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Random-to-random shuffle

Pick a card and position uniformly at random. Move the card there.

The walk on Sn is given by the matrix K(g, h) = P (g−1h) for:

P (g) =


1
n g = e
2
n2 g = (i, i+ 1) for some i
1
n2 g = (i, i+ 1, ..., i+ j) for some j > 1, i

0 otherwise

The distribution of the tth step is: Kt(e, ·) = P ∗t(·).
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Related shuffles and walks

I Introduced by Diaconis and Saloff-Coste in 1993

I Symmetrization of random-to-top shuffle (Tsetlin library) with its
inverse, top-to-random

I Random-to-random should mix faster, but this could not be shown...

I Random-to-top falls into a broader class: Bidigare-Hanlon-Rockmore
hyperplane rearrangment random walks (easy to get eigenvalues of!)
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Cutoff

Total variation distance– how close to uniform after t steps:

||P ∗tid − π||TV =
1

2

∑
g∈Sn

|P ∗t(g)− π(g)|

P has TV cutoff if exists a seq. (tn) s.t. for all ε > 0:

lim
n→∞

||P ∗tn(1−ε)
id − π||TV = 1 lim

n→∞
||P ∗tn(1+ε)

id − π||TV = 0

1

0

TV

Steps tn

window
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Mixing bounds on random-to-random

I (Diaconis, Saloff-Coste 1993) tmix is O(n log n)

I (Uyemura-Reyes 2002) 1
2n log n ≤ tmix ≤ 4n log n

I (Diaconis 2005) Conjecture :(
3

4
− o(1)

)
n log n ≤ tmix ≤

(
3

4
+ o(1)

)
n log n

I (Saloff-Coste and Zúñiga 2008) tmix ≤ 2n log n

I (Subag 2013)
(

3
4 − o(1)

)
n log n ≤ tmix

I (Morris-Qin 2014) tmix ≤ 1.5324n log n

Theorem (B.-Nestoridi, 2017+)

tmix ≤
3

4
n log n+ cn
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Eigenvalues and the l2 norm

Let K be a symmetric, transitive transition matrix of a random walk on Ω
with eigenvalues 1 = λ1 > λ2 ≥ ... ≥ λ|Ω| ≥ −1, then:

4||Kt(x, ·)− π||2TV ≤
∣∣∣∣∣∣∣∣Kt(x, ·)

π(·)
− 1

∣∣∣∣∣∣∣∣2
2

=

|Ω|∑
j=2

λ2t
j

for every starting point x ∈ Ω.
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Spectral methods

If P constant on conjugacy class, by Shur’s Lemma,

I Walk acts as a constant on each irreduscible representation of Sn
I Eigenvalues are linear combinations of characters

I See e.g. (Diaconis-Shahshahani 1981) on transposition walk

But the random-to-random walk is not a conjugacy class walk and is not
constant on irred. reps!
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Insight into representation theory

Random-to-random needs a more direct construction of its eigenspaces

Using random insertion of new cards, can build a uniformly random deck

(Dieker-Saliola, 2015+) use this to recursively construct eigenvectors of
random-to-random
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Horizontal strips and diag

Horizontal strip: skew Young diagram λ/µ with at most one box per
column. E.g.:

From now on, each λ/µ is a horizontal strip.

The diagonal (or content):

diag(λ) =
∑

(i,j)∈λ

(j − i)

For λ = =
0 1 2

-1 0 , then diag(λ) = 0 + 1 + 2− 1 + 0 = 2.
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Desarrangement tableaux

Desarrangement tableaux of µ (counted by dµ)– tableaux with either:

I the 2nd entry of the first row is odd

I |µ| is even, µ1 ≤ 1.

The tableau

1 3
2 is a desarrangement tableaux while

1 2
3 is not.

Theorem (Reiner-Saliola-Welker 2014)∑
µ:λ/µ is a horz strip d

µ = dλ with bijection

Theorem (Désarménien 1982)∑
µ:|µ|=n d

µ = d(n)the number of derangements of n
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Eigenvector construction by Dieker-Saliola

I Get eigenvector for walk in Sλ+ei from one in Sλ from two functions.

I The first mirrors the random insertion of a new card:

shi : Sλ →Mλ+ei

I And a replacement operator Θi,j used to project to Sλ+ei

I Kernal of walk is dimension d(n) (same as random-to-top) – basis
indexed by desarrangements of µ |µ| = n

I Get all eigenvectors indexed by λ/µ from adding blocks to µ basis,
with |µ| ≤ n,

I Projection gives non-zero vector if λ/µ is a horizontal strip

I Old eigenvalue ε, new eigenvalue 1
n2

(
(n− 1)2ε+ n+ λi − i

)
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Eigenvalues of the walk

Theorem (Dieker-Saliola, 2015+)

The eigenvalue, eig(λ/µ) of the random to random walk corresponding to
(λ, µ), a horizontal strip, is

eig(λ/µ) =
1

n2

((
n+ 1

2

)
−
(
|µ|+ 1

2

)
+ diag(λ)− diag(µ)

)
and occurs with multiplicity dλd

µ where dλ is the number of standard
Young tableaux of λ and dµ is the number of desarrangement tableaux of
µ.

To use the l2 bound on TV need bounds on eig, dλ, and dµ
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Strategy for upper bound
We need to show for t = 3

4n log(n) + cn that∑
(λ,µ)

dλd
µ (eig(λ/µ))2t ≤ Ce−2c

I From spectral gap, [n− 1, 1]/[2] eigenvalue t = 1
2n log(n)?

I With multiplicities of [n− 1, 1]/µ, t = n log(n)?
I µ = [k, 1] for k ≤

√
n, t = 3

4n log(n)

I Cluster λ by λ1, length of first row
I Get two bounds on eig in terms of λ1: one for smallest µ, one if µ

has > n− λ1 more boxes
I Bound for dλ (from Diaconis-Shahshahani)
I Get bound for dµ utilizing bijection of Reiner-Saliola-Welker∑

µ:|µ|=n−λ1+k

dµ ≤
(
n− λ1 + k

n− λ1 − 1

)
dλ/λ1
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Open questions:

I Lower bound for random-to-random using the eigenvectors and/or
with smaller window - currently 3

4n log(n) + cn log log(n)

I Symmetrizations of BHR hyperplane rearrangement walks. When
does the symmetrization mix faster than the original?

I Ayyer-Schilling-Thery have a generalization of random-to-random to
linear extensions of a finite poset. For posets that are not unions of
chains, no longer rep. theory of Sn - can any of the eigenvector
construction/mixing time bounds be mirrored there?

I Reiner-Saliola-Welker found two families of symmetrization of BHR
walks ({[n− k, 1k}, {[2k, 1n−2k]}) commute. Dieker-Saliola say their
technique should find these eigenvectors as well. Mixing for arbitrary
probability distributions on these families?
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Thank you!

Megan Bernstein, Georgia Tech May 18th, 2017


