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• Conservation laws = invariant manifolds, important for 
physics and statistics: 
• Explicit (divergence-form): mass, momentum 
• Implicit (derived: kinetic energy, enstrophy, PV advection) 

• Structural properties of phase space (important for tracer 
transport and ensemble spread): 
• Reversibility 
• (Ensemble) volume 

• Hamiltonian/Poisson structure

Geometric structure



• Physically or mathematically pleasing 
• Stability 
• Correct transformation of energy from one form to 

another (Lorenz 60), response to forcing/diss. 
• Coherent structures 
• Statistics

Why conserve?
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•Many coherent structures are described by relative equilibria: 
extremal value of one conserved quantity constrained by a fixed 
value of another 
• KdV Soliton (min energy | fixed momentum) 
• Point vortex dipole (min energy | fixed angular momentum) 
• Taylor vortices (min. energy| fixed enstrophy) 
• Leith vortices (extrem. energy | fixed enstrophy & circulation) 
• Kirchhoff patches (extrem. energy & enstrophy | fixed circulation) 

• Robust with respect to discretization, but shape and persistence 
depends on conservation

Coherent structures



• Physically or mathematically pleasing 
• Stability 
• Correct transformation of energy from one form to 

another (Lorenz 60), response to forcing/diss. 
• Coherent structures 
• Statistics

Why conserve?



Hamiltonian structure
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All properly derived inviscid fluid models possess Hamiltonian 
(Poisson) structure

The Poisson bracket             : 
• is skew-symmetric, encoding energy conservation 
• satisfies the Jacobi identity, encoding symplectic structure and 

phase volume conservation 
• is degenerate, encoding an infinite class of (potential) vorticity 

conservation laws 

The Hamiltonian itself may admit additional symmetries.
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•What is the proper discrete analog PDE to ODE?   
• A finite dimensional Poisson bracket that converges to the 

continuum bracket?  With a finite number of Casimir’s?  
• The Jacobi identity is difficult to satisfy, complex symmetries 

among derivatives of the discretization.  One known 
example (Zeitlin 1991) 

• Particle-based methods (regularized point vortices). 
• Focus on quadratic and linear invariants, reversibility and 

phase volume: Arakawa (1966), Salmon (1989, 2004, 2005)  
(requires only matrix anti-symmetry considerations)

Hamiltonian structure



Statistics:  mean field and fluctuations

• Quasigeostrophic PV with topographic forcing:


• Problem parameters from Majda & Abramov (2003)


• Compare at the converged time averages of PV and stream 
function


• Three discretizations due to Arakawa (1966)
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Mean states,  Tav = 106

• Statistical predictions for E = 7,  Z = 20


• (EZ) 


• (E)


• (Z) 
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Point statistics for vorticity fluctuations about the mean

• Statistical predictions for E=7, Z=20,  (Gaussian with:)


• (EZ) 


• (E)


• (Z) 

⇥qmon⇤ = �0.341, �q� = 0.970

⇥qmon⇤ = �0.0740, �q� = 5.36

�qmon⇥ = 0, �q� = 1.01



Sine-bracket Poisson integrator
• Abramov & Majda (2003) used Zeitlin’s (1991) Poisson truncation of 

the ideal fluid, which preserves N+1 integrals on an NxN grid, to study 
the statistical relevance of the higher moments of vorticity  


• A nonzero third moment C3 is statistically relevant


• Experimental setup suggests that higher moments could be irrelevant

ĈN, 4 ! N ! 22 in Eqs. 10 are statistically irrelevant for
predicting the large-scale mean flow. On the other hand, the
streamline contours in Fig. 4 b–d indicate stronger, more

localized regions of closed stream lines associated with negative
values of the stream function for the cases with Ĉ3 ! 2, 4, and
6. Recall that closed stream lines with negative stream function

Fig. 3. The scatter plots q! vs. "! for the 23 " 23 sine-bracket truncation, layered topography, Ĉ3 ! 0, 2, 4, 6.

Fig. 4. The contour plots of the mean stream function, 23 " 23 sine-bracket truncation, layered topography, Ĉ3 ! 0, 2, 4, 6.

3844 ! www.pnas.org"cgi"doi"10.1073"pnas.0230451100 Abramov and Majda
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• Symplectic integrators are the preferred choice for Hamiltonian 
systems.  They preserved volume and an approximate energy.  But:


• They are only symplectic if the discretization is Hamiltonian (or 
Poisson)


• A symplectic method is only symplectic with respect to a specific 
Poisson bracket.


• For Poisson systems, this means mostly only splitting methods 
will suffice


• The implicit midpoint rule 
is remarkable because it is 
preserves any quadratic invariants (present in the discretization), 
e.g. kinetic energy and enstrophy.


• Kahan’s method is related to midpoint, reversible, seems to 
conserve E and Z approximately, but is linearly implicit for quadratic 
vector fields.

Time integration
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• Verkley, Kalverla & Severijns (2016) propose a promising closure 
basd on maximum entropy theory.


• (Spectral) discretization decomposed in resolved and unresolved 
vorticity and stream function


• The unresolved modes are taken to be the ensemble means in (but 
for stochastic parameterization could be draw from) a probability 
density chosen to maximize entropy subject to constraints on the 
energy and enstrophy tendency


• Mean can be explicitly computed in terms of resolved scale, no 
tuning parameters!

Maximum entropy closure (Verkley et al. 2016)

W. T. M. Verkley et al.

Completing the square in the factors involving ζmn then gives
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the properly normalized expression of P(ζU ) reads
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This immediately gives us the corresponding partition functionZ :

Z =
∏

(m,n)∈U

(2πσ 2
mn)1/2 exp

(
λ2

mn

2σ 2
mn

)
. (70)

Except for the Lagrange multipliers α and β, the probability
density function of the unresolved scales is now known: it is a
product of independent normal distributions with means (66)
and variances (67).

Quite remarkably, the Lagrange multipliers α and β do not
appear in the expression for λmn and, as we will see later, it
is not necessary to determine them, as only the mean λmn is
actually needed. However, for completeness and with an eye on
possible applications to stochastic parametrizations, we explain
how α and β can be obtained from the constraints ⟨dEU/dt⟩ = 0
and ⟨dZU/dt⟩ = 0. Using the fact that for a probability density
function of the form (68), i.e. a product of independent normal
distributions, we have

⟨ζmn⟩ = λmn, (71)

⟨ζmnζm′n′ ⟩ = λmnλm′n′ + σ 2
mnδmm′δnn′ , (72)

we find
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If we then substitute Eqs (66) and (67) for λmn and σ 2
mn, the

constraints ⟨dEU/dt⟩ = 0 and ⟨dZU/dt⟩ = 0 reduce to
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These are two nonlinear relationships that allow us to obtain α
and β and therewith the complete probability density function of
the unresolved scales. Note that the probability density function
depends parametrically on the resolved scales ψR and ζR via
χmn as given by Eq. (47).

We now return to the equation for the resolved scales, Eq. (41).
Expressions for ⟨ψU ⟩ and ⟨ζU ⟩ are

⟨ψU ⟩ =
∑
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cmn
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For ⟨J(ψU , ζU )⟩, we have, expanding ψU and ζU in terms of the
basis functions Ymn,
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In the second equality, we made use of Eq. (72) and the fact that
only the first contribution of this expression is retained, as the
Jacobian of two identical fields is zero. As a consequence, we have

PR⟨J(ψU , ζ U )⟩ = PRJ(⟨ψU ⟩, ⟨ζ U⟩), (80)

so that the third and fourth terms on the left-hand side of Eq. (41)
cancel. The equation for the resolved scales thus simplifies to

∂ζR

∂t
+ PRJ(ψR + ⟨ψU ⟩, ζR + ⟨ζU ⟩)

= ν∇2ζR + µ(FR − ζR). (81)

We recall that the fields ⟨ζU ⟩ and ⟨ψU ⟩ are given by Eqs (77)
and (78), respectively, where λmn is given by (combining Eq. (47)
with Eq. (66))

λmn = − 1

2
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µ + νcmn
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×
(
(Ymn, J(ψR, ζR)) − µFmn

)
. (82)

If these expressions for ⟨ψU ⟩ and ⟨ζU ⟩ are used in Eq. (81), we
obtain a closed system in terms of the resolved scales.

6. The anticipated potential vorticity method†

It is of some interest to note that our parametrization is similar
to the APVM introduced by Sadourny and Basdevant (1985). In
the context of our model, their parametrized potential vorticity
equation (i.e. their eq. (5)) would take the form

∂ζR

∂t
+ PRJ(ψR, ζR) − PRJ(ψR, D) = 0, (83)

with

D = θLJ(ψR, ζ R). (84)

Here, θ is a time-scale and L a non-dimensional non-
negative linear operator. The characterizing property of this

†Readers eager to see the numerical results might skip this paragraph on a first
reading.

c⃝ 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2016)

Maximum Entropy Parametrization in Two-Dimensional Flow
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where we have defined

χmn = (Ymn, J(ψR, ζR)) − µFmn, (47)

ξmnm′n′ = (ψR, J(Ymn, Ym′n′)), (48)

ηmnm′n′ = (ζR, J(Ymn, Ym′n′)). (49)

We see that both dEU/dt and dZU/dt are quadratic expressions
in the unresolved coefficients ζmn.

The principle of maximum entropy (Jaynes, 2003, chap-
ters 11 and 12, in particular Eq. 12.8) requires that the
probability density function for the unresolved scales, P(ζU ),
should have maximal information entropy SI , where SI is
defined by

SI = −
∫

P(ζU ) log
P(ζU )

M(ζU )
dζU . (50)

Here, we use a rather abstract notation in which ζU denotes the set
of coefficients ζmn with (m, n) ∈ U and dζU denotes an integration
element of a multiple integral over all unresolved coefficients. The
measure M, necessary for dimensional consistency, embodies
any a priori information on the values of the coefficients
and, since no such information is assumed, is taken to be a
product of constants. The first constraint is the normalization
condition:

⟨1⟩ =
∫

P(ζU ) dζU = 1. (51)

The other two constraints are ⟨dEU/dt⟩ = 0 and ⟨dZU/dt⟩ = 0.
This means that we assume that, on the time-scale of
the resolved scales, the unresolved scales are in a sta-
tistically stationary state that is characterized by a
mean balance between sources and sinks of energy and
enstrophy:
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The maximization problem can be solved by the use of Lagrange
multipliers. The variations of the entropy, normalization
condition and the two conditions on the time rate of change of

energy and enstrophy are
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(ζ U ) dζU . (57)

Using a Lagrange multiplier −ρ for the normalization and
Lagrange multipliers α and β for the other two constraints, we
arrive at the following condition:

δSI − ρδ⟨1⟩ + αδ⟨dEU

dt
⟩ + βδ⟨dZU

dt
⟩ = 0. (58)

When the expressions above are substituted, this gives (leaving
out the arguments ζU for readability)
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As this should be valid for any variation δP , we should have
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Now, the factor exp(−1 − ρ) is usually written as Z−1, so that
(restoring the arguments ζU )

P(ζU ) = 1

ZM exp
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(ζU )

]
. (62)

The function Z is called the partition function and is deter-
mined by the normalization condition Eq. (51). The Lagrange
multipliers α and β are determined by the conditions on the
time derivatives of the unresolved energy and enstrophy, i.e. by
Eqs (52) and (53). We will take M = 1.

In principle, the probability density function is now given and
from the form above, in combination with Eqs (45) and (46), we
see that it is a multivariate normal probability density function in
the variables ζmn with (m, n) ∈ U . Now, in order to simplify the
calculations, we make the approximation that in Eqs (45) and (46)
the last terms on the right-hand sides can be disregarded. This is
a rather serious approximation that is difficult to justify a priori
and has to be judged on the basis of its consequences. With this
approximation, the probability density function becomes

P(ζU ) = 1
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Collecting terms that are quadratic and linear in ζmn, we obtain
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c⃝ 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2016)



Maximum entropy closure (Verkley et al. 2016)W. T. M. Verkley et al.

Reference(a) (b)

(c) (d)Conventional Maximum entropy

Unparametrized

Figure 4. Vorticity fields from four model simulations at day 30 of the integration, starting from initial field 3, i.e. from the reference run after 600 days. A T42
truncation has been used to plot the vorticity fields, including the reference, on a 256 × 256 grid from 0–2π in both directions. (a) Reference run, (b) unparametrized
run, (c) conventional run and (d) maximum entropy run. The circle in the upper left panel highlights a dipole structure that is only reproduced in the maximum
entropy run.

8.1. Qualitative analysis of vorticity fields

The vorticity fields at day 30 of the model runs that started from
initial state 3, i.e. from t = 600 days in Figure 3, are shown in
Figure 4. A feature that stands out is the grainy texture of the
flow field in the unparametrized run. This is a manifestation of
the smallest scales of the model (near the truncation limit) and
is clearly unrealistic. Both parametrizations reduce this noise; the
conventional parametrization, in particular, is very effective and
damps all the small-scale structures rigorously. The maximum
entropy parametrization is not completely smooth, but it is
still a considerable improvement over the unparametrized run.
We also note that the conventional parametrization tends to
reduce the extremes in the vorticity fields rather drastically. In
contrast, the maximum entropy parametrization is less diffusive
and keeps the vorticity extremes more closely at their values in the
reference run.

If we analyze the vorticity fields in the course of time (not
shown) and focus on individual vortices, we see that at day 10
all fields are still more or less the same. After 20 days, the first
discrepancies can be identified, but they are more clear after
30 days. We might focus, for example, on the two small, strong
vortices of opposite sign near the top boundary, highlighted by
the circle in Figure 4(a). They are nearly identical in the reference
and maximum entropy simulations, whereas the other two runs
fail to reproduce this feature. At day 50, the maximum entropy
simulation still closely resembles the reference run, whereas the
conventional parametrization has damped out most small-scale
features. At day 60, most of the correlation with the reference run
is lost for all parametrizations.

8.2. Quantitative analysis of vorticity fields

To quantify the performance of the three low-order models in
reproducing the time evolution of the high-resolution model,
we calculated the root-mean-square difference (RMSD) and the
correlation (CORR) between the vorticity fields of the latter
models and the reference model. This was done on the basis of
the low-resolution representation of the fields and making use
of the 256 × 256 grid for the calculations. For each model, the
results are averaged over the ensemble of five runs and are shown
in Figure 5. All models show a steep rise in RMSD and a decrease
in correlation within the first 70 days. In line with our previous
qualitative analysis, we see that both the rise in RMSD and the
drop in correlation come about 20 days later in the maximum
entropy simulation than in the other runs. Also note that, in
terms of correlation, the conventional parametrization does not
seem to improve the simulation at all.

9. Model climate

We now consider the question as to what extent the three low-
resolution models reproduce the statistics of the high-resolution
reference model. We do this by analyzing long 5000 day
integrations with the reference model and the other models, all
starting from initial state 3, i.e. from t = 600 days in Figure 3. We
will define the climate of the models in terms of the distribution
of the energy and enstrophy as well as their spectra. The results
are obtained by sampling the runs twice every day for the
energy and enstrophy distribution and once every ten days for
the spectra.

c⃝ 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2016)



W. T. M. Verkley et al.
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Figure 7. Energy and enstrophy spectra of the flow field as simulated with the reference model (solid lines), the unparametrized model (dotted lines), the conventional
model (dashed lines) and the maximum entropy model (dash–dotted lines). All spectra are based on long 5000 day integrations, starting from initial state 3 in Figure 3,
the spectra being averages over the data ten days apart. The insets show the differences between the spectra close to the truncation limit. Panel (a) refers to the energy,
panel (b) to the enstrophy.

the representation of the spectra is rather accurate, even at the
smallest scales.

10. Conclusions

We have implemented a new parametrization of the effects of the
unresolved scales on the resolved scales in a simple model of a
fluid dynamical system. The model is a spectral representation of
a forced-dissipative version of the vorticity equation on a doubly
periodic flow domain. The parametrization that we propose is
based on a probability density function for the unresolved scales.
This probability density function is derived from the principle
of maximum entropy, in which zero-average time derivatives
of the energy and enstrophy at unresolved scales are used as
constraints. If terms in the energy and enstrophy equations
that involve Jacobians of unresolved variables are ignored, the
probability density function is a product of independent normal
distributions, the parameters of which depend on the model and
the state of the resolved scales. The resulting parametrization is a
closed system in terms of the resolved scales that resembles the
anticipated potential vorticity method (APVM) of Sadourny and
Basdevant (1985).

We have shown that, in terms of both short-range performance
and long-range statistics, the maximum entropy parametrization
represents the interaction of the unresolved scales with the
resolved scales realistically in the simple model that we considered.
It performs better than a model with no interaction at all or
a model with a conventional parametrization in terms of a
higher value of viscosity. Most importantly, however, the method
achieves this without any tuning of the parameters. Once the
decision is made to base the unresolved-scale probability density
function on maximum entropy in combination with constraints
on the time derivatives of energy and enstrophy, the procedure
leads to unique values of the parameters. In particular, it fixes the
form of the non-negative linear operator in the corresponding
APVM, which, for that matter, is rather different from the class of
linear operators considered by Sadourny and Basdevant (1985)
and Thuburn et al. (2014).

Requiring that the probability density function of the
unresolved scales has maximum entropy, constrained by the
average budgets of energy and enstrophy, is the fundamental
closure assumption of our approach. We made an additional
simplifying approximation by neglecting terms in the budgets
that involve Jacobians and would lead to correlations between

the unresolved variables if retained. This approximation – which
in future work might be avoided – enabled us to proceed with
the calculations rather straightforwardly. The resulting absence
of correlations implied that the equation for the resolved scales
assumed a form in which only the average stream function
and vorticity of the unresolved scales are involved. That this
worked so well is actually quite surprising. It might be related to
the particular choice of basis functions (sines and cosines) that
naturally fit the dynamics and boundary conditions of the two-
dimensional flow system. This and other aspects of the problem
need further scrutinizing.
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Appendix

Energy and enstrophy

In this Appendix, we recapture the derivation of a few results
regarding energy and enstrophy conservation in two-dimensional
incompressible flow.

The energy (actually energy density) is defined by

E =
(

1

2π

)2 ∫ 2π

0

∫ 2π

0

1

2
v2 dx dy

= −
(

1

2π

)2 ∫ 2π

0

∫ 2π

0

1

2
ψζ dx dy = −1

2
(ψ , ζ ). (A1)

The second equality in Eq. (A1) is the result of the following series
of identities:

v · v = ∇ψ · ∇ψ =∇ · (ψ∇ψ) − ψ∇2ψ

=∇ · (ψ∇ψ) − ψζ , (A2)

in combination with Gauss’ theorem and the assumption of
doubly periodic flow. The third equality in Eq. (A1) is the result
of the definition of the inner product, i.e. Eq. (7). In an analogous
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•Conservative discretizations ensure a correct transformation between different 
forms of energy. 

• They should play a role in the formation and propagation of coherent structures. 
• They clearly play an important role in statistics 

• The Eternal question:  is there an approach that allows us to derive Poisson 
discretizations of inviscid fluids in 3D, with physical boundary conditions, local 
methods, unstructured meshes? 

•What is the role of volume preservation and reversibility in ensembles and tracer 
advection? 

•How to construct parameterizations of unresolved motion that are minimally 
intrusive for resolved coherent structures?

Perspectives


