Semidefinite programming and experiment design

Lieven Vandenberghe
Department of Electrical and Computer Engineering, UCLA
Joint work with:
Weng Kee Wong and Yuguang Yue
Department of Biostatistics, UCLA

BIRS Workshop
Latest Advances in the Theory and Applications of Design and Analysis of Experiments

Banff, August 6-11, 2017

Semidefinite program (SDP)

$$
\begin{array}{ll}
\text { minimize } & \operatorname{tr}(C X) \\
\text { subject to } & \operatorname{tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m \\
& X \geq 0
\end{array}
$$

- variable is $n \times n$ symmetric matrix X
- inequality $X \succeq 0$ means X is positive semidefinite
- similar to standard form linear program, but with matrix inequality

Applications

- matrix inequalities arise naturally in many areas (for example, control, statistics)
- relaxations of nonconvex quadratic and polynomial optimization
- used in convex modeling systems (CVX, YALMIP, CVXPY, PICOS, ...)
widely studied since 1990s (following Nesterov \& Nemirovski's 1994 book)

Outline

- Semidefinite representations of design criteria
- Discriminating design with polynomial models
- Semidefinite descriptions of moment cones

Conic linear programming

$$
\begin{array}{lll}
\text { Primal: } & \begin{array}{l}
\text { minimize } \\
\\
\\
\text { subject to }
\end{array} & \langle c, x\rangle \\
& & \langle a, x\rangle=b_{i}, \quad i=1, \ldots, m \\
& x \in K \\
\text { Dual: } & \text { maximize } & b^{T} y \\
& & \text { subject to } \\
& \sum_{i=1}^{m} y_{i} a_{i}+s=c \\
& & s \in K^{*}
\end{array}
$$

- K is a proper convex cone (closed, pointed, with nonempty interior)
- $K^{*}=\{s \mid\langle s, x\rangle \geq 0 \forall x \in K\}$ is the dual cone

Solvers

- popular solvers include SDPT3, SeDuMi, MOSEK
- implementations of primal-dual interior-point methods
- handle 'symmetric' cones: second order cone and positive semidefinite cone

Symmetric cones

- second order cone (s.o. cone): $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid\left(x_{1}^{2}+\cdots+x_{n-1}^{2}\right)^{1 / 2} \leq x_{n}\right\}$
- cone of positive semidefinite symmetric matrices (p.s.d. cone)
s.o. cone in \mathbf{R}^{3}

$$
\sqrt{x_{1}^{2}+x_{2}^{2}} \leq x_{3}
$$

p.s.d. cone in \mathbf{R}^{3}

Modeling software

- surprisingly many functions are 's.o.- or p.s.d.-representable’ [Nesterov \& Nemirovski 1994]
- conversion rules implemented in modeling software packages

Modeling packages for convex optimization

- CVX, YALMIP (MATLAB)
- CVXPY, PICOS (Python)
- Convex.jl (Julia)

Optimal experiment design with finite design space

$$
\begin{array}{ll}
\operatorname{minimize} & f(M) \\
\text { subject to } & M=\sum_{i=1}^{m} w_{i} f\left(x_{i}\right) f\left(x_{i}\right)^{T} \\
& w_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} w_{i}=1
\end{array}
$$

variables: m-vector w and symmetric $p \times p$ matrix M

Design criteria

- c-optimality: $f(M)=c^{T} M^{-1} c$
- A-optimality: $f(M)=\operatorname{tr} M^{-1}$
- E-optimality: $f(M)=\lambda_{\max }\left(M^{-1}\right)$
- D-optimality: $f(M)=-(\operatorname{det} M)^{1 / n}$
- condition number: $f(M)=\kappa(M)$
these criteria can be minimized using s.o. and p.s.d. conic optimization

Second order cone program formulation of c-optimal design

$$
\begin{array}{ll}
\text { minimize } & c^{T} M^{-1} c \\
\text { subject to } & M=\sum_{i=1}^{m} w_{i} f\left(x_{i}\right) f\left(x_{i}\right)^{T} \\
& w_{i} \geq 0, \quad i=1, \ldots, m, \quad \sum_{i=1}^{m} w_{i}=1
\end{array}
$$

Step 1: equivalent problem with auxiliary variables y_{1}, \ldots, y_{m}

$$
\begin{array}{ll}
\text { minimize } & \sum_{i=1}^{m} y_{i}^{2} / w_{i} \\
\text { subject to } & \sum_{i=1}^{m} f\left(x_{i}\right) y_{i}=c \\
& w_{i} \geq 0, \quad i=1, \ldots, m, \quad \sum_{i=1}^{m} w_{i}=1
\end{array}
$$

equivalence can be shown by optimizing over y

Second order cone program formulation of c-optimal design

$$
\begin{array}{ll}
\text { minimize } & \sum_{i=1}^{m} y_{i}^{2} / w_{i} \\
\text { subject to } & \sum_{i=1}^{m} f\left(x_{i}\right) y_{i}=c \\
& w_{i} \geq 0, \quad i=1, \ldots, m, \quad \sum_{i=1}^{m} w_{i}=1
\end{array}
$$

Step 2: reformulate nonlinear objective as linear objective with s.o. constraints

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{m} t_{i} \\
\text { subject to } & \left(4 y_{i}^{2}+\left(t_{i}-w_{i}\right)^{2}\right)^{1 / 2} \leq t_{i}+w_{i}, \quad t_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} f\left(x_{i}\right) y_{i}=c \\
& w_{i} \geq 0, \quad i=1, \ldots, m, \quad \sum_{i=1}^{m} w_{i}=1
\end{aligned}
$$

first set of constraints is equivalent to $y_{i}^{2} / w_{i} \leq t_{i}$ for $i=1, \ldots, m$

Semidefinite program formulation of E-optimal design

$$
\begin{array}{cl}
\operatorname{minimize} & \lambda_{\max }\left(M^{-1}\right) \\
\text { subject to } & M=\sum_{i=1}^{m} w_{i} f\left(x_{i}\right) f\left(x_{i}\right)^{T} \\
& w_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} w_{i}=1
\end{array}
$$

Equivalent problem: maximize $\lambda_{\min }(M)$ by solving the SDP

$$
\begin{array}{cl}
\text { maximize } & t \\
\text { subject to } & \sum_{i=1}^{m} w_{i} f\left(x_{i}\right) f\left(x_{i}\right)^{T} \geq t I \\
& w_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} w_{i}=1
\end{array}
$$

first constraint is equivalent to $\lambda_{\text {min }}(M) \geq t$

Semidefinite program formulation of D-optimal design

$$
\begin{array}{ll}
\operatorname{maximize} & (\operatorname{det} M)^{1 / p} \\
\text { subject to } & M=\sum_{i=1}^{m} w_{i} f\left(x_{i}\right) f\left(x_{i}\right)^{T} \\
& w_{i} \geq 0, \quad i=1, \ldots, m, \quad \sum_{i=1}^{m} w_{i}=1
\end{array}
$$

Step 1: introduce Cholesky factor as auxiliary variable

$$
\begin{aligned}
\operatorname{maximize} & \left(\prod_{i} R_{i i}\right)^{1 / p} \\
\text { subject to } & {\left[\begin{array}{cc}
\sum_{i=1}^{m} w_{i} f\left(x_{i}\right) f\left(x_{i}\right)^{T} & R^{T} \\
R & I
\end{array}\right] \geq 0 } \\
& R \text { upper triangular, } \quad R_{i i} \geq 0, \quad i=1, \ldots, p \\
& w_{i} \geq 0, \quad i=1, \ldots, m, \quad \sum_{i=1}^{m} w_{i}=1
\end{aligned}
$$

first constraint is equivalent to $M \geq R^{T} R$

Semidefinite program formulation of D-optimal design

$$
\begin{aligned}
\begin{aligned}
\operatorname{maximize} & t \\
\text { subject to } & t \leq\left(\prod_{i} R_{i i}\right)^{1 / p} \\
& {\left[\begin{array}{cc}
\sum_{i=1}^{m} w_{i} f\left(x_{i}\right) f\left(x_{i}\right)^{T} & R^{T} \\
R & I
\end{array}\right] \geq 0 } \\
& R \text { upper triangular, } \quad R_{i i} \geq 0, \quad i=1, \ldots, p \\
& w_{i} \geq 0, \quad i=1, \ldots, m, \quad \sum_{i=1}^{m} w_{i}=1
\end{aligned}, l
\end{aligned}
$$

Step 2

- first constraint can be expressed as a set of p.s.d. constraints
- reformulation uses repeated application of equivalence

$$
a \leq \sqrt{b c}, \quad a, b, c \geq 0 \quad \Longleftrightarrow \quad\left[\begin{array}{cc}
b & a \\
a & c
\end{array}\right] \geq 0, \quad a \geq 0
$$

Outline

- Semidefinite representations of design criteria
- Discriminating design with polynomial models
- Semidefinite descriptions of moment cones

Optimal discriminating design

- p-vector $f(x)$ of basis functions, and m models

$$
\eta_{j}(x)=\theta_{j}^{T} f(x), \quad \theta_{j} \in \Theta_{j}, \quad j=1, \ldots, m
$$

- moment matrix $M=\mathrm{E} f(x) f(x)^{T}$ depends on distribution of $x \in C$
- $m(m-1) / 2$ distance measures

$$
\Delta_{i j}(M)=\inf _{\theta_{i} \in \Theta_{i}, \theta_{j} \in \Theta_{j}} \mathrm{E}\left(\eta_{i}(x)-\eta_{j}(x)\right)^{2}=\inf _{\theta_{i} \in \Theta_{i}, \theta_{j} \in \Theta_{j}}\left(\theta_{i}-\theta_{j}\right)^{T} M\left(\theta_{i}-\theta_{j}\right)
$$

- each $\Delta_{i j}(M)$ is a concave function of M

Design problem: find distribution that makes all $\Delta_{i j}(M)$ large, e.g., by maximizing

$$
\min _{j>i} \Delta_{i j}(M) \quad \text { or } \quad \sum_{j>i} w_{i j} \Delta_{i j}(M)
$$

[Atkinson and Fedorov 1975]

Equivalent expressions for $\Delta_{i j}(M)$

for given M, the function $\Delta_{i j}(M)$ is the optimal value of the optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \left(\theta_{i}-\theta_{j}\right)^{T} M\left(\theta_{i}-\theta_{j}\right) \\
\text { subject to } & \theta_{i} \in \Theta_{i}, \theta_{j} \in \Theta_{j}
\end{array}
$$

- variables are θ_{i}, θ_{j}
- we now assume that Θ_{i}, Θ_{j} are convex sets

From convex duality: $\Delta_{i j}(M)$ is the optimal value of the dual problem

$$
\begin{array}{ll}
\text { maximize } & t-\sigma_{i}(z)-\sigma_{j}(-z) \\
\text { subject to } & {\left[\begin{array}{cc}
M & z / 2 \\
z^{T} / 2 & t
\end{array}\right] \geq 0}
\end{array}
$$

- variables are t, z
- $\sigma_{k}(z)=\sup _{\theta \in \Theta_{k}} z^{T} \theta$ is support function of Θ_{k} (a convex function)

Optimal discriminating design

$$
\begin{array}{ll}
\operatorname{maximize} & \min _{j>i} \Delta_{i j}(M) \\
\text { subject to } & M \in \mathcal{M}
\end{array}
$$

- $\mathcal{M}=\operatorname{conv}\left\{f(x) f(x)^{T} \mid x \in C\right\}$
- optimization problem is convex in the moment matrix M

Reformulation

$$
\begin{array}{ll}
\begin{array}{cl}
\operatorname{maximize} & t \\
\text { subject to } & t \leq t_{i j}-\sigma_{i}\left(z_{i j}\right)-\sigma_{j}\left(-z_{i j}\right), \quad j>i \\
& {\left[\begin{array}{cc}
M & z_{i j} / 2 \\
z_{i j}^{T} / 2 & t_{i j}
\end{array}\right] \geq 0, \quad j>i} \\
& M \in \mathcal{M}
\end{array}
\end{array}
$$

- convex in the variables $t, t_{i j}, z_{i j}, M$
- requires tractable description or approximation of set \mathcal{M} of moment matrices

Polynomial moments and SDP approximations

- $f(x)$ is vector of $\binom{n+d}{d}$ monomials in x_{1}, \ldots, x_{n} of degree d or less
- design space C is a compact set defined by k polynomial inequalities

$$
g_{1}(x) \geq 0, \quad \ldots, \quad g_{k}(x) \geq 0
$$

- set of moment matrices is $\mathcal{M}=\operatorname{conv}\left\{f(x) f(x)^{T} \mid x \in C\right\}$

Hierarchy of relaxations: outer approximations $\mathcal{M} \subseteq \mathcal{M}_{r}, r=0,1, \ldots$

- \mathcal{M}_{r} is parameterized by $k+1$ linear matrix inequalities of size up to

$$
\binom{n+2 d+2 r}{n}
$$

- approximations are nested and converge to \mathcal{M} as relaxation order r increases
[De Castro, Gamboa, Henrion, Hess, Lasserre 2017] [Lasserre 2010, 2015]

Sums of squares

a polynomial $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a sum of squares (SOS) of degree $2 d$ or less if

$$
f(x)=\sum_{|\alpha| \leq d} \sum_{|\beta| \leq d} A_{\alpha \beta} x^{\alpha} x^{\beta}=v_{d}(x)^{T} A v_{d}(x) \quad \text { with } A \geq 0
$$

- x^{α} with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ denotes the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$
- $|\alpha|=\sum_{i} \alpha_{i}$ is degree of monomial x^{α}
- $v_{d}(x)$ is vector of $\binom{n+d}{d}$ monomials in x of degree d or less
- SOS property is a semidefinite constraint in coefficients of $f(x)$ and matrix A
- gives a sufficient condition for nonnegativity of $f(x)$
[Parrilo 2000] [Lasserre 2001]

Inner approximation of cone of nonnegative polynomials

- C is a compact set defined by polynomial inequalities $g_{1}(x) \geq 0, \ldots, g_{k}(x) \geq 0$
- \mathcal{P} is the cone of polynomials of degree d or less that are nonnegative on C
- sufficient condition for $p \in \mathcal{P}$:

$$
p(x)=p_{0}(x)+\sum_{j=1}^{k} p_{j}(x) g_{j}(x)
$$

where $p_{0}(x), \ldots, p_{k}(x)$ are sums of squares, i.e.,

$$
p_{j}(x)=v_{r_{j}}(x)^{T} A_{j} v_{r_{j}}(x), \quad A_{j} \geq 0
$$

- defines a p.s.d.-representable inner approximation of \mathcal{P}
- increasing the degrees of p_{k} gives hierarchy of nested inner approximations
- outer approximation of polynomial moment cones follows by duality
surveys in books [Lasserre 2010, 2015]

Example 1

- two models in 7 variables; one exact and one uncertain

$$
\begin{aligned}
& \eta_{1}(x)=1+x_{1}+\cdots+x_{7}+x_{1}^{2}+x_{1} x_{2}+\cdots+x_{6} x_{7}+x_{7}^{2} \\
& \eta_{2}(x)=\theta_{1}+\theta_{2} x_{1}+\cdots+\theta_{8} x_{7}+\theta_{9} x_{1}^{2}+\cdots+\theta_{15} x_{7}^{2}
\end{aligned}
$$

- design space is $C=[-1,1]^{7}$
- parameter constraint $\theta \in[0,4]^{15}$
- relaxation of order 2 gives solution
- optimal design has 72 support points

Example 2

- three models in 3 variables; one exact and two uncertain

$$
\begin{aligned}
& \eta_{1}(x)=1+x_{1}+x_{2}+x_{3}+x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& \eta_{2}(x)=\theta_{2,1}+\theta_{2,2} x_{1}+\theta_{2,3} x_{2}+\theta_{2,4} x_{3} \\
& \eta_{3}(x)=\theta_{3,1}+\theta_{3,2} x_{1}+\theta_{3,3} x_{2}++\theta_{3,4} x_{3}+\theta_{3,5} x_{1}^{2}+\theta_{3,6} x_{2}^{2}+\theta_{3,7} x_{3}^{2}
\end{aligned}
$$

- design space is $C=[-1,1]^{3}$
- parameter constraints are $\theta_{2}=[1,2]^{4}$ and $\theta_{3} \in[1,2]^{7}$
- relaxation of order zero gives solution
- optimal design has 8 support points

Outline

- Semidefinite representations of design criteria
- Discriminating design with polynomial models
- Semidefinite descriptions of moment cones

SDPs in signal processing and system theory

Classical sum-of-squares theorems

- characterize nonnegativity of univariate (trigonometric) polynomials [Karlin and Studden 1966] [Krein and Nudelman 1977]
- (generalized) Kalman-Yakubovich-Popov lemma in system theory
- equivalent to sets of linear matrix inequalities
- via convex duality, SDP descriptions of moment cones

Applications

- underlie many of the applications of SDP in control and signal processing
- recent applications to experiment design for system identification [Jansson and Hjalmarsson 2005] [Hildebrand, Gevers, Solari 2015]

Positive semidefinite Toeplitz matrices

every $n \times n$ positive semidefinite Toeplitz matrix X can be decomposed as

$$
X=\sum_{k=1}^{r}\left|c_{k}\right|^{2}\left[\begin{array}{c}
1 \\
e^{\mathrm{i} \omega_{k}} \\
e^{\mathrm{i} 2 \omega_{k}} \\
\vdots \\
e^{\mathrm{i}(n-1) \omega_{k}}
\end{array}\right]\left[\begin{array}{c}
1 \\
e^{\mathrm{i} \omega_{k}} \\
e^{\mathrm{i} 2 \omega_{k}} \\
\vdots \\
e^{\mathrm{i}(n-1) \omega_{k}}
\end{array}\right]^{H}
$$

- cone of positive semidefinite Toeplitz matrices is convex hull of

$$
\left\{a a^{H} \mid a=c\left(1, e^{\mathrm{i} \omega}, \ldots, e^{\mathrm{i}(n-1) \omega}\right)\right\}
$$

- this is also the cone of trigonometric moment matrices
- next: extensions from papers on Kalman-Yakubovich-Popov lemma

Quadratic matrix equation

let U, V be $p \times r$ matrices that satisfy

$$
U U^{H}=V V^{H}
$$

- $U=V S$ with S unitary: follows from singular value decompositions

$$
U=P \Sigma Q_{1}^{H}, \quad V=P \Sigma Q_{2}^{H}
$$

and $S=Q_{2} Q_{1}^{H}$

- take Schur decomposition $S=Q \operatorname{diag}(\lambda) Q^{H}$:

$$
U Q=V Q \operatorname{diag}(\lambda)
$$

with Q unitary and $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1$

Decomposition of positive semidefinite Toeplitz matrix

- $n \times n$ matrix X is Toeplitz if $F X F^{H}=G X G^{H}$ where

$$
F=\left[\begin{array}{ll}
0 & I_{n-1}
\end{array}\right], \quad G=\left[\begin{array}{ll}
I_{n-1} & 0
\end{array}\right]
$$

- factorize $X=Y Y^{H}$; the matrix Y satisfies $(F Y)(F Y)^{H}=(G Y)(G Y)^{H}$:

$$
F Y Q=G Y Q \operatorname{diag}(\lambda) \quad \text { with } Q \text { unitary, } \quad\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1
$$

- columns a_{1}, \ldots, a_{r} of $Y Q$ give the decomposition

$$
X=\sum_{k=1}^{r} a_{k} a_{k}^{H}, \quad F a_{k}=\lambda_{k} G a_{k}, \quad\left|\lambda_{k}\right|=1
$$

vectors a_{k} have the form $a_{k}=c_{k}\left(1, \lambda_{k}, \ldots, \lambda_{k}^{n-1}\right)$ with $\lambda_{k}=e^{\mathrm{i} \omega_{k}}$

Note: this holds for any pair F, G of equal dimension

General quadratic equation

suppose $\Phi \in \mathbf{H}^{2}$ with $\operatorname{det} \Phi<0$, and U, V are $p \times r$ matrices with

$$
\Phi_{11} U U^{H}+\Phi_{21} U V^{H}+\Phi_{12} V U^{H}+\Phi_{22} V V^{H}=0
$$

- then there exist unitary Q, vectors μ, v with

$$
U Q \operatorname{diag}(v)=V Q \operatorname{diag}(\mu), \quad\left[\begin{array}{c}
\mu_{k} \\
v_{k}
\end{array}\right]^{H} \Phi\left[\begin{array}{c}
\mu_{k} \\
v_{k}
\end{array}\right]=0, \quad\left(\mu_{k}, v_{k}\right) \neq 0
$$

- second condition restricts $\lambda_{k}=\mu_{k} / v_{k}$ to circle or line in complex plane

$$
\left.\begin{array}{l}
\Phi: \\
\lambda:
\end{array} \begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \begin{array}{cc}
{\left[\begin{array}{cc}
0 & \mathrm{i} \\
-\mathrm{i} & 0
\end{array}\right]}
\end{array}
$$

pairs (μ_{k}, v_{k}) with $v_{k}=0$ correspond to point λ_{k} at infinity

Quadratic matrix equation and inequality

suppose $\Phi, \Psi \in \mathbf{H}^{2}$ with $\operatorname{det} \Phi<0$, and U, V are $p \times r$ matrices with

$$
\begin{aligned}
& \Phi_{11} U U^{H}+\Phi_{21} U V^{H}+\Phi_{12} V U^{H}+\Phi_{22} V V^{H}=0 \\
& \Psi_{11} U U^{H}+\Psi_{21} U V^{H}+\Psi_{12} V U^{H}+\Psi_{22} V V^{H} \leq 0
\end{aligned}
$$

- then there exist unitary Q, vectors μ, v with $\left(\mu_{k}, v_{k}\right) \neq 0$, such that

$$
U Q \operatorname{diag}(v)=V Q \operatorname{diag}(\mu)
$$

and

$$
\left[\begin{array}{c}
\mu_{k} \\
v_{k}
\end{array}\right]^{H} \Phi\left[\begin{array}{c}
\mu_{k} \\
v_{k}
\end{array}\right]=0 \quad\left[\begin{array}{c}
\mu_{k} \\
v_{k}
\end{array}\right]^{H} \Psi\left[\begin{array}{c}
\mu_{k} \\
v_{k}
\end{array}\right] \leq 0
$$

- last two conditions restrict $\lambda_{k}=\mu_{k} / v_{k}$ to segment of circle or line
- efficiently computed using standard matrix decompositions (SVD, Schur)
[Iwasaki, Meinsma, Hara 2000] [Iwasaki and Hara 2003]

Generalized Carathéodory decomposition

the following two properties are equivalent:

- X is in the convex hull of $\left\{a a^{H} \mid a \in \mathcal{A}\right\}$

$$
\mathcal{A}=\{a \mid \mu G a=v F a,(\mu, v) \in C\}
$$

C is a segment of a line or circle in the complex plane, parameterized by

$$
(\mu, v) \neq 0, \quad\left[\begin{array}{l}
\mu \\
v
\end{array}\right]^{H} \Phi\left[\begin{array}{l}
\mu \\
v
\end{array}\right]=0, \quad\left[\begin{array}{l}
\mu \\
v
\end{array}\right]^{H} \Psi\left[\begin{array}{c}
\mu \\
v
\end{array}\right] \leq 0
$$

- X is positive semidefinite and satisfies the matrix equation and inequality

$$
\begin{aligned}
& \Phi_{11} F X F^{H}+\Phi_{21} F X G^{H}+\Phi_{12} G X F^{H}+\Phi_{22} G X G^{H}=0 \\
& \Psi_{11} F X F^{H}+\Psi_{21} F X G^{H}+\Psi_{12} G X F^{H}+\Psi_{22} G X G^{H} \leq 0
\end{aligned}
$$

decomposition $X=\sum_{k=1}^{r} a_{k} a_{k}^{H}$ with $a_{k} \in \mathcal{A}$ from efficient matrix algorithms

Other interesting choices of F, G

$$
F=\left[\begin{array}{ll}
J & \beta e_{n-1}
\end{array}\right], \quad G=\left[\begin{array}{cc}
I_{n-1} & 0
\end{array}\right]
$$

- J is a tridiagonal (Jacobi) matrix
- J and β define 3-term recurrence for system of orthogonal polynomials

$$
p_{0}(\lambda), \quad p_{2}(\lambda), \quad \ldots, \quad p_{n-1}(\lambda)
$$

- SDP description of convex hull of $\left\{a a^{H} \mid a \in \mathcal{A}\right\}$ where \mathcal{A} contains vectors

$$
a=c\left(p_{0}(\lambda), p_{1}(\lambda), \ldots, p_{n-1}(\lambda)\right), \quad \lambda \in C
$$

where C is an interval of the real axis

Other interesting choices of F, G

$$
F=\left[\begin{array}{ll}
A & B
\end{array}\right], \quad G=\left[\begin{array}{ll}
I & 0
\end{array}\right] \quad\left(\text { size } n_{\mathrm{s}} \times\left(n_{\mathrm{s}}+m\right)\right)
$$

- $\lambda G-F$ is controllability pencil of linear system

$$
\lambda G-F=\left[\begin{array}{ll}
\lambda I-A & B
\end{array}\right]
$$

- SDP description of convex hull of $\left\{a a^{H} \mid a \in \mathcal{A}\right\}$ where \mathcal{A} contains the vectors

$$
a=\left[\begin{array}{c}
(\lambda I-A)^{-1} B u \\
u
\end{array}\right], \quad u \in \mathbf{C}^{m}, \quad \lambda \in C
$$

and C is (a segment of) the unit circle or imaginary axis

Summary

- optimal experiment design via second-order cone/semidefinite programming
- SDP relaxations of multivariate polynomial moment cones
- exact SDP description of class of univariate moment cones

