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Motivation

Coherent are sets with a particular property in state space with a specific
behavior in time

I Bundles of trajectories (Talk by Padberg-Gehle)

I Sets that don’t disperse over time under the combined effect of
dynamics and diffusion (Talks by Froyland, Junge, and Karrasch)

→

Aim: Try to understand coherent sets in their spatio-temporal entirety.
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Augmented system
I With x = (θ, x) ∈ X we have the augmented system

θ̇t = 1
dxt = v(θt, xt)dt + ε dwt

⇐⇒ dxt = v
(
xt
)
dt + Σ dwt

I Generates autonomous (homogeneous) augmented system xt

I For family of sets {Ar}r∈(s,t): augmented set A =
⋃

r∈(s,t)

{r} × Ar

A

x

t

At

X



Transfer operator on augmented space

I Ensemble of states x0 with density f ∈ L1(X)

I Transfer operator P t : L1(X)→ L1(X):

x0 ∼ f =⇒ xt ∼ P tf

I For s, t ≥ 0, P s+t = P sP t: one-parameter semigroup
Compare with exp(s + t) = exp(s) exp(t)

I (Infinitesimal) generator G, with d
dtP t = GP t. Intuitively

“P t = exp(tG)′′

I Spatio-temporal Fokker–Planck operator

Gf = −div(fv) +
ε2

2
∆xf



Coherent families

I Escape rates

E(A) = − lim inf
t→∞

1
t

log P
(
xr ∈ A, 0 ≤ r ≤ t

)
m

E({Ar}) = − lim inf
t→∞

1
t

log P
(

xr ∈ Ar, s ≤ r ≤ t
)

I Periodic forcing: v(t, ·) = v(t + τ, ·)

• Let Gf = κf
• Set A± = {±f ≥ 0}
Then

E(A±) ≤ −Re(κ)

[Froyland, K., preprint]

I Cf. evolution semigroups [Howland ’74], [Chicone, Latushkin ’00] &
others; and also the talk by Gonzalez Tokman



State space

Coherent families {As}
with escape rate

E({As}) ≤ −Re(κ)

Family of functions fs with
slow decay:

Λs( fs) = Re(κ)

↑

Eigenfunctions of one-
period transfer operator:

Ps,s+τ fs = eκτ fs

↔

↖

Augmented state space

Augmented set A with es-
cape rate

E(A) ≤ −Re(κ)

Augmented function f with
slow decay:

P tf = eκtf

↑

Eigenfunctions of augmen-
ted generator:

Gf = κf



Double gyre: real eigenvalues
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Double gyre: escape rates
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Double gyre: escape rates

Escape rates by numerical simulation: from {A+
t } (blue) and from {A−t }

(red). Dashed line: eigenvalue bound.



Example 1: complex eigenvalue

I Gf = κf , κ ∈ C

I A±t =
{
±Re(eiIm(κ)t ft) ≥ 0

}
is a coherent family

I Quasi-periodic family: ft is τ-periodic, eiIm(κ)t is 2π
Im(κ)

-periodic
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Extensions

I Finite time coherence; t ∈ [t0, t1] ([Froyland, K., Plonka, In prep.])

I Ergodic base dynamics

θ̇t = g(θt)

dxt = v(θt, xt)dt + ε dwt

I Non-deterministic regime dynamics ([K., Plonka, In prep.])

θ̇t = g(θt) + noise
dxt = v(θt, xt)dt + ε dwt

Each framework characterizable by augmented generator G



Turbulent superstructures

θ

regime parameter

v
(
θ(1), ·

)
v
(
θ(2), ·

)

Augmented-space dynamics:

θ̇t = noise/non-trivial dynamics

ẋt = v(θt, xt) + noise

Statistically persistent cohe-
rent families = stable sets in
augmented space.



Something different...

“Skeleton of transport” or “Transport coordinates”
[Banisch, K., To appear]

Embedding Clusters / coherent sets

L" = "�1(Q" � I) for di↵erent values of " is shown in Figure 9 on the left. The �n for
n  9 are stable for 0.01  "  0.05. We choose " = 0.02, yielding a sparsity of 4.5%. The
unifying features of the spectra are large spectral gaps after the 2nd, 3rd and 9th eigenvalue,
which indicates that clusterings with ⇤ = 2, 3 or 9 are all possible. The eigenfunctions
 2, 3 and  4 are shown in Figure 10 on the right at time t = 20. Clearly,  2 and  3

pick out the meandering jet stream region in the middle, which constitutes the strongest
dynamical boundary in this system, and the six vortices.  4 distinguishes between two of
the six vortices, {⌅5, . . . ,⌅9} distinguish between the others.
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Figure 9: Bickley jet, eigenvalues (left) and embedding using the eigenfunctions ⌅2, ⌅4 and
⌅5 (right).

Figure 10: Left, top to bottom: Bickley jet, clusters at times t = 5, t = 20 and t = 35,
for ⇤ = 9 (multimedia view online). Right: top to bottom: Eigenfunctions ⌅2, ⌅3 and ⌅4

at t = 20.

The clustering for ⇤ = 9 is shown in Figure 10 on the left at times t = 5, t = 20 and

22
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Ocean drifters
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Conclusion

Summary:

I Spatio-temporal characterization of coherence

I Transfer operator (generator) in augmented space

I Coherent families for different types of dynamical models

I Skeleton of transport
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Appendix



Discretization I

XX1 X2 . . .

Discrete generator G(n):

G
(n)
ij =


1

vol(Xj)

∫
∂Xi∩∂Xj

〈
v,nj

〉+ dσ, i 6= j

− 1
vol(Xi)

∫
∂Xi

〈
v,ni

〉+ dσ, i = j,

I G(n) computable without trajectory simulation.

I G(n) is a sparse matrix.

I G(n) is the spatial discretization of the upwind scheme.

I G(n) generates Markov jump process, i.e. etG(n)
is a stoch. matrix



Double gyre with Ulam’s method

I Eigenfunctions of transition matrix P(n) from Ulam’s method for
(s, t) = (0, 1)

I Same number of vector field evaluations as for the augmented
generator
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