksen-Leslie
system. The dacay rate can be obtain via Lojasiewicz-Simon
inequality. In our current situation, we can say more about the
long time behavior of the solution when H is in different regime.
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(1). when H is switched on but less than Hc , we have φ∞ = 0.
Moreover it holds∥∥u(t)

∥∥
H1(Ω)

+
∥∥φ(t)

∥∥
H2(Ω)

≤ C (1 + t)−
θ

1−2θ ∀t > 0.
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(2). When H > Hc and the initial orientation angle φin of the
liquid crystal satisfies φin 6≡ 0, and 0 ≤ φin ≤ π

2 . Then the decay
estimate holds with φ∞ = φ∗. Moreover, the following estimate
holds with an exponential convergence rate:∥∥u(t)

∥∥
H1(Ω)

+
∥∥φ(t)− φ∗

∥∥
H2(Ω)

≤ Ce−κt ∀t > 0.
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Remark 1. This result implies that when external magnetic field is
below the threshold, then it keeps orthogonal to the applied
magnetic field as t →∞. But when the external magnetic field is
beyond the threshold, then the transition happens;
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Remark 2. This transition is a nonlinear transition with
exponential convergence rate from a neighborhood of (0, 0) to
(0, φ∗);

Remark 3. The critical threshold of magnetic field strength is
given by the first Dirichlet eigenvalue. If the total area of the liquid
crystal material is given, then disk will be the optimal shape to
minimize the critical applied magnetic field.
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