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Semidefinite program (SDP)

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

• variable is n × n symmetric matrix X

• inequality X � 0 means X is positive semidefinite

• similar to standard form linear program, but with matrix inequality

Applications

• matrix inequalities arise naturally in many areas (for example, control, statistics)

• relaxations of nonconvex quadratic and polynomial optimization

• used in convex modeling systems (CVX, YALMIP, CVXPY, PICOS, . . . )

widely studied since 1990s (following Nesterov & Nemirovski’s 1994 book)
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Outline

• Semidefinite representations of design criteria

• Discriminating design with polynomial models

• Semidefinite descriptions of moment cones



Conic linear programming

Primal: minimize 〈c, x〉
subject to 〈ai, x〉 = bi, i = 1, . . . ,m

x ∈ K

Dual: maximize bT y

subject to
m∑

i=1
yiai + s = c

s ∈ K∗

• K is a proper convex cone (closed, pointed, with nonempty interior)

• K∗ = {s | 〈s, x〉 ≥ 0 ∀x ∈ K} is the dual cone

Solvers

• popular solvers include SDPT3, SeDuMi, MOSEK

• implementations of primal-dual interior-point methods

• handle ‘symmetric’ cones: second order cone and positive semidefinite cone
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Symmetric cones

• second order cone (s.o. cone): {(x1, . . . , xn) | (x2
1 + · · · + x2

n−1)1/2 ≤ xn}
• cone of positive semidefinite symmetric matrices (p.s.d. cone)

s.o. cone in R3 p.s.d. cone in R3
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Modeling software

• surprisingly many functions are ‘s.o.- or p.s.d.-representable’
[Nesterov & Nemirovski 1994]

• conversion rules implemented in modeling software packages

Modeling packages for convex optimization

• CVX, YALMIP (MATLAB)

• CVXPY, PICOS (Python)

• Convex.jl (Julia)
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Optimal experiment design with finite design space

minimize f (M)
subject to M =

m∑
i=1

wi f (xi) f (xi)T

wi ≥ 0, i = 1, . . . ,m
m∑

i=1
wi = 1

variables: m-vector w and symmetric p × p matrix M

Design criteria

• c-optimality: f (M) = cT M−1c

• A-optimality: f (M) = tr M−1

• E-optimality: f (M) = λmax(M−1)
• D-optimality: f (M) = −(det M)1/n

• condition number: f (M) = κ(M)

these criteria can be minimized using s.o. and p.s.d. conic optimization
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Second order cone program formulation of c-optimal design

minimize cT M−1c

subject to M =
m∑

i=1
wi f (xi) f (xi)T

wi ≥ 0, i = 1, . . . ,m,
m∑

i=1
wi = 1

Step 1: equivalent problem with auxiliary variables y1, . . . , ym

minimize
m∑

i=1
y2

i /wi

subject to
m∑

i=1
f (xi)yi = c

wi ≥ 0, i = 1, . . . ,m,
m∑

i=1
wi = 1

equivalence can be shown by optimizing over y
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Second order cone program formulation of c-optimal design

minimize
m∑

i=1
y2

i /wi

subject to
m∑

i=1
f (xi)yi = c

wi ≥ 0, i = 1, . . . ,m,
m∑

i=1
wi = 1

Step 2: reformulate nonlinear objective as linear objective with s.o. constraints

minimize
m∑

i=1
ti

subject to
(
4y2

i + (ti − wi)2
)1/2
≤ ti + wi, ti ≥ 0, i = 1, . . . ,m

m∑
i=1

f (xi)yi = c

wi ≥ 0, i = 1, . . . ,m,
m∑

i=1
wi = 1

first set of constraints is equivalent to y2
i /wi ≤ ti for i = 1, . . . ,m
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Semidefinite program formulation of E-optimal design

minimize λmax(M−1)
subject to M =

m∑
i=1

wi f (xi) f (xi)T

wi ≥ 0, i = 1, . . . ,m
m∑

i=1
wi = 1

Equivalent problem: maximize λmin(M) by solving the SDP

maximize t

subject to
m∑

i=1
wi f (xi) f (xi)T � t I

wi ≥ 0, i = 1, . . . ,m
m∑

i=1
wi = 1

first constraint is equivalent to λmin(M) ≥ t
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Semidefinite program formulation of D-optimal design

maximize (det M)1/p

subject to M =
m∑

i=1
wi f (xi) f (xi)T

wi ≥ 0, i = 1, . . . ,m,
m∑

i=1
wi = 1

Step 1: introduce Cholesky factor as auxiliary variable

maximize (∏i Rii)1/p

subject to


m∑
i=1

wi f (xi) f (xi)T RT

R I

 � 0

R upper triangular, Rii ≥ 0, i = 1, . . . , p

wi ≥ 0, i = 1, . . . ,m,
m∑

i=1
wi = 1

first constraint is equivalent to M � RT R
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Semidefinite program formulation of D-optimal design

maximize t
subject to t ≤ (∏i Rii)1/p

m∑
i=1

wi f (xi) f (xi)T RT

R I

 � 0

R upper triangular, Rii ≥ 0, i = 1, . . . , p

wi ≥ 0, i = 1, . . . ,m,
m∑

i=1
wi = 1

Step 2

• first constraint can be expressed as a set of p.s.d. constraints

• reformulation uses repeated application of equivalence

a ≤
√

bc, a, b, c ≥ 0 ⇐⇒
[

b a
a c

]
� 0, a ≥ 0
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• Semidefinite representations of design criteria

• Discriminating design with polynomial models

• Semidefinite descriptions of moment cones



Optimal discriminating design

• p-vector f (x) of basis functions, and m models

η j(x) = θT
j f (x), θ j ∈ Θ j, j = 1, . . . ,m

• moment matrix M = E f (x) f (x)T depends on distribution of x ∈ C

• m(m − 1)/2 distance measures

∆i j(M) = inf
θi∈Θi, θ j∈Θ j

E(ηi(x) − η j(x))2 = inf
θi∈Θi, θ j∈Θ j

(θi − θ j)T M(θi − θ j)

• each ∆i j(M) is a concave function of M

Design problem: find distribution that makes all ∆i j(M) large, e.g., by maximizing

min
j>i
∆i j(M) or

∑
j>i

wi j∆i j(M)

[Atkinson and Fedorov 1975]
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Equivalent expressions for ∆i j(M)

for given M , the function ∆i j(M) is the optimal value of the optimization problem

minimize (θi − θ j)T M(θi − θ j)
subject to θi ∈ Θi, θ j ∈ Θ j

• variables are θi, θ j

• we now assume that Θi, Θ j are convex sets

From convex duality: ∆i j(M) is the optimal value of the dual problem

maximize t − σi(z) − σj(−z)

subject to
[

M z/2
zT/2 t

]
� 0

• variables are t, z

• σk(z) = supθ∈Θk
zTθ is support function of Θk (a convex function)
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Optimal discriminating design

maximize min
j>i
∆i j(M)

subject to M ∈ M

• M = conv{ f (x) f (x)T | x ∈ C}
• optimization problem is convex in the moment matrix M

Reformulation

maximize t
subject to t ≤ ti j − σi(zi j) − σj(−zi j), j > i[

M zi j/2
zT
i j/2 ti j

]
� 0, j > i

M ∈ M

• convex in the variables t, ti j , zi j , M

• requires tractable description or approximation of setM of moment matrices
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Polynomial moments and SDP approximations

• f (x) is vector of
(

n + d
d

)
monomials in x1, . . . , xn of degree d or less

• design space C is a compact set defined by k polynomial inequalities

g1(x) ≥ 0, . . . , gk(x) ≥ 0

• set of moment matrices isM = conv{ f (x) f (x)T | x ∈ C}

Hierarchy of relaxations: outer approximationsM ⊆ Mr , r = 0, 1, . . .

• Mr is parameterized by k + 1 linear matrix inequalities of size up to(
n + 2d + 2r

n

)
• approximations are nested and converge toM as relaxation order r increases

[De Castro, Gamboa, Henrion, Hess, Lasserre 2017] [Lasserre 2010, 2015]
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Sums of squares

a polynomial f : Rn → R is a sum of squares (SOS) of degree 2d or less if

f (x) =
∑
|α |≤d

∑
|β |≤d

Aαβxαxβ = vd(x)T Avd(x) with A � 0

• xα with α = (α1, . . . , αn) denotes the monomial xα1
1 xα2

2 · · · x
αn
n

• |α | = ∑
i αi is degree of monomial xα

• vd(x) is vector of
(

n + d
d

)
monomials in x of degree d or less

• SOS property is a semidefinite constraint in coefficients of f (x) and matrix A

• gives a sufficient condition for nonnegativity of f (x)

[Parrilo 2000] [Lasserre 2001]
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Inner approximation of cone of nonnegative polynomials

• C is a compact set defined by polynomial inequalities g1(x) ≥ 0, . . . , gk(x) ≥ 0

• P is the cone of polynomials of degree d or less that are nonnegative on C

• sufficient condition for p ∈ P:

p(x) = p0(x) +
k∑

j=1
p j(x)g j(x)

where p0(x), . . . , pk(x) are sums of squares, i.e.,

p j(x) = vr j(x)T A jvr j(x), A j � 0

• defines a p.s.d.-representable inner approximation of P
• increasing the degrees of pk gives hierarchy of nested inner approximations

• outer approximation of polynomial moment cones follows by duality

surveys in books [Lasserre 2010, 2015]
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Example 1

• two models in 7 variables; one exact and one uncertain

η1(x) = 1 + x1 + · · · + x7 + x2
1 + x1x2 + · · · + x6x7 + x2

7

η2(x) = θ1 + θ2x1 + · · · + θ8x7 + θ9x2
1 + · · · + θ15x2

7

• design space is C = [−1, 1]7

• parameter constraint θ ∈ [0, 4]15

• relaxation of order 2 gives solution

• optimal design has 72 support points
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Example 2

• three models in 3 variables; one exact and two uncertain

η1(x) = 1 + x1 + x2 + x3 + x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3

η2(x) = θ2,1 + θ2,2x1 + θ2,3x2 + θ2,4x3

η3(x) = θ3,1 + θ3,2x1 + θ3,3x2 + +θ3,4x3 + θ3,5x2
1 + θ3,6x2

2 + θ3,7x2
3

• design space is C = [−1, 1]3

• parameter constraints are θ2 = [1, 2]4 and θ3 ∈ [1, 2]7

• relaxation of order zero gives solution

• optimal design has 8 support points
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Outline

• Semidefinite representations of design criteria

• Discriminating design with polynomial models

• Semidefinite descriptions of moment cones



SDPs in signal processing and system theory

Classical sum-of-squares theorems

• characterize nonnegativity of univariate (trigonometric) polynomials
[Karlin and Studden 1966] [Krein and Nudelman 1977]

• (generalized) Kalman-Yakubovich-Popov lemma in system theory

• equivalent to sets of linear matrix inequalities

• via convex duality, SDP descriptions of moment cones

Applications

• underlie many of the applications of SDP in control and signal processing

• recent applications to experiment design for system identification
[Jansson and Hjalmarsson 2005] [Hildebrand, Gevers, Solari 2015]
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Positive semidefinite Toeplitz matrices

every n × n positive semidefinite Toeplitz matrix X can be decomposed as

X =
r∑

k=1
|ck |2


1

eiωk

ei2ωk

...

ei(n−1)ωk




1
eiωk

ei2ωk

...

ei(n−1)ωk



H

• cone of positive semidefinite Toeplitz matrices is convex hull of

{aaH | a = c(1, eiω, . . . , ei(n−1)ω)}

• this is also the cone of trigonometric moment matrices

• next: extensions from papers on Kalman-Yakubovich-Popov lemma
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Quadratic matrix equation

let U, V be p × r matrices that satisfy

UUH = VV H

• U = VS with S unitary: follows from singular value decompositions

U = PΣQH
1 , V = PΣQH

2

and S = Q2QH
1

• take Schur decomposition S = Q diag(λ)QH:

UQ = VQ diag(λ)

with Q unitary and |λ1 | = · · · = |λr | = 1
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Decomposition of positive semidefinite Toeplitz matrix

• n × n matrix X is Toeplitz if FXFH = GXGH where

F =
[

0 In−1
]
, G =

[
In−1 0

]
• factorize X = YY H; the matrix Y satisfies (FY )(FY )H = (GY )(GY )H:

FYQ = GYQ diag(λ) with Q unitary, |λ1 | = · · · = |λr | = 1

• columns a1, . . . , ar of YQ give the decomposition

X =
r∑

k=1
akaH

k , Fak = λkGak, |λk | = 1

vectors ak have the form ak = ck(1, λk, . . . , λ
n−1
k ) with λk = eiωk

Note: this holds for any pair F, G of equal dimension
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General quadratic equation

suppose Φ ∈ H2 with detΦ < 0, and U, V are p × r matrices with

Φ11UUH + Φ21UV H + Φ12VUH + Φ22VV H = 0

• then there exist unitary Q, vectors µ, ν with

UQ diag(ν) = VQ diag(µ),
[
µk
νk

]H

Φ

[
µk
νk

]
= 0, (µk, νk) , 0

• second condition restricts λk = µk/νk to circle or line in complex plane

Φ:
[

1 0
0 −1

] [
0 1
1 0

] [
0 i
−i 0

]
λ: unit circle imaginary axis real axis

pairs (µk, νk) with νk = 0 correspond to point λk at infinity
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Quadratic matrix equation and inequality

suppose Φ,Ψ ∈ H2 with detΦ < 0, and U, V are p × r matrices with

Φ11UUH + Φ21UV H + Φ12VUH + Φ22VV H = 0

Ψ11UUH + Ψ21UV H + Ψ12VUH + Ψ22VV H � 0

• then there exist unitary Q, vectors µ, ν with (µk, νk) , 0, such that

UQ diag(ν) = VQ diag(µ)

and [
µk
νk

]H

Φ

[
µk
νk

]
= 0

[
µk
νk

]H

Ψ

[
µk
νk

]
≤ 0

• last two conditions restrict λk = µk/νk to segment of circle or line

• efficiently computed using standard matrix decompositions (SVD, Schur)

[Iwasaki, Meinsma, Hara 2000] [Iwasaki and Hara 2003]
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Generalized Carathéodory decomposition

the following two properties are equivalent:

• X is in the convex hull of {aaH | a ∈ A}

A = {a | µGa = νFa, (µ, ν) ∈ C}

C is a segment of a line or circle in the complex plane, parameterized by

(µ, ν) , 0,
[
µ
ν

]H

Φ

[
µ
ν

]
= 0,

[
µ
ν

]H

Ψ

[
µ
ν

]
≤ 0

• X is positive semidefinite and satisfies the matrix equation and inequality

Φ11FXFH + Φ21FXGH + Φ12GXFH + Φ22GXGH = 0

Ψ11FXFH + Ψ21FXGH + Ψ12GXFH + Ψ22GXGH � 0

decomposition X =
r∑

k=1
akaH

k with ak ∈ A from efficient matrix algorithms
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Other interesting choices of F, G

F =
[

J βen−1
]
, G =

[
In−1 0

]
• J is a tridiagonal (Jacobi) matrix

• J and β define 3-term recurrence for system of orthogonal polynomials

p0(λ), p2(λ), . . . , pn−1(λ)

• SDP description of convex hull of {aaH | a ∈ A} where A contains vectors

a = c (p0(λ), p1(λ), . . . , pn−1(λ)) , λ ∈ C

where C is an interval of the real axis
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Other interesting choices of F, G

F =
[

A B
]
, G =

[
I 0

]
(size ns × (ns + m))

• λG − F is controllability pencil of linear system

λG − F =
[
λI − A B

]
• SDP description of convex hull of {aaH | a ∈ A} whereA contains the vectors

a =
[
(λI − A)−1Bu

u

]
, u ∈ Cm, λ ∈ C

and C is (a segment of) the unit circle or imaginary axis
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Summary

• optimal experiment design via second-order cone/semidefinite programming

• SDP relaxations of multivariate polynomial moment cones

• exact SDP description of class of univariate moment cones
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