ELE DOG

(E) < E)</p>

Lagrangian coherent structures as almost-invariant sets of a geometric heat equation BIRS Workshop on Transport in Unsteady Flows, Banff, Canada

> Daniel Karrasch Technische Universität München, Germany joint work with <u>Johannes Ke</u>ller

> > funded by

January 18, 2017

Daniel Karrasch, joint with Johannes Keller

Eulerian: physical description w/ reference to space-time

Lagrangian: physical description w/ reference to material

= 200

kinematics: description of motion of material in space

Eulerian: physical description w/ reference to space-time

 $\label{eq:lagrangian: physical description w/ reference to material$

∃ >

ELE DOG

kinematics: description of motion of material in space

What describes the motion of material in Lagrangian coordinates?

Eulerian: physical description w/ reference to space-time

 $\label{eq:lagrangian: physical description w/ reference to material$

kinematics: description of motion of material in space

What describes the motion of material in Lagrangian coordinates? The identity map!

Daniel Karrasch, joint with Johannes Keller

Eulerian: physical description w/ reference to space-time

 $\label{eq:lagrangian: physical description w/ reference to material$

kinematics: description of motion of material in space

What describes the motion of material in Lagrangian coordinates? The identity map! Where has deformation gone?

Daniel Karrasch, joint with Johannes Keller

Coherent Structures: Literature overview

Previous notions have diverse appearance...

- preservation of boundary length [Haller & Beron-Vera 2013] or shape [Ma & Bollt 2014]
- minimization of mixing [Froyland et al. 2010, Froyland 2013], of surface-to-volume ratio [Froyland 2015] or length of braiding material loops [Allshouse & Thiffeault 2012]
- averaging & Koopman-related methods [Mezic, Rom-Kedar, Mancho, Haller, etc.]

many more

... but a common sense: avoiding filaments, strong stretching etc. to avoid leakage due to (weak) diffusion

Eulerian model of advection-diffusion

Fokker–Planck equation (Eulerian/spatial evolution equation):

$$\partial_t u - \varepsilon^2 \Delta_g u = \operatorname{div}(u \cdot v)$$

Definition (Eulerian Coherent Structures)

maximal spacetime tubes with minimal flux due to advection and diffusion discrete time/diffeo [Froyland2010,2013], continuous time [Denner, Matthes & Junge 2016]

3 →

EL OQO

Eulerian model of advection-diffusion

Fokker–Planck equation (Eulerian/spatial evolution equation):

$$\partial_t u - \varepsilon^2 \Delta_g u = \operatorname{div}(u \cdot v)$$

Definition (Eulerian Coherent Structures)

maximal spacetime tubes with minimal flux due to advection and diffusion discrete time/diffeo [Froyland2010,2013], continuous time [Denner, Matthes & Junge 2016]

A = A = A = A = A = A

Observations:

- 1. small advective flux if tube almost follows the flow
- 2. small diffusive flux if surface is small

Lagrangian model of advection-diffusion

Eulerian:

$$\partial_t u - \varepsilon^2 \Delta_g u = \operatorname{div}(u \cdot v)$$

Lagrangian "Fokker–Planck equation" (material evolution equation)

$$\partial_t w - \varepsilon^2 \Delta_{g(t)} w = 0$$

 $\begin{array}{l} g(t) \coloneqq \Phi(t)^* g - \text{pullback metric,} \\ \Delta_{g(t)} - \text{Laplace-Beltrami operator.} \end{array} \right\} \Rightarrow \text{evolving (material) manifold}$

Daniel Karrasch, joint with Johannes Keller

Lagrangian model of advection-diffusion

Eulerian:

$$\partial_t u - \varepsilon^2 \Delta_g u = \operatorname{div}(u \cdot v)$$

Lagrangian "Fokker–Planck equation" (material evolution equation)

$$\partial_t w - \varepsilon^2 \Delta_{g(t)} w = 0$$

 $\begin{array}{l} g(t) \coloneqq \Phi(t)^* g - \text{pullback metric,} \\ \Delta_{g(t)} - \text{Laplace-Beltrami operator.} \end{array} \right\} \Rightarrow \text{evolving (material) manifold}$

Definition (Lagrangian Coherent Structures)

maximal material sets with minimal diffusive flux, or, metastable/ almost-invariant sets under material evolution equation

Daniel Karrasch, joint with Johannes Keller

From dynamics to geometry 1

$$\partial_t w - \varepsilon^2 \Delta_{g(t)} w = 0$$

Step 1: Time-dependent perturbation theory Approximate $t \mapsto \Delta_{g(t)}$ by autonomous differential operator. Result: $\overline{\Delta} = \frac{1}{T} \int_0^T \Delta_{g(t)} dt$ – dynamic Laplacian [Froyland2015]

Daniel Karrasch, joint with Johannes Keller

From dynamics to geometry 1

$$\partial_t w - \varepsilon^2 \Delta_{g(t)} w = 0$$

Step 1: Time-dependent perturbation theory Approximate $t \mapsto \Delta_{g(t)}$ by autonomous differential operator. Result: $\overline{\Delta} = \frac{1}{T} \int_0^T \Delta_{g(t)} dt$ – dynamic Laplacian [Froyland2015] Lemma (Froyland 2015, DK & Keller 2016)

The dynamic Laplacian is an elliptic, nonpositive second-order differential operator. If Φ is volume-preserving, $\overline{\Delta}$ is selfajoint.

From dynamics to geometry 1

$$\partial_t w - \varepsilon^2 \Delta_{g(t)} w = 0$$

Step 1: Time-dependent perturbation theory Approximate $t \mapsto \Delta_{g(t)}$ by autonomous differential operator. Result: $\overline{\Delta} = \frac{1}{T} \int_0^T \Delta_{g(t)} dt$ – dynamic Laplacian [Froyland2015] Lemma (Froyland 2015, DK & Keller 2016)

The dynamic Laplacian is an elliptic, nonpositive second-order differential operator. If Φ is volume-preserving, $\overline{\Delta}$ is selfajoint.

Theorem (DK & Keller 2016, based on Lebeau & Michel 2010, cf. Froyland 2015)

$$\mathcal{L}_{\varepsilon}^{*}\mathcal{L}_{\varepsilon}=\mathbf{I}+c\varepsilon^{2}\overline{\Delta}+\mathcal{O}\left(\varepsilon^{4}\right)$$

(spectral convergence!)

$$\mathcal{L}_{\varepsilon} = \mathcal{D}_{\varepsilon} \mathcal{P}_{t_0}^{t_0 + T} \mathcal{D}_{\varepsilon} \text{--prob. TO}, \qquad \mathcal{D}_{\varepsilon} \text{--averaging over metric balls}$$

Daniel Karrasch, joint with Johannes Keller

EL OQO

From dynamics to geometry 2

$$\partial_t w - \varepsilon^2 \overline{\Delta} w = 0$$

Challenge: dependence on volume-preservation, and ...

Step 2: Matching principal symbols

Question: Is there an "averaged geometry" underlying the dynamic Laplacian?

Daniel Karrasch, joint with Johannes Keller

↓ ∃ ↓ ∃ | = √ Q ()

From dynamics to geometry 2

$$\partial_t w - \varepsilon^2 \overline{\Delta} w = 0$$

Challenge: dependence on volume-preservation, and ...

Step 2: Matching principal symbols

Question: Is there an "averaged geometry" underlying the dynamic Laplacian? Not exactly, but there is a Laplace–Beltrami operator $\Delta_{\overline{g}}$ with the same principal symbol as $\overline{\Delta}$, where

$$ar{g} \coloneqq \left(rac{1}{T}\int_0^T g(t)^{-1}\,dt
ight)^{-1}$$

is the harmonic mean of pullback metrics g(t).

$$\implies \partial_t w - \varepsilon^2 \Delta_{\bar{g}} w = 0$$

Daniel Karrasch, joint with Johannes Keller

Eulerian and Lagrangian	FPEs	(Generalized) Heat flows	Summary
NP C I			

Nice features

Geometric heat equation:

$$\partial_t w - \varepsilon^2 \Delta_{\bar{g}} w = 0$$

- apply theory of metastable decompositions/AI sets
- ► autonomous ⇒ generator-based analysis Δ_ḡ, always selfadjoint, in contrast to Eulerian generator-based approaches
- dynamics \leftrightarrow operator theory \leftrightarrow differential geometry
- we can visualize many different aspects of the intrinsic geometry (metric, volume density, curvature, ...)
- ▶ we found relations to geodesic approaches to LCS [Haller et al.2012-]

Eulerian and Lagrangian	FPEs	(Generalized) Heat flows	Summary
MILL CLAIR HAR			

Nice features

Geometric heat equation:

$$\partial_t w - \varepsilon^2 \Delta_{\bar{g}} w = 0$$

- apply theory of metastable decompositions/AI sets
- ► autonomous ⇒ generator-based analysis Δ_ḡ, always selfadjoint, in contrast to Eulerian generator-based approaches
- dynamics \leftrightarrow operator theory \leftrightarrow differential geometry
- we can visualize many different aspects of the intrinsic geometry (metric, volume density, curvature, ...)
- ▶ we found relations to geodesic approaches to LCS [Haller et al.2012-]

Thank you very much!

Outreach & open problems

- Conjecture: L-FPE is pullback of linearization of Eulerian Fokker-Planck equation along transport equation
- observer-independence/objectivity of Eulerian FPE
- visualization based on reference geometry, but Laplace eigenfunctions/heat flow are intrinsic (M3 homepage)
- (discrete) geometry: curvature, geodesics, Laplace operator (Note: (M², ḡ) not embedded in ℝ³, but ℝ⁵)
- relation to topology: LCS detection = component counting, disconnecting/decoupling M
- numerics: graph Laplacian involves geodesic distances
- applications

For references, manuscript, figures and videos: see my TUMpage!

Example: Bickley jet

The spectrum

Daniel Karrasch, joint with Johannes Keller

Example: Bickley jet

The second eigenfunction

Cf. the second singular vector from TO calculations!

・ロト・雪下・山田・山田・ 白下

Daniel Karrasch, joint with Johannes Keller