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(Geometric structure

e Conservation laws = invariant manifolds, important for
physics and statistics:
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Why conserve?

e Physically or mathematically pleasing

o Stability

o Correct transformation of energy from one form to
another (Lorenz 60), response to forcing/diss.

e Coherent structures
o Statistics
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Abstract

Since the study of energy transformations and the numerical integration of simplifiied equa-
tions are sometimes used as alternative approaches to the same physical problem, it 1s often
desirable that the simplified equations conserve total energy under reversible adiabatic pro-
cesses. Preferably, the equations should also conserve the sum of kinetic energy and available
potential energy, and they should describe the tendency for static stability to increase as kinetic

energy is released.
Te tn frnied that if tha sanatian of halance is nsed as a filtering approximation, all the terms in
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Coherent structures

e Many coherent structures are described by relative equilibria:
extremal value of one conserved quantity constrained by a fixea
value of another

KdV Soliton (min energy | fixed momentum)

Point vortex dipole (min energy | fixed angular momentum)

e Taylor vortices (min. energy| fixed enstrophy)

e Leith vortices (extrem. energy | fixed enstrophy & circulation)

e Kirchhoff patches (extrem. energy & enstrophy | fixed circulation)

e Robust with respect to discretization, but shape and persistence
depends on conservation
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Hamiltonian structure

All properly derived inviscid fluid models possess Hamiltonian
(Poisson) structure

wr = {w, H} H:——//w Y dx dy

(Far= [ ( w) Iz dy

J(a,

b) = a,b y — Qyby

The Poisson bracket {F, G }:

¢ |s skew-symmetric, encoding energy conservation

e satisfies the Jacobi identity, encoding symplectic structure and
phase volume conservation

¢ is degenerate, encoding an infinite class of (potential) vorticity
conservation laws

The Hamiltonian itself may admit additional symmetries.



Hamiltonian structure

All properly derived inviscid fluid models possess Hamiltonian
(Poisson) structure

wr = {w, H} H:—l//w-wdxdy

(F.G} = // ( >dxdy

( y w
Casimirs: for any functional of the vorticity C,| / / ) dx dy
d
—C={C,H}; =0
- C=1CH}

= |nfinite class of conserved quantities

Enstrophy: Z = %// w? dz dy



Hamiltonian structure

e \What is the proper discrete analog PDE to ODE?

e A finite dimensional Poisson bracket that converges to the

continuum bracket? With a finite number of Casimir’s?

o [he Jacobi identity is difficult to satisty, complex symmetries

among derivatives of the discretization. One known
example (Zeitlin 1991)

Particle-based methods (regularized point vortices).
—Ocus on quadratic and linear invariants, reversibility and

ohase volume: Arakawa (1966), Salmon (1989, 2004, 2005)

(requires only matrix anti-symmetry considerations)



Statistics: mean field and fluctuations

* Quasigeostrophic PV with topographic forcing:
q(z,t) =V xu(z,t) + h(z)
@+ Vp-Vg=0, Ap=q—h

* Problem parameters from Majda & Abramov (2003)
L=2r, M=22 h(z,y)=02cosx+0.4cos2x, Ey =7 Zy =20

 Compare at the converged time averages of PV and stream
function

qr = NLTZ,;Q”, Y = NLTZ”:W’

* Three discretizations due to Arakawa (1966)



Mean states, Ty = 10°

e Statistical predictionsforE=7, Z =20
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Point statistics for vorticity fluctuations about the mean

o Statistical predictions for E=7, Z=20, (Gaussian with:)
* (EZ) {(qmon) = —0.341, o, = 0.970
"B (gumon) = —0.0740, o, = 5.36

" o) =0, oy = 1.01

Gmom = -0.385, o = .927 Dg_mm = 000931, ¢ = 5.35 Gmon = -0.0575, ¢ = 1.05
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Sine-bracket Poisson integrator

e Abramov & Majda (2003) used Zeitlin’s (1991) Poisson truncation of
the ideal fluid, which preserves N+1 integrals on an NxN grid, to study
the statistical relevance of the higher moments of vorticity

¢ A nonzero third moment Cs is statistically relevant

o Experimental setup suggests that higher moments could be irrelevant
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Fig. 3. The scatter plots g vs. ¢ for the 23 x 23 sine-bracket truncation, layered topography, ¢; = 0, 2, 4, 6.
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23 X 23 sine-bracket truncation, layered topography, 6;=0,246.



Time integration

e Symplectic integrators are the preferred choice for Hamiltonian
systems. They preserved volume and an approximate energy. But:

* They are only symplectic if the discretization is Hamiltonian (or
Poisson)

e A symplectic method is only symplectic with respect to a specific
Poisson bracket.

® For Poisson systems, this means mostly only splitting methods

will suffice

e The implicit midpoint rule 4"~ —4¢" _ ! ¢ +q"
At 2

IS remarkable because it is
preserves any quadratic invariants (present in the discretization),
e.g. kinetic energy and enstrophy.

e Kahan’s method is related to midpoint, reversible, seems to
conserve E and Z approximately, but is linearly implicit for quadratic
vector fields.



Maximum entropy closure (Verkley et al. 2016)

e \erkley, Kalverla & Severijns (2016) propose a promising closure
basd on maximum entropy theory.

® (Spectral) discretization decomposed in resolved and unresolved
vorticity and stream function

ac’®

PR+ (U, £F (7))

= vV R+ p(FR = 7).
¢ The unresolved modes are taken to be the ensemble means in (but
for stochastic parameterization could be draw from) a probability

density chosen to maximize entropy subject to constraints on the
energy and enstrophy tendency

(dEY /dt) = 0 and (dZ¥/dt) = 0

e Mean can be explicitly computed in terms of resolved scale, no
tuning parameters!



Maximum entropy closure (Verkley et al. 2016)
(b)

(a) Reference

Unparametrized

(c) Conventional (d) Maximum entropy

Figure 4. Vorticity fields from four model simulations at day 30 of the integration, starting from initial field 3, i.e. from the reference run after 600 days. A T42
truncation has been used to plot the vorticity fields, including the reference, on a 256 x 256 grid from 0—27t in both directions. (a) Reference run, (b) unparametrized
run, (c) conventional run and (d) maximum entropy run. The circle in the upper left panel highlights a dipole structure that is only reproduced in the maximum
entropy run.



Maximum entropy closure (Verkley et al. 2016)
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Figure 7. Energy and enstrophy spectra of the flow field as simulated with the reference model (solid lines), the unparametrized model (dotted lines), the conventional
model (dashed lines) and the maximum entropy model (dash—dotted lines). All spectra are based on long 5000 day integrations, starting from initial state 3 in Figure 3,
the spectra being averages over the data ten days apart. The insets show the differences between the spectra close to the truncation limit. Panel (a) refers to the energy,
panel (b) to the enstrophy.



Perspectives

e Conservative discretizations ensure a correct transformation between different
forms of energy.

e They should play a role in the formation and propagation of coherent structures.
e They clearly play an important role in statistics

e [he Eternal question: is there an approach that allows us to derive Poisson
discretizations of inviscid fluids in 3D, with physical boundary conditions, local
methods, unstructured meshes?

e WWhat is the role of volume preservation and reversibility in ensembles and tracer
advection?

e How to construct parameterizations of unresolved motion that are minimally
intrusive for resolved coherent structures?



