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The model reduction problem

Many systems of scientific interest are to complex to simulate numerically.

E.g. climate models can resolve only part of the relevant processes of the

climate system.

Can a dynamical system of lower dimensionality be determined that

approximates the full system?

source: http://www.goes-r.gov
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Approach: Model reduction through time scale separation

• Assume a time scale separation between slow variables x and fast

variables ydx = 1
ε f0(x, y) dt+ f1(x, y) dt (resolved/slow/“climate”)

dy = 1
ε2 g(x, y) dt+

1
εσ(x, y) dW (unresolved/fast/“weather”)

• As ε→ 0 the fast y variable decorrelates ever faster and acts as a

Gaussian white noise on the slow variables and the slow x variable

converges weakly to an SDE.

• This idea can be made mathematically rigourous by the method of

homogenization

stochastic: Khasminsky ’66, Kurtz ’73, Papanicolaou ’76

deterministic: Melbourne & Stuart ’11, Gottwald & Melbourne ’13, Melbourne & Kelly ’15, De

Simoi & Liverani ’14
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Slow-fast systems in geophysics

ψ

x

y

Barotropic vorticity equation with topography


dU
dt = 1

4π2

∫
h∂ψ∂x dx dy

∂q
∂t +∇⊥ψ · ∇q+ U∂ψ∂x + β ∂ψ∂x = 0

q = ∆ψ + h

The zonal mean flow U evolves slower than

the fast Fourier modes ψi,j of the stream

function

Majda et al. (2003) JAS 60(14), 1705
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This can be modeled by a system with a time scale separation parameter ε dU
dt = 1

ε f1(ψ)
dψi,j

dt = 1
ε2 g2(ψ) +

1
εg1(U)

Reduces through homogenization, assuming infinite time scale separation to

dU = α(U) dt+ σ(U) dW

Fails when only a

moderate time

scale separation
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The CLT and the Edgeworth expansion

The Central Limit Theorem
Assume Xi are i.i.d. random variables

Sn :=
1√
n

n∑
j=1

(Xj − µ) →d N (0, σ2)

where µ = E[Xi] and σ2 = E[X2
i ]

For finite n, there are deviations to the CLT

These are described by the Edgeworth expansion

ρn(x) = Φ0,σ2(x)× (1+
1

6
√

n

γ

σ3
H3(x/σ)) + o(1/

√
n)

where H3 is the third Hermite polynomial and γ = E[X3
i ]

Feller (1957) “An introduction to probability theory and its applications”
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The CLT and the Edgeworth expansion (dependent version)

The Central Limit Theorem
Assume Xi are stationary weakly dependent random variables

Sn :=
1√
n

n∑
j=1

(Xj − µ) →d N (0, σ2)

where µ = E[Xi] and σ2 = E[X2
1] + 2

∑∞
j=1 E[X1Xj+1]

For finite n, there are deviations to the CLT

These deviations are described by the Edgeworth expansion

ρn(x) = Φ0,σ2+δσ2/n(x)× (1+
1√
n
δκH3(x/σ)) + o(1/

√
n)

where H3 is the third Hermite polynomial and δσ2 and δκ are sums over

correlation functions of Xi
Götze and Hipp (1983) Z Wahrscheinlichkeit, 64, 211
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Edgeworth expansion in action: deterministic processes

Example: deterministic mod process

xn =
1√
n

n∑
j=1

A(yj)
with yj+1 = pyj mod 1

A(y) = y5 + y4 + y3 + y2 + y− c

We can calculate σ2, δσ2 and δκ explicitly
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Edgeworth expansion for slow/fast systems

For slow-fast systems ẋ = 1
ε f0(x, y) + f1(x, y)

ẏ = 1
ε2 g0(y) +

1
εg1(x, y)

we have that x(ε)−x(0)√
ε

converges to a Gaussian as ε→ 0.

ρt(x(t)|x(0) = x0) =

∫
dy eLtδx0(x)µ(dy)

where L = 1
ε2L0 +

1
εL1 + L2 with L0ρ = −∂y(g(y)ρ),

L1ρ = −∂x(f0(x, y)ρ) and L2ρ = −∂x(f1(x, y)ρ) are generators

Edgeworth corrections to ρt can be calculated from a Dyson series for the

transfer operator

eLt = eL0t/ε2 +

∫ t

0
ds eL0(t−s)/ε2(

1

ε
L1 + L0)e

L0s/ε2 + . . .
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Stochastic parameterization using the Edgeworth expansion

Given a slow-fast dynamical systemẋ = 1
ε f0(y) + f1(x, y)

ẏ = 1
ε2 g(y)

1. determine the Edgeworth expansion coefficients σ2
GK, δκ associated

with f0(x, y)

2. model x of the multi-scale system by X of a surrogate stochastic

process Ẋ = 1
εA(η) + F(x)

dη = − γ
ε2 dt+ 1

ε dW

with A(η) = aη2 + bη + c, where a, b, c, γ are determined such that

the Edgeworth expansion coefficients of A(η) match those of f0 in the

true system.
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Application: parameterization of a discrete-time multiscale system

x(ε)j+1 = x(ε)j + εf0(yj) + ε2f1(x
(ε)
j )

yj+1 = pyj mod 1

homogenization: converges for ε→ 0 to a diffusion (Gottwald &

Melbourne (2013))

dX = f1(X) dt+ σGK dW

Edgeworth: replace fast mod map y by an AR1 process ηX(ε)j+1 = X(ε)j + εf0,s(ηj) + ε2f1(X
(ε)
j )

ηj+1 = ϕηj + Nj

with f0,s(η) = a3η3 + a2η2 + a1η + a0 and parameters ai tuned to match

Edgeworth corrections
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Parameterization of a continuous-time multiscale system

ẋ = 1
ε f0(y) + f1(x)

ẏ = 1
ε2 g(y)

where f1(x) = −∇V(x), with V(X) an assymetric double well potential and

ẏ = g(y) is the standard Lorenz ’63 system.

Edgeworth: replace fast Lorenz system y by an Ornstein-Uhlenbeck process

η Ẋ = 1
ε f0,s(η) + f1(X)

dη = − 1
ε2γη dt+ 1

ε dW

with f0,s(η) = a3η3 + a2η2 + a1η + a0 and parameters ai tuned to match

Edgeworth corrections
12
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Summary

• We have used the Edgeworth expansion to extend the range of time

scale separation over which slow-fast sytems can be approximated

• The fast variables are replaced by a stochastic surrogate process, the

parameters of which are tuned to match the Edgeworth expansion

• We have shown good agreement when reducing deterministic discrete

and continuous time systems

• To do: Apply Edgeworth based reduction to the barotropic vorticity

equation

Thank you for your attention!
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homogenization extends the Central Limit Theorem

dx(ε) = 1
ε f0(y

(ε)) dt resolved/slow

dy(ε) = 1
ε2 g(y

(ε)) dt+ 1
εσ dW unresolved/fast

The slow variable x integrates the fast variable y

x(ε)(t)− x(ε)(0) =
1

ε

∫ t

0
f0(y

(ε)(s)) ds

= ε

∫ t/ε2

0
f0(y

(ε=1)(s)) ds

=
1√
n

∫ tn

0
f0(y

(ε=1)(s)) ds

Invoking the CLT, x(t) converges weakly to dX = σ dW where

σ2 = 2
∫∞
0 E[f0(y(1)(0))f0(y(1)(s))] ds



homogenization

dx = 1
ε f0(x, y) dt+ f1(x, y) dt resolved/slow

dy = 1
ε2 g(x, y) dt+

1
εσ(x, y) dW unresolved/fast

Assumptions:

• fast y-process is ergodic with measure µx

•
∫

f0(x, y) dµx = 0

In the limit ε→ 0, the slow x-dynamics is approximated by

dX = F(X) dt+Σ(X) dW

where

ΣΣT =2

∫ ∞

0
Eµx [f0(x, y)f0(x, y(s))] ds

F(X) =

∫
f1(x, y) dµx +

∫ ∞

0

∫
∇xf0(x, y(s))f0(x, y) dµx ds

stochastic: Khasminsky ’66, Kurtz ’73, Papanicolaou ’76

deterministic: Melbourne & Stuart ’11, Gottwald & Melbourne ’13, Melbourne & Kelly ’15



“Proof” of the Edgeworth expansion

Expand the characteristic function of X/
√

n (assuming µ = 0, σ = 1):

E[eıtX/
√

n] = E[1+
ıtX√
n
+

(ıt)2X2

2n
+

(ıt)3X3

6n
√

n
+ . . .]

= (1− t2

2n
) +

(ıt)3

6n
√

n
E[X3] + . . .

The characteristic function of
∑n

j=1 Xj/
√

n

E[eıtX/
√

n]n = (1− t2

2n
)n + (1− t2

2n
)(n−1) (ıt)

3γ

6
√

n
+ . . .

= e−t2/2

(
1+

(ıt)3γ

6
√

n

)
+ O(

1

n
)



Application: stochastic approximation of a deterministic map

Replace

xj+1 = xj + εA(yj)

yj+1 = pyj mod 1
with A(y) = y5 + y4 + y3 + y2 + y− c

by a surrogate AR1 processXj+1 = Xj + εB(ηj)

ηj+1 = ϕηj + Nj

with B(y) = asη2 + bsη + cs

such that σ2
GK (homogenization), as well as δκ3 (1st Edgeworth term) match
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Edgeworth expansion in action: stochastic processes

Example 1: AR1 processxj+1 = xj + εA(ηj)

ηj+1 = ϕηj + Nj

with

A(η) = aη2 + bη + c

Nj ∼ N (0, 1)

We can calculate σ2, δσ2 and δκ explicitly (everything is Gaussian)
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Triad system Majda et al (2001)
ẋ = 1

εB0y1y2

ẏ1 = 1
εB1y2x−

1
ε2γ1y1 −

1
εσ1Ẇ1

ẏ2 = 1
εB2xy1 −

1
ε2γ2y2 −

1
εσ2Ẇ2

Edgeworth: Ẋ = 1
εA(η)

η̇ = 1
εαX− 1

ε2 η −
1
εσẆ

with A(η) = asη
2 + bsη + cs
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