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Eulerian and Lagrangian FPEs (Generalized) Heat flows Summary

Eulerian and Lagrangian

Eulerian: physical description w/ reference to space-time

Lagrangian: physical description w/ reference to material
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kinematics: description of motion of material in space

What describes the motion of material in Lagrangian coordinates?
The identity map!
Where has deformation gone?
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Eulerian and Lagrangian FPEs (Generalized) Heat flows Summary

Coherent Structures: Literature overview

Previous notions have diverse appearance...

I preservation of boundary length [Haller & Beron-Vera 2013] or shape [Ma &

Bollt 2014]

I minimization of mixing [Froyland et al. 2010, Froyland 2013], of
surface-to-volume ratio [Froyland 2015] or length of braiding
material loops [Allshouse & Thiffeault 2012]

I averaging & Koopman-related methods [Mezic, Rom-Kedar, Mancho, Haller,

etc.]

I many more

... but a common sense: avoiding filaments, strong stretching etc.
to avoid leakage due to (weak) diffusion
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Eulerian model of advection–diffusion

Fokker–Planck equation (Eulerian/spatial evolution equation):

∂tu − ε2∆gu = div(u · v)

Definition (Eulerian Coherent Structures)

maximal spacetime tubes with minimal flux due to advection and
diffusion discrete time/diffeo [Froyland2010,2013], continuous time [Denner, Matthes & Junge 2016]

Observations:

1. small advective flux if tube almost follows the flow

2. small diffusive flux if surface is small
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Eulerian and Lagrangian FPEs (Generalized) Heat flows Summary

Lagrangian model of advection–diffusion

Eulerian: ∂tu − ε2∆gu = div(u · v)

Lagrangian “Fokker–Planck equation” (material evolution
equation)

∂tw − ε2∆g(t)w = 0

g(t) := Φ(t)∗g—pullback metric,
∆g(t)—Laplace–Beltrami operator.

}
⇒ evolving (material) manifold

Definition (Lagrangian Coherent Structures)

maximal material sets with minimal diffusive flux, or, metastable/
almost-invariant sets under material evolution equation
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Eulerian and Lagrangian FPEs (Generalized) Heat flows Summary

From dynamics to geometry 1

∂tw − ε2∆g(t)w = 0

Step 1: Time-dependent perturbation theory

Approximate t 7→ ∆g(t) by autonomous differential operator.

Result: ∆ = 1
T

∫ T
0 ∆g(t) dt – dynamic Laplacian [Froyland2015]

Lemma ( Froyland 2015, DK & Keller 2016 )

The dynamic Laplacian is an elliptic, nonpositive second-order
differential operator. If Φ is volume-preserving, ∆ is selfajoint.

Theorem ( DK & Keller 2016, based on Lebeau & Michel 2010, cf. Froyland 2015 )

L∗εLε = I + cε2∆ +O
(
ε4
)

(spectral convergence!)

Lε = DεPt0+T
t0
Dε—prob. TO, Dε—averaging over metric balls
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Eulerian and Lagrangian FPEs (Generalized) Heat flows Summary

From dynamics to geometry 2

∂tw − ε2∆w = 0

Challenge: dependence on volume-preservation, and ...

Step 2: Matching principal symbols

Question: Is there an “averaged geometry” underlying the dynamic
Laplacian?

Not exactly, but there is a Laplace–Beltrami operator
∆ḡ with the same principal symbol as ∆, where

ḡ :=
(

1
T

∫ T
0 g(t)−1 dt

)−1

is the harmonic mean of pullback metrics g(t).

=⇒ ∂tw − ε2∆ḡw = 0
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Eulerian and Lagrangian FPEs (Generalized) Heat flows Summary

Nice features
Geometric heat equation:

∂tw − ε2∆ḡw = 0

I apply theory of metastable decompositions/AI sets

I autonomous ⇒ generator-based analysis ∆ḡ , always
selfadjoint, in contrast to Eulerian generator-based approaches

I dynamics ↔ operator theory ↔ differential geometry

I we can visualize many different aspects of the intrinsic
geometry (metric, volume density, curvature, ...)

I we found relations to geodesic approaches to LCS [Haller et al.2012–]

Thank you very much!
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I apply theory of metastable decompositions/AI sets

I autonomous ⇒ generator-based analysis ∆ḡ , always
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Outreach & open problems Bickley jet

Outreach & open problems

I Conjecture: L-FPE is pullback of linearization of Eulerian
Fokker-Planck equation along transport equation

I observer-independence/objectivity of Eulerian FPE

I visualization based on reference geometry, but Laplace
eigenfunctions/heat flow are intrinsic (M3 homepage)

I (discrete) geometry: curvature, geodesics, Laplace operator
(Note: (M2, ḡ) not embedded in R3, but R5)

I relation to topology: LCS detection = component counting,
disconnecting/decoupling M

I numerics: graph Laplacian involves geodesic distances

I applications

For references, manuscript, figures and videos: see my TUMpage!
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Outreach & open problems Bickley jet

Example: Bickley jet
The spectrum
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Outreach & open problems Bickley jet

Example: Bickley jet
The second eigenfunction

Cf. the second singular vector from TO calculations!
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