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AUTONOMOUS AND/OR PERIODICALLY DRIVEN DYNAMICS.
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Elementary transport questions

Consider an autonomous flow ẋ = F (x) or discrete-time map
x 7→ T (x), where x ∈ X ⊂ R

d . Note 1 ≤ d < ∞.

Question 1: Determine a decomposition of X into invariant
sets (a set A is invariant if points in A do not leave A in
forward and backward time).

Question 2: Suppose there are no nontrivial invariant sets.
Determine a decomposition of X into sets that are as close to

invariant as possible.
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“Transfer operator” approach

Lay a grid over X and construct a large Markov chain based on
intersections of grid cells with their images (see figure). Compute
transient (open) sets, absorbing sets, and invariant sets as unions
of grid cells [Hsu’81]. This idea was revitalised in the late 90s,
including efficiencies in grid construction, and importantly, the
recognition that the eigenvectors of the eigenvalues of the
Markov chain that are close to 1 yield “almost-invariant”
sets [Dellnitz/Junge’99]. I’ll call this approach Ulam’s method.
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“Almost-invariant” regions and eigenvectors of P
Suppose that the collection of cells can be neatly partitioned into 2

pieces so that the transition matrix P has the following block structure

(possibly after relabelling).

Then the matrix P has two eigenvalues 1 and the two spatial
regions corresponding to the two collections of cells are
dynamically invariant.
In practice, one may observe several blocks (several regions) and the
eigenvalues may be close to 1, not exactly 1.

A modified transition matrix is used for finite-time almost-invariant

sets [F’05].
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The global ocean, circa 1943
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Application 3: Gyre cores as left eigenvectors

Based on OFES (1/10o) and 2o grid cells, and the year 2001. The

following leading eigenvectors, highlight the gyre cores.
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Basins of attraction of gyre cores

By combining information from 4 of these eigenvectors, we can
separate the ocean surface into 5 domains of attraction, one for
each of the 5 garbage patches. [F/Stuart/van Sebille ’14 and
Nat.Geo.]. (See also [Hsu’81, Koltai’11]).
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Implementation

All of these grid-based methods are particular implementations of
transfer operator methods, where the transfer operator describes
the linear action of the flow on function space. One needs to
approximate this transfer operator (see Oliver’s talk next).

Classical, most common method is based on sampling several initial
conditions per grid cell and numerically integrating in time (Ulam’s
method). Can be expensive, but highly parallelisable.

In the autonomous [F/Junge/Koltai’13] and periodically driven case

[F/Koltai, subm.], one can replace time integration of many

trajectories with spatial integration on box boundaries (which

are one dimension lower). Can also use spectral collocation.

X

X1 X2
. . .
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NONAUTONOMOUS, APERIODIC DYNAMICS
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Finite-time coherent sets as minimally mixing regions

Consider an aperiodic flow ẋ = F (x , t) and a given finite time
horizon t ∈ [t0, tf ] ⊂ R, where x ∈ X ⊂ R

d .

Because the flow is aperiodic, it is highly unlikely that truly
invariant sets exist. However one can search for finite-time
almost-invariant sets using similar techniques to those just
discussed [F’05].

Also of interest are finite-time coherent sets, which have a
minimal mixing (or minimal inter-communication)
property over the finite time duration
[F/Santitissadeekorn/Monahan’10,F’13]. Mixing relies on a
small amount of diffusion/stochasticity.

The strategy and computation is similar to the computation
of almost-invariant sets, except singular vectors of the
gridcell-to-gridcell transition matrix are used in place of
eigenvectors. This amounts to searching for blocks off the
diagonal, rather than on the diagonal.
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Example: finite-time coherent sets in an idealised
stratospheric flow
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Example: southern polar vortex from singular vectors

Computation on a 475K isentropic surface in the stratosphere over
14 days using ECMWF velocity fields. The southern polar vortex
is revealed as the strongest finite-time coherent set in the
domain from the second singular vectors
[F/Santitissadeekorn/Monahan’10].
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Agulhas ring as a coherent set transports mass

Ring locations each 28 days
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We use velocity fields derived from satellite sea-surface height
data to identify and track a surface ring for 26 months.

Agulhas ring identified as a coherent set carries surface water
mass over a 26-month period
[F/Horenkamp/Rossi/SenGupta/vanSebille’15, Chaos]. See
also [F/Horenkamp/Rossi/Santitissadeekorn/SenGupta’12,
Ocean Modelling] for a 6-month 3D study.
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Implementation

Gridcell-to-Gridcell approach
[F/Santitissadeekorn/Monahan’10,F/Padberg-Gehle’14]
(Ulam’s method, most common).

Approximate Galerkin projection onto a basis of thin-plate
splines [Williams/Rypina/Rowley’15].

Spectral collocation [Denner/Junge/Matthes].

Diffusion map [Banisch/Koltai’16].
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Finite-time coherent sets as regions with persistently small
boundary

Instead of considering coherent sets as regions with that minimally
mix over a finite time, one can instead consider coherent sets as
regions with persistently small boundary [F’15,F/Kwok
subm.,Keller/Karrasch subm.]. In particular, this is a purely
deterministic notion.

a

b

c

Uses eigenvectors of a “dynamic Laplace operator”.

In fact, because mixing under small diffusion occurs at the
boundary, there is a tight relationship between these two
notions. The target of persistently small boundary is also
consistent with some of the work of Haller, discussed by Nick.
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Implementation

Gridcell-to-Gridcell approach [F’15,F/Kwok subm.] (Ulam).
Radial basis function collocation [F/Junge’15] (exploits
smoothness to achieve large reduction in number of
trajectories, but careful choice of RBF centres and radii).
Finite element methods [F/Junge/Karrasch, in prep.] (many
advantages: robust, parameter free, large reduction in
trajectories, maintains sparsity).
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Groups of trajectories that remain proximal

One may also try to find groups of trajectories that “remain
proximal” by performing clustering with a space-time distance, e.g.
[F/Padberg-Gehle’15] (fuzzy clustering, see Kathrin Padberg’s

talk), [Hadjighasem/Karrasch/Teramoto/Haller’16] (spectral
clustering – with strong connection to the previous “dynamic
Laplace operator”).
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Fuzzy clustering application

Application to global ocean surface circulation from buoy data
(Global drifter program, NOAA, AOML), [F/Padberg-Gehle’15].
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Local spreading methods

Methods based on how quickly particular grid cells are
distributed over phase space and interact with other grid cells
(see Irina Rypina’s talk: complexity, trajectory encounter).

Finite-time entropy [F/Padberg-Gehle’12], measures the
spread of a grid cell under advective-diffusive flows and
converges to FTLE in the zero diffusion limit.
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Discussion

I have (very briefly) outlined some techniques that identify
important structures in time-dependent flows, particularly
those that control global transport properties of the flow.

Questions –
1 What are the current important questions from oceanography,

atmospheric science, climate, weather? e.g. what sort of
transport, of which quantities, on what sort of
spatial/temporal scales?

2 Which of these questions are being addressed by coherent set
approaches and which aren’t (or aren’t well addressed)?

G. Froyland, Mathematics and Statistics, UNSW Transport and coherence in flows



Discussion

I have (very briefly) outlined some techniques that identify
important structures in time-dependent flows, particularly
those that control global transport properties of the flow.

Questions –
1 What are the current important questions from oceanography,

atmospheric science, climate, weather? e.g. what sort of
transport, of which quantities, on what sort of
spatial/temporal scales?

2 Which of these questions are being addressed by coherent set
approaches and which aren’t (or aren’t well addressed)?

G. Froyland, Mathematics and Statistics, UNSW Transport and coherence in flows



Eigenvector corresponding to large λ highlights gyres

Based on 2-month flow from ORCA025.
[F/Padberg/England/Treguier’07]
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Summer location of Weddell and Ross Gyres
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After 3 months, 92.7% of water mass retained in Weddell region,
92.4% in Ross region.
[Dellnitz/F/Horenkamp/Padberg-Gehle/Sen Gupta, ’09]
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Autumn location
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After 3 months, 91.1% of water mass retained in Weddell region,
91.8% in Ross region.

G. Froyland, Mathematics and Statistics, UNSW Transport and coherence in flows



Winter location
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After 3 months, 91.1% of water mass retained in Weddell region,
88.7% in Ross region.
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Spring location
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After 3 months, 91.9% of water mass retained in Weddell region,
90.4% in Ross region.
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3D polar vortex as a coherent set (ECMWF)

(a) (b) (c)

(d) (e) (f)
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