Cutoff for the random-to-random shuffle

Megan Bernstein, Georgia Tech

Joint work with Evita Nestoridi, Princeton University

Women in Algebraic Combinatorixx 2

Random-to-random shuffle

Pick a card and position uniformly at random. Move the card there.

The walk on S_{n} is given by the matrix $K(g, h)=P\left(g^{-1} h\right)$ for:

$$
P(g)= \begin{cases}\frac{1}{n} & g=e \\ \frac{2}{n^{2}} & g=(i, i+1) \text { for some } \mathrm{i} \\ \frac{1}{n^{2}} & g=(i, i+1, \ldots, i+j) \text { for some } j>1, i \\ 0 & \text { otherwise }\end{cases}
$$

The distribution of the $t^{\text {th }}$ step is: $K^{t}(e, \cdot)=P^{* t}(\cdot)$.

Related shuffles and walks

- Introduced by Diaconis and Saloff-Coste in 1993
- Symmetrization of random-to-top shuffle (Tsetlin library) with its inverse, top-to-random

- Random-to-random should mix faster, but this could not be shown...
- Random-to-top falls into a broader class: Bidigare-Hanlon-Rockmore hyperplane rearrangment random walks (easy to get eigenvalues of!)

Cutoff

Total variation distance- how close to uniform after t steps:

$$
\left\|P_{\mathrm{id}}^{* t}-\pi\right\|_{T V}=\frac{1}{2} \sum_{g \in S_{n}}\left|P^{* t}(g)-\pi(g)\right|
$$

P has TV cutoff if exists a seq. $\left(t_{n}\right)$ s.t. for all $\epsilon>0$:

$$
\lim _{n \rightarrow \infty}\left\|P_{\mathrm{id}}^{* t_{n}(1-\epsilon)}-\pi\right\|_{T V}=1 \quad \lim _{n \rightarrow \infty}\left\|P_{\mathrm{id}}^{* t_{n}(1+\epsilon)}-\pi\right\|_{T V}=0
$$

Mixing bounds on random-to-random

- (Diaconis, Saloff-Coste 1993) $t_{\text {mix }}$ is $O(n \log n)$
- (Uyemura-Reyes 2002) $\frac{1}{2} n \log n \leq t_{\text {mix }} \leq 4 n \log n$
- (Diaconis 2005) Conjecture :

$$
\left(\frac{3}{4}-o(1)\right) n \log n \leq t_{\text {mix }} \leq\left(\frac{3}{4}+o(1)\right) n \log n
$$

- (Saloff-Coste and Zúñiga 2008) $t_{\text {mix }} \leq 2 n \log n$
- (Subag 2013) $\left(\frac{3}{4}-o(1)\right) n \log n \leq t_{\text {mix }}$
- (Morris-Qin 2014) $t_{\text {mix }} \leq 1.5324 n \log n$

Theorem (B.-Nestoridi, 2017+)

$$
t_{\mathrm{mix}} \leq \frac{3}{4} n \log n+c n
$$

Eigenvalues and the l^{2} norm

Let K be a symmetric, transitive transition matrix of a random walk on Ω with eigenvalues $1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{|\Omega|} \geq-1$, then:

$$
4\left\|K^{t}(x, \cdot)-\pi\right\|_{T V}^{2} \leq\left\|\frac{K^{t}(x, \cdot)}{\pi(\cdot)}-1\right\|_{2}^{2}=\sum_{j=2}^{|\Omega|} \lambda_{j}^{2 t}
$$

for every starting point $x \in \Omega$.

Spectral methods

If P constant on conjugacy class, by Shur's Lemma,

- Walk acts as a constant on each irreduscible representation of S_{n}
- Eigenvalues are linear combinations of characters
- See e.g. (Diaconis-Shahshahani 1981) on transposition walk

But the random-to-random walk is not a conjugacy class walk and is not constant on irred. reps!

Insight into representation theory

Random-to-random needs a more direct construction of its eigenspaces
Using random insertion of new cards, can build a uniformly random deck

(Dieker-Saliola, 2015+) use this to recursively construct eigenvectors of random-to-random

Horizontal strips and diag

Horizontal strip: skew Young diagram λ / μ with at most one box per column. E.g.:

From now on, each λ / μ is a horizontal strip.
The diagonal (or content):

$$
\operatorname{diag}(\lambda)=\sum_{(i, j) \in \lambda}(j-i)
$$

For $\lambda=$\begin{tabular}{|l|}
\square

\square

\quad

\hline 0 \& 1 \& 2

\hline-1 \& 0 \&

\hline
\end{tabular} , then $\operatorname{diag}(\lambda)=0+1+2-1+0=2$.

Desarrangement tableaux

Desarrangement tableaux of μ (counted by d^{μ})- tableaux with either:

- the 2 nd entry of the first row is odd
- $|\mu|$ is even, $\mu_{1} \leq 1$.

Theorem (Reiner-Saliola-Welker 2014)
$\sum_{\mu: \lambda / \mu \text { is a horz strip }} d^{\mu}=d_{\lambda}$ with bijection
Theorem (Désarménien 1982)
$\sum_{\mu:|\mu|=n} d^{\mu}=d(n)$ the number of derangements of n

Eigenvector construction by Dieker-Saliola

- Get eigenvector for walk in $S^{\lambda+e_{i}}$ from one in S^{λ} from two functions.
- The first mirrors the random insertion of a new card:

$$
\operatorname{sh}_{i}: S^{\lambda} \rightarrow M^{\lambda+e_{i}}
$$

- And a replacement operator $\Theta_{i, j}$ used to project to $S^{\lambda+e_{i}}$
- Kernal of walk is dimension $d(n)$ (same as random-to-top) - basis indexed by desarrangements of $\mu|\mu|=n$
- Get all eigenvectors indexed by λ / μ from adding blocks to μ basis, with $|\mu| \leq n$,
- Projection gives non-zero vector if λ / μ is a horizontal strip
- Old eigenvalue ϵ, new eigenvalue $\frac{1}{n^{2}}\left((n-1)^{2} \epsilon+n+\lambda_{i}-i\right)$

Eigenvalues of the walk

Theorem (Dieker-Saliola, 2015+)
The eigenvalue, eig (λ / μ) of the random to random walk corresponding to (λ, μ), a horizontal strip, is

$$
\operatorname{eig}(\lambda / \mu)=\frac{1}{n^{2}}\left(\binom{n+1}{2}-\binom{|\mu|+1}{2}+\operatorname{diag}(\lambda)-\operatorname{diag}(\mu)\right)
$$

and occurs with multiplicity $d_{\lambda} d^{\mu}$ where d_{λ} is the number of standard Young tableaux of λ and d^{μ} is the number of desarrangement tableaux of μ.

To use the l^{2} bound on TV need bounds on eig, d_{λ}, and d^{μ}

Strategy for upper bound

We need to show for $t=\frac{3}{4} n \log (n)+c n$ that

$$
\sum_{(\lambda, \mu)} d_{\lambda} d^{\mu}(\operatorname{eig}(\lambda / \mu))^{2 t} \leq C e^{-2 c}
$$

- From spectral gap, $[n-1,1] /[2]$ eigenvalue $t=\frac{1}{2} n \log (n)$?
- With multiplicities of $[n-1,1] / \mu, t=n \log (n)$?
- $\mu=[k, 1]$ for $k \leq \sqrt{n}, t=\frac{3}{4} n \log (n)$
- Cluster λ by λ_{1}, length of first row
- Get two bounds on eig in terms of λ_{1} : one for smallest μ, one if μ has $>n-\lambda_{1}$ more boxes
- Bound for d_{λ} (from Diaconis-Shahshahani)
- Get bound for d^{μ} utilizing bijection of Reiner-Saliola-Welker

$$
\sum_{\mu:|\mu|=n-\lambda_{1}+k} d^{\mu} \leq\binom{ n-\lambda_{1}+k}{n-\lambda_{1}-1} d_{\lambda / \lambda_{1}}
$$

Open questions:

- Lower bound for random-to-random using the eigenvectors and/or with smaller window - currently $\frac{3}{4} n \log (n)+c n \log \log (n)$
- Symmetrizations of BHR hyperplane rearrangement walks. When does the symmetrization mix faster than the original?
- Ayyer-Schilling-Thery have a generalization of random-to-random to linear extensions of a finite poset. For posets that are not unions of chains, no longer rep. theory of S_{n} - can any of the eigenvector construction/mixing time bounds be mirrored there?
- Reiner-Saliola-Welker found two families of symmetrization of BHR walks $\left(\left\{\left[n-k, 1^{k}\right\},\left\{\left[2^{k}, 1^{n-2 k}\right]\right\}\right)\right.$ commute. Dieker-Saliola say their technique should find these eigenvectors as well. Mixing for arbitrary probability distributions on these families?

Thank you!

