
Recent Development on
Dynamic Computer Experiments

C. Devon Lin1

Joint work with Ru Zhang1 and Pritam Ranjan2

1Queen’s University
2Indian Institute of Management Indore

Aug 7, 2017, Banff Workshop on Latest Advances in the Theory and Applications of

Design and Analysis of Experiments

Outline

• Large-scale dynamic computer experiments

• Proposed SVD-based Gaussian process models

• Inverse problem

• Concluding remarks

Dynamic Computer Simulators

Computer simulators with time-varying outputs

• Climate change model (Bhattacharya, 2007)

• Rainfall-runoff model (Conti et al., 2009)

• Marrow stem cell kinetics model (Morris, 2012; Jones et al., 1991)

• Vehicle suspension system (Bayrri et al., 2007)

• Hydrological saturated path model (logSPMs) (Liu and West, 2007)

• Sheffield Dynamic Global Vegetation Model (Conti and O’Hagan,
2010)

• The Lyon-Fedder-Mobary (LFM) model (Pratola et al., 2013)

• Volcanic pyroclastic flow model (Gu and Berger, 2016)

Dynamic Computer Simulators

Computer simulators with time-varying outputs

• Climate change model (Bhattacharya, 2007)

• Rainfall-runoff model (Conti et al., 2009)

• Marrow stem cell kinetics model (Morris, 2012; Jones et al., 1991)

• Vehicle suspension system (Bayrri et al., 2007)

• Hydrological saturated path model (logSPMs) (Liu and West, 2007)

• Sheffield Dynamic Global Vegetation Model (Conti and O’Hagan,
2010)

• The Lyon-Fedder-Mobary (LFM) model (Pratola et al., 2013)

• Volcanic pyroclastic flow model (Gu and Berger, 2016)

Dynamic Computer Simulators

• Systems evolving over time

Yt = f (zt ,Yt−1), t = 1, . . . ,T (1)

where Yt and Yt−1 represent the state vector at time-step t and
t−1, respectively, zt = (x,wt) denotes the time-independent input
x and the forcing inputs wt at time-step t

• Systems generating time series outputs

• the training data inputs {x1, . . . ,xN}
• at time t , the outputs yt = (y(x1, t), . . . ,y(xN , t))T

Dynamic Computer Simulators

• Systems evolving over time

Yt = f (zt ,Yt−1), t = 1, . . . ,T (1)

where Yt and Yt−1 represent the state vector at time-step t and
t−1, respectively, zt = (x,wt) denotes the time-independent input
x and the forcing inputs wt at time-step t

• Systems generating time series outputs

• the training data inputs {x1, . . . ,xN}
• at time t , the outputs yt = (y(x1, t), . . . ,y(xN , t))T

Dynamic Computer Simulators

• Systems evolving over time

Yt = f (zt ,Yt−1), t = 1, . . . ,T (2)

where Yt and Yt−1 represent the state vector at time-step t and
t−1, respectively, zt = (x,wt) denotes the time-independent input
x and the forcing inputs wt at time-step t

• Systems generating time series outputs

• the training data inputs {x1, . . . ,xN}
• at time t , the outputs yt = (y(x1, t), . . . ,y(xN , t))T

Existing Methods

• Many single-output emulator: emulate the T outputs separately,
each via a single-output emulator (Conti and O’Hagan, 2009)

• Multi-output emulator: (a) multivariate GP models (Conti and
O’Hagan, 2009); (b) represent time series outputs as linear
combinations of a fixed set of basis such as singular vectors or
wavelet basis and impose Gaussian process models on the linear
coefficients (Higdon et al., 2008)

• Time-input emulator: include time as an extra input (Kennedy and
O’Hagan, 2001)

• Time-varying autoregression (TVAR) models with GP residuals (Liu
and West, 2007)

Existing Methods

• Many single-output emulator: emulate the T outputs separately,
each via a single-output emulator (Conti and O’Hagan, 2009)

• Multi-output emulator: (a) multivariate GP models (Conti and
O’Hagan, 2009); (b) represent time series outputs as linear
combinations of a fixed set of basis such as singular vectors or
wavelet basis and impose Gaussian process models on the linear
coefficients (Higdon et al., 2008)

• Time-input emulator: include time as an extra input (Kennedy and
O’Hagan, 2001)

• Time-varying autoregression (TVAR) models with GP residuals (Liu
and West, 2007)

Existing Methods

• Many single-output emulator: emulate the T outputs separately,
each via a single-output emulator (Conti and O’Hagan, 2009)

• Multi-output emulator: (a) multivariate GP models (Conti and
O’Hagan, 2009); (b) represent time series outputs as linear
combinations of a fixed set of basis such as singular vectors or
wavelet basis and impose Gaussian process models on the linear
coefficients (Higdon et al., 2008)

• Time-input emulator: include time as an extra input (Kennedy and
O’Hagan, 2001)

• Time-varying autoregression (TVAR) models with GP residuals (Liu
and West, 2007)

Existing Methods

• Many single-output emulator: emulate the T outputs separately,
each via a single-output emulator (Conti and O’Hagan, 2009)

• Multi-output emulator: (a) multivariate GP models (Conti and
O’Hagan, 2009); (b) represent time series outputs as linear
combinations of a fixed set of basis such as singular vectors or
wavelet basis and impose Gaussian process models on the linear
coefficients (Higdon et al., 2008)

• Time-input emulator: include time as an extra input (Kennedy and
O’Hagan, 2001)

• Time-varying autoregression (TVAR) models with GP residuals (Liu
and West, 2007)

Large-scale Computer Experiments

Computer Experiments with massive outputs

• Mutli-step interpolator (Haaland and Qian, 2011)

• Fixed rank kriging (Cressie and Johannesson, 2008)

• Compactly supported covariance (Kaufman et al., 2011)

• Local Gaussian process (Gramacy and Apley, 2015; Gramacy et al.,
2015; Gramacy and Haaland, 2016)

Large-scale Computer Experiments

Computer Experiments with massive outputs

• Mutli-step interpolator (Haaland and Qian, 2011)

• Fixed rank kriging (Cressie and Johannesson, 2008)

• Compactly supported covariance (Kaufman et al., 2011)

• Local Gaussian process (Gramacy and Apley, 2015; Gramacy et al.,
2015; Gramacy and Haaland, 2016)

Local Gaussian Process

• Data points far from an untried input x have vanishingly small
influence on the predictive distribution (assuming the usual choices
of covariance).

• Nearest neighbourhood (NN) approach selects data close to the
input location for prediction such that the selected input locations
are distributed as uniformly as possible around the location for
prediction.

• Emery (2009) built a local neighborhood by sequentially including
data that make the Kriging variance decrease more.

• Gramacy and Apley (2015) uses a sequential greedy algorithm and
an optimality criterion for finding a non-trivial local neighbourhood
set.

Local Gaussian Process

• Data points far from an untried input x have vanishingly small
influence on the predictive distribution (assuming the usual choices
of covariance).

• Nearest neighbourhood (NN) approach selects data close to the
input location for prediction such that the selected input locations
are distributed as uniformly as possible around the location for
prediction.

• Emery (2009) built a local neighborhood by sequentially including
data that make the Kriging variance decrease more.

• Gramacy and Apley (2015) uses a sequential greedy algorithm and
an optimality criterion for finding a non-trivial local neighbourhood
set.

Local Gaussian Process

• Data points far from an untried input x have vanishingly small
influence on the predictive distribution (assuming the usual choices
of covariance).

• Nearest neighbourhood (NN) approach selects data close to the
input location for prediction such that the selected input locations
are distributed as uniformly as possible around the location for
prediction.

• Emery (2009) built a local neighborhood by sequentially including
data that make the Kriging variance decrease more.

• Gramacy and Apley (2015) uses a sequential greedy algorithm and
an optimality criterion for finding a non-trivial local neighbourhood
set.

Local Gaussian Process

• Data points far from an untried input x have vanishingly small
influence on the predictive distribution (assuming the usual choices
of covariance).

• Nearest neighbourhood (NN) approach selects data close to the
input location for prediction such that the selected input locations
are distributed as uniformly as possible around the location for
prediction.

• Emery (2009) built a local neighborhood by sequentially including
data that make the Kriging variance decrease more.

• Gramacy and Apley (2015) uses a sequential greedy algorithm and
an optimality criterion for finding a non-trivial local neighbourhood
set.

Large-scale Dynamic Computer
Experiments

• Computer experiments with time series outputs at a large number of
inputs (ten of thousands)

• The existing methods for dynamic computer experiments cannot
handle thousands of data points

• It is not trivial to extend the exiting methods for large-scale computer
experiments to accommodate the times series outputs

• Thus, it calls for a new method for emulating large-scale dynamic
computer simulators

Large-scale Dynamic Computer
Experiments

• Computer experiments with time series outputs at a large number of
inputs (ten of thousands)

• The existing methods for dynamic computer experiments cannot
handle thousands of data points

• It is not trivial to extend the exiting methods for large-scale computer
experiments to accommodate the times series outputs

• Thus, it calls for a new method for emulating large-scale dynamic
computer simulators

Large-scale Dynamic Computer
Experiments

• Computer experiments with time series outputs at a large number of
inputs (ten of thousands)

• The existing methods for dynamic computer experiments cannot
handle thousands of data points

• It is not trivial to extend the exiting methods for large-scale computer
experiments to accommodate the times series outputs

• Thus, it calls for a new method for emulating large-scale dynamic
computer simulators

Large-scale Dynamic Computer
Experiments

• Computer experiments with time series outputs at a large number of
inputs (ten of thousands)

• The existing methods for dynamic computer experiments cannot
handle thousands of data points

• It is not trivial to extend the exiting methods for large-scale computer
experiments to accommodate the times series outputs

• Thus, it calls for a new method for emulating large-scale dynamic
computer simulators

The Proposed Approach

• The building blocks: singular value decomposition (SVD), and the
local surrogate idea

• A sequential greedy algorithm to construct the local neighbourhood
set

• An optimality criterion to search for next point

The Proposed Approach

• The building blocks: singular value decomposition (SVD), and the
local surrogate idea

• A sequential greedy algorithm to construct the local neighbourhood
set

• An optimality criterion to search for next point

The Proposed Approach

• The building blocks: singular value decomposition (SVD), and the
local surrogate idea

• A sequential greedy algorithm to construct the local neighbourhood
set

• An optimality criterion to search for next point

Model Formulation

• For N training points, let X = [x1, . . . ,xN]T be the N×q input matrix,
and Y = [y(x1), . . . ,y(xN)] be the L×N matrix of time series
response

• The SVD on Y gives

Y = UDVT =
k

∑
i=1

diuivT
i (3)

where
• U = [u1, . . . ,uk] is an L× k column orthogonal matrix of left singular

vectors, k = min{N,L}
• D = diag(d1, . . . ,dk) is a k× k diagonal matrix of singular values

sorted in decreasing order
• V is an N× k column-orthogonal matrix of right singular vectors

Model Formulation

• For N training points, let X = [x1, . . . ,xN]T be the N×q input matrix,
and Y = [y(x1), . . . ,y(xN)] be the L×N matrix of time series
response

• The SVD on Y gives

Y = UDVT =
k

∑
i=1

diuivT
i (3)

where
• U = [u1, . . . ,uk] is an L× k column orthogonal matrix of left singular

vectors, k = min{N,L}
• D = diag(d1, . . . ,dk) is a k× k diagonal matrix of singular values

sorted in decreasing order
• V is an N× k column-orthogonal matrix of right singular vectors

Model Formulation

The SVD-based GP model assumes that

y(x) =
p

∑
i=1

ci(x)bi + ε (4)

where bi = diui ∈ R L, ci(x)∼ GP(0,σ2
i Ki(·, ·;θi), for i = 1, . . . ,p, and

ε∼ N(0,σ2IL). The number of significant singular values, p in (4), is
determined empirically by the cumulative percentage criterion

p = min

{
m :

∑
m
i=1 di

∑
k
i=1 di

> γ

}
,

where γ is a prespecified threshold of explained variation (γ ∈ (0.9,0.98))

SVD-based GP Models

• Higdon et al. (2008) used SVD-based GP models for computer
model calibration with high-dimensional outputs

• The formulation reduces the problem of building an emulator that
maps from (0,1)q to R L to building p independent, univariate GP
models for each ci

• Higdon et al. (2008) employ a fully Bayesian analysis via Markov
chain Monte Carlo (MCMC), which is computationally intensive in
our applications

SVD-based GP Models

• Higdon et al. (2008) used SVD-based GP models for computer
model calibration with high-dimensional outputs

• The formulation reduces the problem of building an emulator that
maps from (0,1)q to R L to building p independent, univariate GP
models for each ci

• Higdon et al. (2008) employ a fully Bayesian analysis via Markov
chain Monte Carlo (MCMC), which is computationally intensive in
our applications

SVD-based GP Models

• Higdon et al. (2008) used SVD-based GP models for computer
model calibration with high-dimensional outputs

• The formulation reduces the problem of building an emulator that
maps from (0,1)q to R L to building p independent, univariate GP
models for each ci

• Higdon et al. (2008) employ a fully Bayesian analysis via Markov
chain Monte Carlo (MCMC), which is computationally intensive in
our applications

Empirical Bayesian Inference

• The parameters
• σ2: the error variance
• σ2

i : the process variance, for i = 1, . . . ,p
• θi = (θi1, . . . ,θiq): the correlation parameters in Gaussian correlation

function

• The priors:

• [σ2]∼ IG
(

α

2 ,
β

2

)
• [σ2

i]∼ IG
(

αi
2 ,

βi
2

)
, i = 1, . . . ,p

• [1
θij

]∼ Gamma(3/2,a), for i = 1, . . . ,p and j = 1, . . . ,q, where the
scale parameter a is chosen such that maximum squared distance
among any two points of the design matrix lies at the position of 95%
quantile (Gramacy, 2015)

Empirical Bayesian Inference

• The parameters
• σ2: the error variance
• σ2

i : the process variance, for i = 1, . . . ,p
• θi = (θi1, . . . ,θiq): the correlation parameters in Gaussian correlation

function

• The priors:

• [σ2]∼ IG
(

α

2 ,
β

2

)
• [σ2

i]∼ IG
(

αi
2 ,

βi
2

)
, i = 1, . . . ,p

• [1
θij

]∼ Gamma(3/2,a), for i = 1, . . . ,p and j = 1, . . . ,q, where the
scale parameter a is chosen such that maximum squared distance
among any two points of the design matrix lies at the position of 95%
quantile (Gramacy, 2015)

Empirical Bayesian Inference

The approximate predictive distribution of y(x0|Y):

π(y(x0)|Y)≈ π(y(x0)|V∗, σ̂2,Θ̂)≈N
(
Bĉ(x0|V∗,Θ̂),BΛ(V∗,Θ̂)BT +σ̂

2IL
)
.

(5)

where

• ĉ(x0|V∗,Θ̂) = [ĉ1(x0|v1, θ̂1), . . . , ĉp(x0|vp, θ̂p)]T

• Λ(V∗,Θ̂) = diag
(
σ̂2

1(x0|v1, θ̂1), . . . , σ̂2
p(x0|vp, θ̂p)

)
.

• [σ2|Y] follows the inverse Gamma distribution
IG((NL + α)/2,(rT r + β)/2), and

σ̂
2 = argmax

σ2
π(σ

2|Y) =
1

NL + α + 2

(
rT r + β

)
. (6)

• θ̂i = argmax
θi

π(θi |vi), i = 1, . . . ,p.

π(θi |vi) ∝ |K i |−
1
2

(
βi + ψi

2

)−(αi+N)/2

π(θi), (7)

Empirical Bayesian Inference

π(y(x0)|V∗,Θ,σ2)≈N
(
Bĉ(x0|V∗,Θ),BΛ(V∗,Θ)BT + σ

2IL
)
, (8)

To compute (8), we make use of

• the distribution of [y(x0)|V∗,Θ,σ2,c1(x0), . . . ,cp(x0)]

• the distribution of [ci(x0)|vi ,θi]

Lemma
(Gelman et al., 2014) Suppose [y|β,σ2]∼N (Xβ,σ2In) and
[β]∼N (b,V), where y ∈ Rn, β,b ∈ Rm, X is an n×m matrix, and V is
an m×m positive definite covariance matrix. Then,
[y|σ2]∼N (Xb,XVXT + σ2In).

• given [y(x0)|V∗,Θ,σ2,c1(x0), . . . ,cp(x0)]

• given [ci(x0)|vi ,θi]

• derive [y(x0)|V∗,Θ,σ2]

Empirical Bayesian Inference

The conditional distribution of ci(x0) given (vi ,θi) are independent
non-central t with N + αi degrees of freedom, for i = 1, . . . ,p, i.e.,

[ci(x0)|vi ,θi]∼ tN+αi

(
ĉi(x0|vi ,θi), σ̂

2
i (x0|vi ,θi)

)
, (9)

with the location parameter

ĉi(x0|vi ,θi) = kT
i (x0)K−1

i vi , (10)

with k i(x0) = [K (x0,x1;θi), . . . ,K (x0,xN ;θi)]T , and the scale parameter

σ̂
2
i (x0|vi ,θi) =

(βi + ψi)
(

1− kT
i (x0)K−1

i k i(x0)
)

αi + N
. (11)

• The posterior distribution of ci(x0)|vi ,θi

π
(
ci(x0)|vi ,θi

)
≈N

(
ĉi(x0|vi ,θi), σ̂

2
i (x0|vi ,θi)

)
. (12)

Local SVD-based GP Models

• The full SVD-based GP model that uses all N training points
involves with inverting an N×N correlation matrix and the
corresponding computing time is O(N3).

• The local SVD-based GP model uses n (� N) points for
approximating the predicted response at an arbitrary x0

• The naive local SVD-based GP model uses n nearest neighbour
points based on the Euclidean distance

• The proposed greedy local SVD-based GP model sequentially finds
the n neighbour points with the aim of reducing the prediction error

Local SVD-based GP Models

• The full SVD-based GP model that uses all N training points
involves with inverting an N×N correlation matrix and the
corresponding computing time is O(N3).

• The local SVD-based GP model uses n (� N) points for
approximating the predicted response at an arbitrary x0

• The naive local SVD-based GP model uses n nearest neighbour
points based on the Euclidean distance

• The proposed greedy local SVD-based GP model sequentially finds
the n neighbour points with the aim of reducing the prediction error

Local SVD-based GP Models

• The full SVD-based GP model that uses all N training points
involves with inverting an N×N correlation matrix and the
corresponding computing time is O(N3).

• The local SVD-based GP model uses n (� N) points for
approximating the predicted response at an arbitrary x0

• The naive local SVD-based GP model uses n nearest neighbour
points based on the Euclidean distance

• The proposed greedy local SVD-based GP model sequentially finds
the n neighbour points with the aim of reducing the prediction error

Local SVD-based GP Models

• The full SVD-based GP model that uses all N training points
involves with inverting an N×N correlation matrix and the
corresponding computing time is O(N3).

• The local SVD-based GP model uses n (� N) points for
approximating the predicted response at an arbitrary x0

• The naive local SVD-based GP model uses n nearest neighbour
points based on the Euclidean distance

• The proposed greedy local SVD-based GP model sequentially finds
the n neighbour points with the aim of reducing the prediction error

Greedy Local SVD-based GP Model

• Let k denote the current number of points in the neighbourhood set,
X(k) and X\X(k) be the sets of selected and unselected (remaining)

training points, respectively, and Θ̂
(k)

= {θ̂(k)
1 , . . . , θ̂

(k)
p } be the

estimated correlation parameters.

• The next follow-up point is chosen as

x∗k+1 = argmin
x∈X \X(k)

J(x0,x),

Greedy Local SVD-based GP Model

• Let k denote the current number of points in the neighbourhood set,
X(k) and X\X(k) be the sets of selected and unselected (remaining)

training points, respectively, and Θ̂
(k)

= {θ̂(k)
1 , . . . , θ̂

(k)
p } be the

estimated correlation parameters.

• The next follow-up point is chosen as

x∗k+1 = argmin
x∈X \X(k)

J(x0,x),

J-Criterion

J(x0,x) = E

{
E
[∥∥y(x0)− ŷ(x0|c(x),V∗(k),Θ̂

(k)
)
∥∥2
∣∣∣c(x),V∗(k),Θ̂

(k)
,(σ̂(k))2

]∣∣∣∣V∗(k),Θ̂(k)
,(σ̂(k))2

}
,

(13)

with

ŷ
(
x0|c(x),V∗(k),Θ̂

(k))
= E

[
y(x0)

∣∣∣c(x),V∗(k),Θ̂
(k)

,(σ̂
(k))2

]
= B(k)ĉ

(
x0|c(x),V∗(k),Θ̂

(k))
,

Proposition
Suppose the expectations in (13) and (14) are taken with respect to the
approximate predictive distribution (8). Then, for any x ∈ X\X(k)

J(x0,x) = (σ̂
(k))2L +

pk

∑
i=1

(d(k)
i)2

σ̂
2
i

(
x0|x,v

(k)
i , θ̂

(k)
i

)
, (14)

where d(k)
i is the i-th largest singular value of Y(k),

σ̂2
i

(
x0|x,v

(k)
i , θ̂

(k)
i

)
=

ρ
(k)
i (x0,x)
αi+k

(
βi + αi+k

αi+k−1 ψ
(k)
i

)
,

ρ
(k)
i (x0,x) = 1− k̃ i(x0,x)T K̃

−1
i (x)k̃ i(x0,x),

ψ
(k)
i = (v(k)i)T (K(k)

i)−1v(k)i ,

k̃ i(x0,x) = [K (x0,x
(k)
1 ; θ̂

(k)
i), . . . ,K (x0,x

(k)
k ; θ̂

(k)
i),K (x0,x; θ̂

(k)
i)]T ,

K̃ i(x) =

[
K(k)

i k(k)i (x)

k(k)i (x)T 1

]
,

with v(k)i being the i-th column of V∗(k), for i = 1, . . . ,pk , x(k)j being the

j-th point of X(k) for j = 1, . . . ,k , K(k)
i being a k× k matrix with

K (x(k)j ,x(k)l ; θ̂
(k)
i), as the (j, l)-th entry, and

k(k)i (x) = [K (x,x(k)1 ; θ̂
(k)
i), . . . ,K (x,x(k)k ; θ̂

(k)
i)]T .

J-Criterion

• Finding x∗k+1 by minimizing the J-criterion in Proposition 1 is
equivalent to obtaining

x∗k+1 = argmin
x∈X \X(k)

[pk

∑
i=1

(d(k)
i)2

σ̂
2
i

(
x0|x,v

(k)
i , θ̂

(k)
i

)]
. (15)

• This J-criterion is a generalization of the active learning Cohn (ALC)
criterion (Cohn et al., 1996)∫

x

[∫
y

(
ŷ(x)− y(x)

)2
dP(y |x)

]
dP(x),

• We use L2 norm discrepancy instead of the squared error.

J-Criterion

• Finding x∗k+1 by minimizing the J-criterion in Proposition 1 is
equivalent to obtaining

x∗k+1 = argmin
x∈X \X(k)

[pk

∑
i=1

(d(k)
i)2

σ̂
2
i

(
x0|x,v

(k)
i , θ̂

(k)
i

)]
. (15)

• This J-criterion is a generalization of the active learning Cohn (ALC)
criterion (Cohn et al., 1996)∫

x

[∫
y

(
ŷ(x)− y(x)

)2
dP(y |x)

]
dP(x),

• We use L2 norm discrepancy instead of the squared error.

J-Criterion

• Finding x∗k+1 by minimizing the J-criterion in Proposition 1 is
equivalent to obtaining

x∗k+1 = argmin
x∈X \X(k)

[pk

∑
i=1

(d(k)
i)2

σ̂
2
i

(
x0|x,v

(k)
i , θ̂

(k)
i

)]
. (15)

• This J-criterion is a generalization of the active learning Cohn (ALC)
criterion (Cohn et al., 1996)∫

x

[∫
y

(
ŷ(x)− y(x)

)2
dP(y |x)

]
dP(x),

• We use L2 norm discrepancy instead of the squared error.

Simulations

• We compare the performance of the three methods full svdGP,
naive local svdGP, and greedy local svdGP

• The performance is evaluated by comparing

NMSPE(x) =
∑

L
t=1

(
yt(x)− ŷt(x)

)2

∑
L
t=1

(
yt(x)− ȳ(x)

)2 , (16)

where yt(x) is the real (scalar) response for input x at time t ,
t = 1, . . . ,L, ŷt(x) is the corresponding model prediction, and
ȳ(x) = ∑

L
t=1 yt(x)/L.

Simulations

• We compare the performance of the three methods full svdGP,
naive local svdGP, and greedy local svdGP

• The performance is evaluated by comparing

NMSPE(x) =
∑

L
t=1

(
yt(x)− ŷt(x)

)2

∑
L
t=1

(
yt(x)− ȳ(x)

)2 , (16)

where yt(x) is the real (scalar) response for input x at time t ,
t = 1, . . . ,L, ŷt(x) is the corresponding model prediction, and
ȳ(x) = ∑

L
t=1 yt(x)/L.

Example 1 (Forrester et al., 2008)

f (x , t) = (x1t−2)2 sin(x2t− x3), (17)

where x = (x1,x2,x3)T ∈ [4,10]× [4,20]× [1,7], and t ∈ [1,2] is on a
200-point equidistant time-grid.

• The training data is generated using a 10000-point random Latin
hypercube design (LHD)

• The test data is generated using a 2000-point random LHD

• For local svdGP, use n = 20,40, and n0 = dn/4e,dn/2e

Example 1 (Forrester et al., 2008)

f (x , t) = (x1t−2)2 sin(x2t− x3), (17)

where x = (x1,x2,x3)T ∈ [4,10]× [4,20]× [1,7], and t ∈ [1,2] is on a
200-point equidistant time-grid.

• The training data is generated using a 10000-point random Latin
hypercube design (LHD)

• The test data is generated using a 2000-point random LHD

• For local svdGP, use n = 20,40, and n0 = dn/4e,dn/2e

Example 1 (Forrester et al., 2008)

f (x , t) = (x1t−2)2 sin(x2t− x3), (17)

where x = (x1,x2,x3)T ∈ [4,10]× [4,20]× [1,7], and t ∈ [1,2] is on a
200-point equidistant time-grid.

• The training data is generated using a 10000-point random Latin
hypercube design (LHD)

• The test data is generated using a 2000-point random LHD

• For local svdGP, use n = 20,40, and n0 = dn/4e,dn/2e

Example 1 (Forrester et al., 2008)

f (x , t) = (x1t−2)2 sin(x2t− x3), (17)

where x = (x1,x2,x3)T ∈ [4,10]× [4,20]× [1,7], and t ∈ [1,2] is on a
200-point equidistant time-grid.

• The training data is generated using a 10000-point random Latin
hypercube design (LHD)

• The test data is generated using a 2000-point random LHD

• For local svdGP, use n = 20,40, and n0 = dn/4e,dn/2e

●●

●

●

●

●
●

●
●

n=20 n=40

svdGP knnsvdGP lasvdGP_5 lasvdGP_10 knnsvdGP lasvdGP_10 lasvdGP_20

−8.0

−7.5

−7.0

lo
g

of
 M

ea
n

N
M

S
P

E
s

Figure: Boxplots of the log of mean NMSPE computed from 2,000 test points
over 50 simulations for the computer simulator (17).

Example 2 (Bliznyuk et al.,2008)

f (x , t) =
M√
Dt

exp

(
−s2

4Dt

)
+

M√
D(t− τ)

exp

(
− (s−L)2

4D(t− τ)

)
I(τ < t),

(18)

where x = (M,D,L,τ,s)T , M denotes the mass of pollutant spilled at
each location, D is diffusion rate in the channel, L is location of the
second spill, and τ is time of the second spill, t ∈ [0.3,60] is on a regular
200-point equidistant time grid,
x ∈ [7,13]× [0.02,0.12]× [0.01,3]× [30.01,30.295]× [0,3], .

Example 2

• The training data is generated using a 10000-point random LHD

• The test data is generated using a 2000-point random LHD

• For local svdGP, use n = 30,50, and n0 = dn/4e,dn/2e

Example 2

• The training data is generated using a 10000-point random LHD

• The test data is generated using a 2000-point random LHD

• For local svdGP, use n = 30,50, and n0 = dn/4e,dn/2e

Example 2

• The training data is generated using a 10000-point random LHD

• The test data is generated using a 2000-point random LHD

• For local svdGP, use n = 30,50, and n0 = dn/4e,dn/2e

●

●

●

●

●
●

●

n=30 n=50

svdGP knnsvdGP lasvdGP_8 lasvdGP_15 knnsvdGP lasvdGP_13 lasvdGP_25

−4.5

−4.0

−3.5

−3.0

lo
g

of
 M

ea
n

N
M

S
P

E
s

Figure: Boxplots of the log of mean NMSPE computed from 2,000 test points
over 50 simulations for the computer simulator (19).

Example 3 (TDB simulator)

• The two-delay blowfly (TDB) model (Teismann et al., 2009)
simulates European red mites (ERM) population dynamics under
predator-prey interactions in apple orchards via numerically solving
the Nicholson’s blowfly differential equation (Gurney et al., 1980).

• The TDB model takes eleven input variables (e.g., death rates for
different stages, fecundity, hatching time, survival rates, and so on)
and returns the time series of ERM population evolutions at three
stages, i.e., eggs, juveniles and adults.

• N = 20,000 training and M = 10,000 test points are generated
using random LHDs for the emulation of this process.

Example 3 (TDB simulator)

• The two-delay blowfly (TDB) model (Teismann et al., 2009)
simulates European red mites (ERM) population dynamics under
predator-prey interactions in apple orchards via numerically solving
the Nicholson’s blowfly differential equation (Gurney et al., 1980).

• The TDB model takes eleven input variables (e.g., death rates for
different stages, fecundity, hatching time, survival rates, and so on)
and returns the time series of ERM population evolutions at three
stages, i.e., eggs, juveniles and adults.

• N = 20,000 training and M = 10,000 test points are generated
using random LHDs for the emulation of this process.

Example 3 (TDB simulator)

• The two-delay blowfly (TDB) model (Teismann et al., 2009)
simulates European red mites (ERM) population dynamics under
predator-prey interactions in apple orchards via numerically solving
the Nicholson’s blowfly differential equation (Gurney et al., 1980).

• The TDB model takes eleven input variables (e.g., death rates for
different stages, fecundity, hatching time, survival rates, and so on)
and returns the time series of ERM population evolutions at three
stages, i.e., eggs, juveniles and adults.

• N = 20,000 training and M = 10,000 test points are generated
using random LHDs for the emulation of this process.

Example 3 (TDB simulator)

Figure: Juvenile ERM population dynamics as outputs of the TDB model at five
different inputs. Black solid curve shows the field data and the other curves
show the TDB outputs.

Example 3 (TDB simulator)

●

●

●

−1

0

1

knnsvdGP lasvdGP

lo
g

of
 M

ea
n

N
M

S
P

E
s

Figure: The distribution of the log of mean NMSPEs for the TDB application
obtained via Monte Carlo cross-validation.

Inverse Problem

• Take a q-dimensional input x and return a time series response
y(x) = {y(x, t), t = 1, . . . ,L} and consider a target field observation
z0

• The inverse problem refers to searching the input x such that the
computer simulator y(x, t)≈ z0(t) for all t = 1, . . . ,L.

• Consider the following model, for t = 0.5,0.52, . . . ,2.5 and
x ∈ [0,1],

y(x , t) =
sin(10πt)

2t
+ |t−1|(2+4x), (19)

and let the true field data correspond to x0 = 0.5.

Inverse Problem

• Take a q-dimensional input x and return a time series response
y(x) = {y(x, t), t = 1, . . . ,L} and consider a target field observation
z0

• The inverse problem refers to searching the input x such that the
computer simulator y(x, t)≈ z0(t) for all t = 1, . . . ,L.

• Consider the following model, for t = 0.5,0.52, . . . ,2.5 and
x ∈ [0,1],

y(x , t) =
sin(10πt)

2t
+ |t−1|(2+4x), (19)

and let the true field data correspond to x0 = 0.5.

Inverse Problem

• Take a q-dimensional input x and return a time series response
y(x) = {y(x, t), t = 1, . . . ,L} and consider a target field observation
z0

• The inverse problem refers to searching the input x such that the
computer simulator y(x, t)≈ z0(t) for all t = 1, . . . ,L.

• Consider the following model, for t = 0.5,0.52, . . . ,2.5 and
x ∈ [0,1],

y(x , t) =
sin(10πt)

2t
+ |t−1|(2+4x), (19)

and let the true field data correspond to x0 = 0.5.

0.5 1.0 1.5 2.0 2.5

−
1

0
1

2
3

4
5

t

y(
x,

t)

True field data z0
Model output y(x,t)

Figure: A few computer model outputs and the true field data for the computer
simulator (19).

Existing Methods

• Scalarization by likelihood ratio statistic (Pratola et al., 2013)

∆(ti) =−2log(
L∗r (δ(ti))

L∗u(δ(ti))
), (20)

where δ(ti) = Yf −Yc
i , Yf = η(θ) + ε, and Yc

i = η(ti), ti is the i th
input setting of calibration parameters.

• Scalarization by L2 discrepancy (Ranjan et al., 2016).

w(x) = ||y(x)− z0||=

√
1
L

L

∑
t=1
|y(x, t)− z0(t)|2 (21)

and find the minimum of w(x).

Existing Methods

• Scalarization by likelihood ratio statistic (Pratola et al., 2013)

∆(ti) =−2log(
L∗r (δ(ti))

L∗u(δ(ti))
), (20)

where δ(ti) = Yf −Yc
i , Yf = η(θ) + ε, and Yc

i = η(ti), ti is the i th
input setting of calibration parameters.

• Scalarization by L2 discrepancy (Ranjan et al., 2016).

w(x) = ||y(x)− z0||=

√
1
L

L

∑
t=1
|y(x, t)− z0(t)|2 (21)

and find the minimum of w(x).

Proposed Approach

• Fit an SVD-based GP model to the training data Y = UDVT

• Estimate the input x∗ for the inverse problem by minimizing the
expected square L2 discrepancy, that is,

x̂∗ = argmin
x

E[||z0−y(x)||22|z0,Y]

= argmin
x

p

∑
i=1

d2
i [(ĉi(x|vi , θ̂i)− ĉzo,i)

2] +
p

∑
i=1

d2
i [σ̂2

i (x|vi , θ̂i)].

• The first term represents the L2 distance between the posterior
mean of the simulator response at x and the projection of z0 on
M (B) with B = U∗D∗; the second term represents the model
uncertainty at x.

Proposed Approach

• Fit an SVD-based GP model to the training data Y = UDVT

• Estimate the input x∗ for the inverse problem by minimizing the
expected square L2 discrepancy, that is,

x̂∗ = argmin
x

E[||z0−y(x)||22|z0,Y]

= argmin
x

p

∑
i=1

d2
i [(ĉi(x|vi , θ̂i)− ĉzo,i)

2] +
p

∑
i=1

d2
i [σ̂2

i (x|vi , θ̂i)].

• The first term represents the L2 distance between the posterior
mean of the simulator response at x and the projection of z0 on
M (B) with B = U∗D∗; the second term represents the model
uncertainty at x.

Proposed Approach

• Fit an SVD-based GP model to the training data Y = UDVT

• Estimate the input x∗ for the inverse problem by minimizing the
expected square L2 discrepancy, that is,

x̂∗ = argmin
x

E[||z0−y(x)||22|z0,Y]

= argmin
x

p

∑
i=1

d2
i [(ĉi(x|vi , θ̂i)− ĉzo,i)

2] +
p

∑
i=1

d2
i [σ̂2

i (x|vi , θ̂i)].

• The first term represents the L2 distance between the posterior
mean of the simulator response at x and the projection of z0 on
M (B) with B = U∗D∗; the second term represents the model
uncertainty at x.

Sequential Designs

Choose the follow-up design points by sequentially maximizing the
criterion

xnew = argmax
x

Jl(x)

= argmax
x

p

∑
i=1

d2
i [ξσ̂

2
i (x|vi , θ̂i)− (ĉi(x|vi , θ̂i)− ĉz0,i)

2]

where ξ is a tuning parameter which controls the emphasis on reducing
the model uncertainty.

Simulation Study

• Consider the inverse problem using one-shot designs and
sequential designs

• Compare LR (Pratola et al.,2013), SL2 (Ranjan et al., 2016), and
MEL2 (the proposed approach)

• For a pre-specified x∗, compare using Dy = ||y(x̂∗)−y(x∗)||2.

Simulation Study

• Consider the inverse problem using one-shot designs and
sequential designs

• Compare LR (Pratola et al.,2013), SL2 (Ranjan et al., 2016), and
MEL2 (the proposed approach)

• For a pre-specified x∗, compare using Dy = ||y(x̂∗)−y(x∗)||2.

Simulation Study

• Consider the inverse problem using one-shot designs and
sequential designs

• Compare LR (Pratola et al.,2013), SL2 (Ranjan et al., 2016), and
MEL2 (the proposed approach)

• For a pre-specified x∗, compare using Dy = ||y(x̂∗)−y(x∗)||2.

Consider again the environmental model studied by Bliznyuk et al.
(2008).

Consider again the environmental model studied by Bliznyuk et al.
(2008).

Concluding Remarks

• Proposed greedy local SVD-based GP models for large-scale
dynamic computer experiments

• Proposed a new design criterion to determine local neighbour
sequentially

• Introduced a new design criterion to solve the inverse problem in
dynamic computer experiments

Concluding Remarks

• Proposed greedy local SVD-based GP models for large-scale
dynamic computer experiments

• Proposed a new design criterion to determine local neighbour
sequentially

• Introduced a new design criterion to solve the inverse problem in
dynamic computer experiments

Concluding Remarks

• Proposed greedy local SVD-based GP models for large-scale
dynamic computer experiments

• Proposed a new design criterion to determine local neighbour
sequentially

• Introduced a new design criterion to solve the inverse problem in
dynamic computer experiments

Thank you! Q&A.

	Introduction

