On the construction of minimax-distance (sub-)optimal designs

Luc Pronzato

Université Côte d'Azur, CNRS, I3S, France

1) Introduction & motivation

Objective:

Approximation/interpolation of a function $f: \mathbf{x} \in \mathscr{X} \subset \mathbb{R}^d \longrightarrow \mathbb{R}$, (with \mathscr{X} compact: typically, $\mathscr{X} = [0,1]^d$) Choose n points $X_n = {\mathbf{x}_1, \dots, \mathbf{x}_n} \in \mathscr{X}^n$ (the design) where to evaluate f (no repetition)

1) Introduction & motivation

Objective:

Approximation/interpolation of a function $f: \mathbf{x} \in \mathscr{X} \subset \mathbb{R}^d \longrightarrow \mathbb{R}$, (with \mathscr{X} compact: typically, $\mathscr{X} = [0, 1]^d$) Choose n points $X_n = {\mathbf{x}_1, \dots, \mathbf{x}_n} \in \mathscr{X}^n$ (the design) where to evaluate f (no repetition)

Design criterion = minimax distance

minimize
$$\Phi_{mM}(X_n) = \max_{\mathbf{x} \in \mathscr{X}} \min_{i=1,...,n} ||\mathbf{x} - \mathbf{x}_i|| (\ell_2\text{-distance})$$

 $= \max_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, X_n)$
 $= d_H(\mathscr{X}, X_n) \text{ (Hausdorff distance, } \ell_2)$
 $= \text{dispersion of } X_n \text{ in } \mathscr{X} \text{ (Niederreiter, 1992, Chap. 6)}$

 X_n^* an optimal *n*-point design $\rightarrow \Phi_{mM}$ -efficiency $\text{Eff}_{mM}(X_n) = \frac{\Phi_{mM,n}^*}{\Phi_{mM}(X_n)} \in (0,1]$ with $\Phi_{mM,n}^* = \Phi_{mM}(X_n^*)$

Why Φ_{mM} ? two good reasons (at least) to minimize $\Phi_{mM}(X_n)$:

① Suppose
$$f \in \mathsf{RKHS} \mathcal{H}$$
 with kernel $K(\mathbf{x}, \mathbf{y}) = C(||\mathbf{x} - \mathbf{y}||)$, then
 $\forall \mathbf{x} \in \mathscr{X}, |f(\mathbf{x}) - \hat{\eta}_n(\mathbf{x})| \le ||f||_{\mathcal{H}} \rho_n(\mathbf{x})$ where
• $\hat{\eta}_n(\mathbf{x}) = \mathsf{BLUP}$ based on the $f(\mathbf{x}_i), i = 1, \dots, n$

•
$$\rho_n^2(\mathbf{x}) =$$
 "kriging variance" at \mathbf{x}

see, e.g., Vazquez and Bect (2011); Auffray et al. (2012)

Schaback (1995)
$$\blacksquare \left[\sup_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x}) \leq S[\Phi_{mM}(X_n)] \right]$$

for some increasing function $S[\cdot]$ (depending on K

Why Φ_{mM} ? | two good reasons (at least) to minimize $\Phi_{mM}(X_n)$:

① Suppose
$$f \in \mathsf{RKHS} \mathcal{H}$$
 with kernel $K(\mathbf{x}, \mathbf{y}) = C(||\mathbf{x} - \mathbf{y}||)$, then
 $\forall \mathbf{x} \in \mathscr{X}, |f(\mathbf{x}) - \hat{\eta}_n(\mathbf{x})| \le ||f||_{\mathcal{H}} \rho_n(\mathbf{x})$ where
• $\hat{\eta}_n(\mathbf{x}) = \mathsf{BLUP}$ based on the $f(\mathbf{x}_i), i = 1, ..., n$
• $\rho_n^2(\mathbf{x}) = \text{``kriging variance''}$ at \mathbf{x}

see, e.g., Vazquez and Bect (2011); Auffray et al. (2012)

Schaback (1995) $\blacksquare \left[\sup_{\mathbf{x} \in \mathscr{X}} \rho_n(\mathbf{x}) \le S[\Phi_{mM}(X_n)]\right]$ for some increasing function $S[\cdot]$ (depending on K)

⁽²⁾ X_n^* has no (or few) points on the boundary of \mathscr{X}

Evaluation of $\Phi_{mM}(X_n)$? Not considered here!

Evaluation of $\Phi_{mM}(X_n)$? Not considered here!

To evaluate $\Phi_{mM}(X_n) = \max_{\mathbf{x} \in \mathscr{X}} \min_{i=1,...,n} \|\mathbf{x} - \mathbf{x}_i\| = \max_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, X_n)$ we need to find $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, X_n)$

Key idea: replace $\arg \max_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, X_n)$ by $\arg \max_{\mathbf{x} \in \mathscr{X}_Q} d(\mathbf{x}, X_n)$ for a suitable finite $\mathscr{X}_Q \in \mathscr{X}^Q$

Replacing \mathscr{X}_Q by a **regular grid**, or first Q points of a **Low Discrepancy** Sequence in \mathscr{X} , is not accurate:

$$\Phi_{mM}(X_n; \mathscr{X}_Q) \leq \Phi_{mM}(X_n) \text{ (optimistic result)}$$

requires $Q = \mathcal{O}(1/\epsilon^d)$ to have $\Phi_{mM}(X_n) < \Phi_{mM}(X_n; \mathscr{X}_Q) + \epsilon$

For $d \leq 5$, use tools from **algorithmic geometry** (Delaunay triangulation or Voronoï tessellation) \rightarrow exact result

For larger d, use MCMC with \mathscr{X}_Q = adaptive grid (LP, 2017a)

1) Introduction

Bounds on $\Phi_{mM,n}^* = \Phi_{mM}(X_n^*)$ when $\mathscr{X} = [0,1]^d$

Lower bound: the *n* balls $\mathscr{B}(\mathbf{x}_i, \Phi^*_{mM,n})$ cover \mathscr{X} $\Rightarrow nV_d (\Phi^*_{mM,n})^d \ge \operatorname{vol}(\mathscr{X}) \quad (=1)$, with $V_d = \operatorname{vol}[\mathscr{B}(0,1)] = \pi^{d/2} / \Gamma(d/2+1)$

$$\underline{R}_n^* = (nV_d)^{-1/d} \le \Phi_{mM,n}^*$$

1) Introduction

Bounds on $\Phi_{mM,n}^* = \Phi_{mM}(X_n^*)$ when $\mathscr{X} = [0,1]^d$

Lower bound: the *n* balls $\mathscr{B}(\mathbf{x}_i, \Phi^*_{mM,n})$ cover \mathscr{X} $\Rightarrow nV_d (\Phi^*_{mM,n})^d \ge \operatorname{vol}(\mathscr{X}) \quad (=1)$, with $V_d = \operatorname{vol}[\mathscr{B}(0,1)] = \pi^{d/2} / \Gamma(d/2+1)$

$$\underline{R}_n^* = (nV_d)^{-1/d} \le \Phi_{mM,n}^*$$

Upper bound: use any design! m^{d} -point regular grid in \mathscr{X} : $\Phi_{mM,m^{d}}^{*} \leq \frac{\sqrt{d}}{2m}$: Take $m = \lfloor n^{1/d} \rfloor$, so that $m^{d} \leq n$ and $\Phi_{mM,n}^{*} \leq \Phi_{mM,m^{d}}^{*}$, therefore $\Phi_{mM,n}^{*} \leq \overline{R}_{n}^{*} = \frac{\sqrt{d}}{2\lfloor n^{1/d} \rfloor}$

d = 2

d = 5

d = 10

d = 20

• ② Minimization of $\Phi_{mM}(X_n)$ with respect to $X_n \in \mathscr{X}^n$ for a given n

- 2 Minimization of $\Phi_{mM}(X_n)$ with respect to $X_n \in \mathscr{X}^n$ for a given n
- ③ *n* is not fixed $(n_{\min} \le n \le n_{\max})$, we may stop before n_{\max} evaluations of *f*)

How to obtain good "anytime designs", such that all nested designs X_n have a high efficiency $\text{Eff}_{mM}(X_n)$, $n_{\min} \le n \le n_{\max}$

- 2 Minimization of $\Phi_{mM}(X_n)$ with respect to $X_n \in \mathscr{X}^n$ for a given n
- ③ *n* is not fixed $(n_{\min} \le n \le n_{\max})$, we may stop before n_{\max} evaluations of *f*)

How to obtain good "anytime designs", such that all nested designs X_n have a high efficiency $\text{Eff}_{mM}(X_n)$, $n_{\min} \le n \le n_{\max}$

 \bullet \circledast Design measures that minimize a regularized version of $\Phi_{\textit{mM}}$

2) Minimization of $\Phi_{mM}(X_n)$, $X_n \in \mathscr{X}^n$, *n* fixed

2) Minimization of $\Phi_{mM}(X_n)$, $X_n \in \mathscr{X}^n$, *n* fixed

- General global optimization method (e.g., simulated annealing): not promising
- 2.1) k-means and centroids
- 2.2) Stochastic gradient

2.1/ k-means and centroids

Minimize the L_2 energy functional

$$\mathcal{E}_{2}(\mathcal{T}_{n}, X_{n}) = \int_{\mathscr{X}} \left(\sum_{i=1}^{n} I_{\mathcal{C}_{i}}(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{i}\|^{2} \right) \mathrm{d}\mathbf{x} = \sum_{i=1}^{n} \int_{\mathcal{C}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{2} \mathrm{d}\mathbf{x}$$

where $\mathcal{T}_n = \{ \mathcal{C}_i, i = 1, ..., n \}$ is a tessellation of \mathscr{X} $I_{\mathcal{C}_i} = \text{indicator function of } \mathcal{C}_i$

2.1/ k-means and centroids

Minimize the L_2 energy functional

$$\mathcal{E}_{2}(\mathcal{T}_{n}, X_{n}) = \int_{\mathscr{X}} \left(\sum_{i=1}^{n} I_{\mathcal{C}_{i}}(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{i}\|^{2} \right) \mathrm{d}\mathbf{x} = \sum_{i=1}^{n} \int_{\mathcal{C}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{2} \mathrm{d}\mathbf{x}$$

where $\mathcal{T}_n = \{ \mathcal{C}_i, i = 1, ..., n \}$ is a tessellation of \mathscr{X} $I_{\mathcal{C}_i} =$ indicator function of \mathcal{C}_i

Then (Du et al., 1999):

•
$$C_i = \mathcal{V}(\mathbf{x}_i) = \text{Voronoï region for the site } \mathbf{x}_i, \text{ for all } i$$

 $(\Rightarrow \mathcal{E}_2(\mathcal{T}_n, X_n) = \int_{\mathscr{X}} d^2(\mathbf{x}, X_n) \, \mathrm{d}\mathbf{x})$

• simultaneously $\mathbf{x}_i = \text{centroid of } \mathcal{C}_i$ (center of gravity) for all *i*: $\mathbf{x}_i = (\int_{\mathcal{C}_i} \mathbf{x} \, \mathrm{d}\mathbf{x})/\text{vol}(\mathcal{C}_i)$

→ such a X_n should thus perform reasonably well in terms of space-filling (Lekivetz and Jones, 2015)

Lloyd's method (1982): (= fixed-point iterations)

 \rightarrow Move each \mathbf{x}_i to the centroid of its own Voronoï cell, repeat ...

Algorithmic geometry (Voronoï tessellation) if d very small, use a finite set X_Q otherwise

30 points from Sobol' LDS

k-means clustering (30 clusters) of 1,000 point from Sobol' LDS

However. . . minimax-optimal design is related to the construction of a centroidal tessellation for

$$\mathcal{E}_{q}(\mathcal{T}_{n}, X_{n}) = \int_{\mathscr{X}} \left(\sum_{i=1}^{n} I_{\mathcal{C}_{i}}(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{i}\|^{q} \right) d\mathbf{x} = \sum_{i=1}^{n} \int_{\mathcal{C}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{q} d\mathbf{x}$$

for $q \to \infty$

we use Chebyshev centers

However. . . minimax-optimal design is related to the construction of a centroidal tessellation for

$$\mathcal{E}_{q}(\mathcal{T}_{n}, X_{n}) = \int_{\mathscr{X}} \left(\sum_{i=1}^{n} I_{\mathcal{C}_{i}}(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{i}\|^{q} \right) d\mathbf{x} = \sum_{i=1}^{n} \int_{\mathcal{C}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{q} d\mathbf{x}$$

for $\boldsymbol{q} \to \infty$

use Chebyshev centers

Variant of Lloyd's method:

- 0) Select $X_n^{(1)}$ and $\epsilon \ll 1$, set k = 1
- 1) Compute the Voronoï tessellation $\{\mathcal{V}_i, i = 1, ..., n\}$ of \mathscr{X} (or \mathscr{X}_Q) based on $X_n^{(k)}$
- 2) For i = 1,..., n
 ➤ determine the smallest ball 𝔅(c_i, r_i) enclosing 𝒱_i (= convex QP problem)
 ➤ replace x_i by c_i in X^(k)_n (Chebyshev center of 𝒱_i)
 3) if Φ_{mM}(X^(k)_n) Φ_{mM}(X^(k+1)_n) < ϵ, then stop; otherwise k ← k + 1, return to step 1

 \rightarrow Move each \mathbf{x}_i to the Chebyshev center of its own Voronoï cell, repeat ...

 $[\Phi_{mM}(\mathbf{X}_n^{(k)})$ decreases monotonically, convergence to a local minimum (or a saddle point)]

Determination of the smallest enclosing ball containing $\mathcal{Z} = \{z_1, ..., z_N\}$ (vertices of a Voronoï cell, points of \mathscr{X}_Q closest to \mathbf{x}_i):

 \Leftrightarrow minimize $f(\mathbf{c}) = \max_{i=1,...,N} \|\mathbf{z}_i - \mathbf{c}\|^2$ with respect to $\mathbf{c} \in \mathbb{R}^d$

Determination of the smallest enclosing ball containing $Z = \{z_1, ..., z_N\}$ (vertices of a Voronoï cell, points of \mathscr{X}_Q closest to \mathbf{x}_i):

$$\Leftrightarrow$$
 minimize $f(\mathbf{c}) = \max_{i=1,...,N} \|\mathbf{z}_i - \mathbf{c}\|^2$ with respect to $\mathbf{c} \in \mathbb{R}^d$

Direct problem = convex QP
Take any
$$\mathbf{c}_0 \in \mathbb{R}^d$$
, minimize $\|\mathbf{c} - \mathbf{c}_0\|^2 + t$
with respect to $(\mathbf{c}, t) \in \mathbb{R}^{d+1}$,
subject to $\|\mathbf{z}_i - \mathbf{c}_0\|^2 - 2(\mathbf{z}_i - \mathbf{c}_0)^\top (\mathbf{c} - \mathbf{c}_0) \le t$, $i = 1, ..., N$
(N linear constraints)

Determination of the smallest enclosing ball containing $\mathcal{Z} = \{z_1, \dots, z_N\}$

Dual problem = similar to an optimal design problem: maximize trace[$\mathbf{V}(\xi)$], with ξ a prob. measure on \mathcal{Z} , $\mathbf{V}(\xi)$ = covariance matrix for ξ center of the ball = $\mathbf{c}(\xi) = \int_{\mathcal{Z}} \mathbf{z} \, \xi(\mathrm{d}\mathbf{z})$

Determination of the smallest enclosing ball containing $\mathcal{Z} = \{z_1, \ldots, z_N\}$

Dual problem = similar to an optimal design problem: maximize trace[$\mathbf{V}(\xi)$], with ξ a prob. measure on \mathcal{Z} , $\mathbf{V}(\xi)$ = covariance matrix for ξ center of the ball = $\mathbf{c}(\xi) = \int_{\mathcal{Z}} \mathbf{z} \, \xi(\mathrm{d}\mathbf{z})$

- → Algorithms of the exchange-type (Yildirim, 2008)
 (≈ Fedorov algorithm for *D*-optimal design: optimal step length is available)
- → One can remove inessential points from Z: (LP, 2017b)

 — Combine this with the use of a standard QP solver for the direct problem

2.2/ Stochastic gradient

d **is large**: Lloyd's algorithm cannot be used (computational geometry is too complicated, regular grids or LDS are not dense enough)

minimize
$$\mathcal{E}_{q}^{*}(X_{n}) = \int_{\mathscr{X}} \left(\sum_{i=1}^{n} I_{\mathcal{V}_{i}}(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{i}\|^{q} \right) d\mathbf{x}$$

with \mathcal{V}_i = Voronoï region for the site \mathbf{x}_i

2.2/ Stochastic gradient

d **is large**: Lloyd's algorithm cannot be used (computational geometry is too complicated, regular grids or LDS are not dense enough)

minimize
$$\mathcal{E}_{q}^{*}(X_{n}) = \int_{\mathscr{X}} \left(\sum_{i=1}^{n} I_{\mathcal{V}_{i}}(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{i}\|^{q} \right) \mathrm{d}\mathbf{x}$$

with \mathcal{V}_i = Voronoï region for the site \mathbf{x}_i

→ Stochastic gradient algorithm: (MacQueen, 1967) for q = 2, (Cardot et al., 2012) for q = 10) k = 1, $X_n^{(1)}$, set $n_{i,0} = 0$ for all i = 1, ..., n1) sample X uniformly distributed in \mathscr{X} 2) find $i^* = \arg\min_{i=1,...,n} ||X - \mathbf{x}_i^{(k)}||$, $n_{i^*,k} \leftarrow n_{i^*,k} + 1$ [$\leftarrow X \in \text{cell } \mathcal{V}_i^*$] 3) $\mathbf{x}_{i^*}^{(k+1)} = \mathbf{x}_{i^*}^{(k)} - \gamma_{i^*,k} \underbrace{q ||X - \mathbf{x}_{i^*}^{(k)}||^{q-2} (\mathbf{x}_{i^*}^{(k)} - \mathbf{X})}_{=\text{gradient}}$, $k \leftarrow k + 1$, return to step 1, stop when k = K

- Typical choice for $\gamma_{i^*,k} = c/n^{\alpha}_{i^*,k}$, with $\alpha \in (1/2, 1]$ and consider $\widehat{X}_n = \frac{1}{K} \sum_{k=1}^{K} X_n^{(k)}$ when $\alpha < 1$
- Little information to store (no grid or other finite approximation of *X*)
 → can also be used with large d

Example: n = 10 d

all methods are initialized at the same random design, 100 repetitions k-means and Lloyd's method with Chebyshev centers use 2^{d+8} points from a LDS (Sobol')

$$d = 2$$
, $n = 20$ ($\underline{R}_n^* \approx 0.1262$, $\overline{R}_n^* \approx 0.1768$)

Example: n = 10 d

all methods are initialized at the same random design, 100 repetitions k-means and Lloyd's method with Chebyshev centers use 2^{d+8} points from a LDS (Sobol')

$$d=$$
 3, $n=$ 30 (\underline{R}_n^*pprox 0.1996, \overline{R}_n^*pprox 0.2887)

Example: n = 10 d

all methods are initialized at the same random design, 100 repetitions k-means and Lloyd's method with Chebyshev centers use 2^{d+8} points from a LDS (Sobol')

$$d = 4, \ n = 40 \ (\underline{R}_n^* \approx 0.2668, \ \overline{R}_n^* = 0.5)$$

Example:

 $d = 10, n = 100 \ (\underline{R}_n^* \approx 0.5746, \overline{R}_n^* \approx 1.5811)$

3) Nested designs

⇒ obtain a high Φ_{mM} -efficiency $\text{Eff}_{mM}(X_n) = \frac{\Phi_{mM,n}^*}{\Phi_{mM}(X_n)}$ for all X_n , $n_{\min} \le n \le n_{\max}$ [$\text{Eff}_{mM}(X_n) \in (0,1]$]

3.1/ Coffee-house design

 \mathbf{x}_1 at the centre of \mathscr{X} , then \mathbf{x}_{n+1} furthest point from X_n for all $n \ge 1$ (called coffee-house design (Müller, 2007, Chap. 4))

3.1/ Coffee-house design

 \mathbf{x}_1 at the centre of \mathscr{X} , then \mathbf{x}_{n+1} furthest point from X_n for all $n \ge 1$ (called coffee-house design (Müller, 2007, Chap. 4))

Guarantees
$$\mathsf{Eff}_{mM}(X_n) = \frac{\Phi_{mM,n}^*}{\Phi_{mM}(X_n)} \ge \frac{1}{2}$$
 and $\mathsf{Eff}_{Mm}(X_n) = \frac{\Phi_{Mm}(X_n)}{\Phi_{Mm,n}^*} \ge \frac{1}{2}$ for all n

with $\Phi_{Mm}(X_n) = \min_{i \neq j \in \{1,...,n\}} \|\mathbf{x}_i - \mathbf{x}_j\|$ the maximin-distance criterion, and $\Phi^*_{Mm,n}$ its optimal (maximum) value

3.1/ Coffee-house design

 \mathbf{x}_1 at the centre of \mathscr{X} , then \mathbf{x}_{n+1} furthest point from X_n for all $n \ge 1$ (called coffee-house design (Müller, 2007, Chap. 4))

Guarantees
$$\operatorname{Eff}_{mM}(X_n) = \frac{\Phi_{mM,n}^*}{\Phi_{mM}(X_n)} \ge \frac{1}{2}$$
 and $\operatorname{Eff}_{Mm}(X_n) = \frac{\Phi_{Mm}(X_n)}{\Phi_{Mm,n}^*} \ge \frac{1}{2}$ for all n

with $\Phi_{Mm}(X_n) = \min_{i \neq j \in \{1,...,n\}} \|\mathbf{x}_i - \mathbf{x}_j\|$ the maximin-distance criterion, and $\Phi^*_{Mm,n}$ its optimal (maximum) value

Proof. (Gonzalez, 1985)

- by construction: $\Phi_{Mm}(X_{n+1}) \triangleq \min_{\mathbf{x}_i \neq \mathbf{x}_j \in X_{n+1}} \|\mathbf{x}_i - \mathbf{x}_j\| = d(\mathbf{x}_{n+1}, X_n) = \Phi_{mM}(X_n)$ We define the set of the set o
- $X_n^* ext{ a } \Phi_{mM}$ -optimal design: the *n* balls $\mathscr{B}(\mathbf{x}_i^*, \Phi_{mM}(X_n^*))$, $\mathbf{x}_i^* \in X_n^*$, cover \mathscr{X} \Rightarrow one of them contains 2 points \mathbf{x}_i , \mathbf{x}_j in X_{n+1} for any X_{n+1} (n+1 points) $\Rightarrow \Phi_{Mm}(X_{n+1}) \leq ||\mathbf{x}_i - \mathbf{x}_j|| \leq 2\Phi_{mM}(X_n^*)$ $\Rightarrow \Phi_{Mm,n+1}^* \leq 2\Phi_{mM}(X_n^*) \leq 2\Phi_{mM}(X_n) = \Phi_{Mm}(X_{n+1})$

3.2/ Submodularity and greedy algorithms

$$\begin{aligned} \mathscr{X}_{Q} &= \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(Q)}\} \text{ a finite set with } Q \text{ points in } \mathscr{X} \\ (\text{regular grid, first } Q \text{ points of a LDS} & --- \text{Halton, Sobol'} \dots) \\ \psi: \ 2^{\mathscr{X}_{Q}} &\longrightarrow \mathbb{R} \text{ a set function (to be maximized)} \\ &\quad \text{non-decreasing: } \psi(\mathscr{A} \cup \{\mathbf{x}\}) \geq \psi(\mathscr{A}) \text{ for all } \mathscr{A} \subset \mathscr{X}_{Q} \text{ and } \mathbf{x} \in \mathscr{X}_{Q} \end{aligned}$$

Definition 1:

 ψ is submodular iff $\psi(\mathscr{A}) + \psi(\mathscr{B}) \geq \psi(\mathscr{A} \cup \mathscr{B}) + \psi(\mathscr{A} \cap \mathscr{B})$ for all $\mathscr{A}, \mathscr{B} \subset \mathscr{X}_{Q}$

3.2/ Submodularity and greedy algorithms

$$\begin{aligned} \mathscr{X}_{Q} &= \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(Q)}\} \text{ a finite set with } Q \text{ points in } \mathscr{X} \\ (\text{regular grid, first } Q \text{ points of a LDS} & --- \text{Halton, Sobol'} \dots) \\ \psi: \ 2^{\mathscr{X}_{Q}} &\longrightarrow \mathbb{R} \text{ a set function (to be maximized)} \\ &\quad \text{non-decreasing: } \psi(\mathscr{A} \cup \{\mathbf{x}\}) \geq \psi(\mathscr{A}) \text{ for all } \mathscr{A} \subset \mathscr{X}_{Q} \text{ and } \mathbf{x} \in \mathscr{X}_{Q} \end{aligned}$$

Definition 1:

 ψ is submodular iff $\psi(\mathscr{A}) + \psi(\mathscr{B}) \geq \psi(\mathscr{A} \cup \mathscr{B}) + \psi(\mathscr{A} \cap \mathscr{B})$ for all $\mathscr{A}, \mathscr{B} \subset \mathscr{X}_{Q}$

Equivalently, **Definition 1'** (diminishing return property): ψ is submodular iff $\psi(\mathscr{A} \cup \{\mathbf{x}\}) - \psi(\mathscr{A}) \ge \psi(\mathscr{B} \cup \{\mathbf{x}\}) - \psi(\mathscr{B})$ for all $\mathscr{A} \subset \mathscr{B} \subset \mathscr{X}_{Q}$ and $\mathbf{x} \in \mathscr{X}_{Q} \setminus \mathscr{B}$

(a sort of concavity property for set functions)

Greedy Algorithm:

- set $\mathscr{A} = \emptyset$
- **2** while $|\mathscr{A}| < k$
 - find x in $\mathscr{X}_{\mathcal{Q}}$ such that $\psi(\mathscr{A} \cup \{\mathbf{x}\})$ is maximal
 - $\bullet \ \mathscr{A} \leftarrow \mathscr{A} \cup \{\mathbf{x}\}$
- end while
- return $\mathscr{A}_k = \mathscr{A}$

Greedy Algorithm:

- set $\mathscr{A} = \emptyset$
- (2) while $|\mathscr{A}| < k$
 - find **x** in \mathscr{X}_{Q} such that $\psi(\mathscr{A} \cup \{\mathbf{x}\})$ is maximal
 - $\mathscr{A} \leftarrow \mathscr{A} \cup \{\mathbf{x}\}$
- end while
- return $\mathscr{A}_k = \mathscr{A}$

Denote $\psi_k^* = \max_{\mathscr{B} \subset \mathscr{X}_Q, \, |\mathscr{B}| \leq k} \psi(\mathscr{B})$

Theorem (Nemhauser, Wolsey & Fisher, 1978): When ψ is non-decreasing and submodular, then for all $k \in \{1, ..., Q\}$ the algorithm returns a set \mathscr{A}_k such that

$$rac{\psi(\mathscr{A}_k)-\psi(\emptyset)}{\psi_k^*-\psi(\emptyset)}\geq 1-(1-1/k)^k\geq 1-1/\mathsf{e}>0.6321$$

Greedy Algorithm:

- set $\mathscr{A} = \emptyset$
- **2** while $|\mathscr{A}| < k$
 - find **x** in \mathscr{X}_{Q} such that $\psi(\mathscr{A} \cup \{\mathbf{x}\})$ is maximal
 - $\mathscr{A} \leftarrow \mathscr{A} \cup \{\mathbf{x}\}$
- end while
- return $\mathscr{A}_k = \mathscr{A}$

Denote
$$\psi_k^* = \max_{\mathscr{B} \subset \mathscr{X}_Q, \, |\mathscr{B}| \leq k} \psi(\mathscr{B})$$

Theorem (Nemhauser, Wolsey & Fisher, 1978): When ψ is non-decreasing and submodular, then for all $k \in \{1, ..., Q\}$ the algorithm returns a set \mathscr{A}_k such that

$$rac{\psi(\mathscr{A}_k)-\psi(\emptyset)}{\psi_k^*-\psi(\emptyset)}\geq 1-(1-1/k)^k\geq 1-1/\mathrm{e}>0.6321$$

Bad news: we maximize $-\Phi_{mM}$ which is non-decreasing but <u>not submodular</u> **no** guaranteed efficiency for sequential optimization

3.3/ Submodular alternatives to minimax

A) Covering measure, c.d.f. and dispersion [SIAM UQ, Lausanne, 2016] For any $r \ge 0$, any $X_n \in \mathcal{X}^n$, define the covering measure of X_n by

 $\psi_r(X_n) = \mathsf{vol}\{\mathscr{X} \cap [\bigcup_{i=1}^n \mathscr{B}(\mathbf{x}_i, r)]\} \implies \mathsf{non-decreasing and submodular}$

3.3/ Submodular alternatives to minimax

A) Covering measure, c.d.f. and dispersion [SIAM UQ, Lausanne, 2016] For any $r \ge 0$, any $X_n \in \mathscr{X}^n$, define the covering measure of X_n by $\psi_r(X_n) = \operatorname{vol}\{\mathscr{X} \cap [\cup_{i=1}^n \mathscr{B}(\mathbf{x}_i, r)]\}$ \clubsuit non-decreasing and submodular

Maximizing $\psi_r(X_n)$ is equivalent to maximizing $F_{X_n}(r) = \psi_r(X_n)/\operatorname{vol}(\mathscr{X}) = \frac{\mu_L\{\mathscr{X} \cap [\cup_{i=1}^n \mathscr{B}(\mathbf{x}_i, r)]\}}{\mu_L(\mathscr{X})}$ which can be considered as a c.d.f., with $F_{X_n}(r) \in [0, 1]$, increasing in r, and $F_{X_n}(0) = 0$, $F_{X_n}(r) = 1$ for any $r \ge \Phi_{mM}(X_n)$

3.3/ Submodular alternatives to minimax

A) Covering measure, c.d.f. and dispersion [SIAM UQ, Lausanne, 2016] For any $r \ge 0$, any $X_n \in \mathscr{X}^n$, define the covering measure of X_n by $\psi_r(X_n) = \operatorname{vol}\{\mathscr{X} \cap [\cup_{i=1}^n \mathscr{B}(\mathbf{x}_i, r)]\}$ \clubsuit non-decreasing and submodular

Maximizing $\psi_r(X_n)$ is equivalent to maximizing $F_{X_n}(r) = \psi_r(X_n)/\operatorname{vol}(\mathscr{X}) = \frac{\mu_L\{\mathscr{X} \cap [\cup_{i=1}^n \mathscr{B}(\mathbf{x}_i, r)]\}}{\mu_L(\mathscr{X})}$ which can be considered as a c.d.f., with $F_{X_n}(r) \in [0, 1]$, increasing in r, and $F_{X_n}(0) = 0$, $F_{X_n}(r) = 1$ for any $r \ge \Phi_{mM}(X_n)$

Take any probability measure μ on \mathscr{X} (e.g., with finite support \mathscr{X}_Q) \blacksquare define $F_{X_n}(r) = \mu \{ \mathscr{X} \cap [\cup_{i=1}^n \mathscr{B}(\mathbf{x}_i, r)] \}$ as a function of $r \rightarrow$ forms a c.d.f., as a function of $X_n \rightarrow$ non-decreasing and submodular

Which r should we take in $F_{X_n}(r)$?

A positive linear combination of non-decreasing submodular functions is non-decreasing and submodular

$$\blacksquare$$
 Consider $\Psi_{b,B,q}(X_n) = \int_b^B r^q F_{X_n}(r) \, \mathrm{d}r$, for $B > b \ge 0$, $q > 0$

 \rightarrow guaranteed efficiency bounds when maximizing with a greedy algorithm

Which r should we take in $F_{X_n}(r)$?

A positive linear combination of non-decreasing submodular functions is non-decreasing and submodular

• Consider
$$\Psi_{b,B,q}(X_n) = \int_b^B r^q F_{X_n}(r) \, \mathrm{d}r$$
, for $B > b \ge 0$, $q > 0$

 \rightarrow guaranteed efficiency bounds when maximizing with a greedy algorithm

Justification:

$$\begin{split} \Psi_{0,B,q}(X_n) &= \frac{B^{q+1}}{q+1} F_{X_n}(B) - \frac{1}{q+1} \int_0^B r^{q+1} F_{X_n}(\mathrm{d}r) \\ \text{Take any } B \geq \Phi_{mM}(X_n) \quad \Rightarrow F_{X_n}(B) = 1 \\ \text{Maximizing } \Psi_{0,B,q}(X_n) \text{ for } B \text{ large enough } \Leftrightarrow \text{ minimizing } \int_0^B r^{q+1} F_{X_n}(\mathrm{d}r) \\ & \Leftrightarrow \text{ minimizing } \left[\int_0^B r^{q+1} F_{X_n}(\mathrm{d}r) \right]^{1/(q+1)} \\ \text{ and } \left[\int_0^B r^{q+1} F_{X_n}(\mathrm{d}r) \right]^{1/(q+1)} \to \Phi_{mM}(X_n) \text{ as } q \to \infty \end{split}$$

Implementation

Easy when

- \mathscr{X} approximated by $\mathscr{X}_{Q} = \{\mathbf{s}_{1}, \dots, \mathbf{s}_{Q}\} \in \mathscr{X}^{Q}$, $\mu = \frac{1}{Q} \sum_{j=1}^{Q} \delta_{\mathbf{s}_{j}}$
- X_n ∈ X_Qⁿ (inter-distances ||s_i − s_j|| are only computed once)

Ex:
$$\mathscr{X} = [0,1]^2$$
, $\mathscr{X}_Q = \text{grid with } Q = 33 \times 33 = 1089 \text{ points}$
 $n_{\min} = 15$, $n_{\max} = 50$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

Eff_{*mM*}(X_n): $\Psi_{b,B,q}(\cdot)$ —, Halton LDS —, Sobol' LDS - -

Ex:
$$\mathscr{X} = [0,1]^2$$
, $\mathscr{X}_Q = \text{grid with } Q = 33 \times 33 = 1089 \text{ points}$
 $n_{\min} = 15$, $n_{\max} = 50$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

Eff_{*mM*}(X_n): $\Psi_{b,B,q}(\cdot)$ —, Halton LDS —, Sobol' LDS - -

 $X_{n_{\max}}$ with $\Psi_{b,B,q}(\cdot)$

Ex:
$$\mathscr{X} = [0,1]^2$$
, $\mathscr{X}_Q = \text{grid with } Q = 33 \times 33 = 1089 \text{ points}$
 $n_{\min} = 15$, $n_{\max} = 50$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

Eff_{*mM*}(X_n): $\Psi_{b,B,q}(\cdot)$ —, Halton LDS —, Sobol' LDS - -

First n_{max} points of Sobol' LDS

Ex:
$$\mathscr{X} = [0,1]^2$$
, $\mathscr{X}_Q = \text{grid with } Q = 33 \times 33 = 1089 \text{ points}$
 $n_{\min} = 15$, $n_{\max} = 50$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

 \blacksquare Eff_{*mM*}(*X_n*) as a function of *n*

45

Ex:
$$\mathscr{X} = [0,1]^3$$
, $\mathscr{X}_Q = \text{grid with } Q = 11^3 = 1331 \text{ points}$
 $n_{\min} = 15$, $n_{\max} = 50$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

Eff_{*mM*}(X_n): $\Psi_{b,B,q}(\cdot)$ —, Halton LDS —, Sobol' LDS - -

Ex:
$$\mathscr{X} = [0,1]^3$$
, $\mathscr{X}_Q = \text{grid with } Q = 11^3 = 1331 \text{ points}$
 $n_{\min} = 15$, $n_{\max} = 50$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

Large d (d > 3, say): we cannot use a regular grid \mathscr{X}_Q

→ adaptive grid with MCMC: illustration for d = 2 ($Q \approx n_{max}d$)

Large d (d > 3, say): we cannot use a regular grid \mathscr{X}_Q

→ adaptive grid with MCMC: illustration for d = 2 ($Q \approx n_{max}d$)

Ex:
$$\mathscr{X} = [0,1]^{10}$$
, $\mathscr{X}_Q = \text{adaptive grid with } Q = 1000 \text{ points}$
 $n_{\min} = 30$, $n_{\max} = 100$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

•••
$$\underline{\mathrm{Eff}}_{mM}(X_n) = \frac{\underline{R}_n^*}{\Phi_{mM}(X_n)}$$
 as a function of n

$$\frac{\mathrm{Eff}_{mM}(X_n): \Psi_{b,B,q}(\cdot) -}{\mathrm{Halton \ LDS -}, \ \mathrm{Sobol' \ LDS -}}$$

Ex:
$$\mathscr{X} = [0,1]^{10}$$
, $\mathscr{X}_Q = \text{adaptive grid with } Q = 1000 \text{ points}$
 $n_{\min} = 30$, $n_{\max} = 100$, $q = 2$ in $\Psi_{b,B,q}(\cdot)$

•••
$$\underline{\mathrm{Eff}}_{mM}(X_n) = \frac{\underline{R}_n^*}{\Phi_{mM}(X_n)}$$
 as a function of r

B) L_q relaxation

Approximate \mathscr{X} by \mathscr{X}_Q with Q elements \mathbf{s}_k , $k = 1, \ldots, q$, q > 0, minimize

$$\Phi_{q,Q}(\mathbf{X}_n) \triangleq \left[\frac{1}{Q}\sum_{k=1}^{Q}\left(\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{s}_k-\mathbf{x}_i\|^{-q}\right)^{-1}\right]^{1/q}$$

B) L_q relaxation

Approximate \mathscr{X} by \mathscr{X}_Q with Q elements \mathbf{s}_k , $k = 1, \ldots, q$, q > 0, minimize

$$\Phi_{q,Q}(\boldsymbol{X}_n) \triangleq \left[\frac{1}{Q}\sum_{k=1}^{Q}\left(\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{s}_k-\mathbf{x}_i\|^{-q}\right)^{-1}\right]^{1/q}$$

For any X_n , $\Phi_{q,Q}(X_n) \to \Phi_{mM}(X_n; \mathscr{X}_Q)$, $q \to \infty$

where $\Phi_{mM}(X_n; \mathscr{X}_Q) = \max_{\mathbf{x} \in \mathscr{X}_Q} d(\mathbf{x}, X_n)$

Efficiency:

If $X_{n,q}^*$ minimizes $\Phi_{q,Q}(\cdot)$, then

 $\operatorname{Eff}_{mM}(X^*_{n,q};\mathscr{X}_Q) \ge (nQ)^{-1/q}$

Efficiency:

If $X_{n,q}^*$ minimizes $\Phi_{q,Q}(\cdot)$, then

$$\operatorname{Eff}_{mM}(X_{n,q}^*;\mathscr{X}_Q) \ge (nQ)^{-1/q}$$

- $\Phi_{q,Q}(\cdot)$ is non-increasing
- $\Psi(\cdot) = \frac{1}{n} \Phi^{q}_{q,Q}(\cdot)$ is supermodular

[ongoing joint work with João Rendas (CNRS, I3S, UCA) & Céline Helbert (École Centrale Lyon)]

4) Measures minimizing regularized dispersion

- joint work with Anatoly Zhigljavsky (LP & AZ, 2017)

For a *n*-point design, L_q relaxation:

$$\Phi_{q,Q}(\boldsymbol{X}_n) \triangleq \left[\frac{1}{Q}\sum_{k=1}^{Q}\left(\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{s}_k-\mathbf{x}_i\|^{-q}\right)^{-1}\right]^{1/q}, \ q>0$$

For a design measure ξ , integral version:

$$\phi_q(\boldsymbol{\xi}) \triangleq \left[\int_{\mathscr{X}} \left(\int_{\mathscr{X}} \|\mathbf{s} - \mathbf{x}\|^{-q} \, \boldsymbol{\xi}(\mathrm{d}\mathbf{x}) \right)^{-1} \, \mu(\mathrm{d}\mathbf{s}) \right]^{1/q}, \ q > 0$$

with μ uniform prob. measure on \mathscr{X} $(\mu(\mathscr{X}) = 1)$

4) Measures minimizing regularized dispersion

- joint work with Anatoly Zhigljavsky (LP & AZ, 2017)

For a *n*-point design, L_q relaxation:

$$\Phi_{q,Q}(\boldsymbol{X}_n) \triangleq \left[\frac{1}{Q}\sum_{k=1}^{Q}\left(\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{s}_k-\mathbf{x}_i\|^{-q}\right)^{-1}\right]^{1/q}, \ q>0$$

For a design measure ξ , integral version:

$$\phi_q(\boldsymbol{\xi}) \triangleq \left[\int_{\mathscr{X}} \left(\int_{\mathscr{X}} \|\mathbf{s} - \mathbf{x}\|^{-q} \, \boldsymbol{\xi}(\mathrm{d}\mathbf{x}) \right)^{-1} \, \mu(\mathrm{d}\mathbf{s}) \right]^{1/q}, \ q > 0$$

with μ uniform prob. measure on \mathscr{X} $(\mu(\mathscr{X})=1)$

Th 1: $\phi^q_q(\cdot)$, q > 0, is convex, and is strictly convex when 0 < q < d
$\underline{q \geq d}$

- $\phi_q(\xi) > 0$ for any discrete measure ξ
- $\phi_q(\xi) = 0$ for any ξ equivalent to the Lebesgue measure on $\mathscr X$

... not very interesting

$\underline{q \geq d}$

•
$$\phi_q(\xi) > 0$$
 for any discrete measure ξ

• $\phi_q(\xi) = 0$ for any ξ equivalent to the Lebesgue measure on \mathscr{X} ... not very interesting

0 < q < d

(Strict) convexity of $\phi_q^q(\cdot) \rightarrow$ "equivalence theorem"

Th 2: $\xi^{q,*}$ minimizes $\phi_q(\cdot)$ iff $\forall \mathbf{y} \in \mathscr{X}$, $d(\xi^{q,*}, \mathbf{y}) \leq \phi_q^q(\xi^{q,*})$ where $d(\xi, \mathbf{y}) = \int_{\mathscr{X}} \left\{ \|\mathbf{y} - \mathbf{x}\|^{-q} \left[\int_{\mathscr{X}} \|\mathbf{x} - \mathbf{z}\|^{-q} \xi(\mathrm{d}\mathbf{z}) \right]^{-2} \right\} \mu(\mathrm{d}\mathbf{x})$ = directional derivative of $\phi_q^q(\cdot)$ at ξ in the direction of $\delta_{\mathbf{y}}$

 $\xi^{q,*}$ is unique and $d(\xi^{q,*},\mathbf{y}) = \phi^q_q(\xi^{q,*})$ for $\xi^{q,*}$ -almost all $\mathbf{y} \in \mathscr{X}$

Two distinct situations

 $0 < q \leq d - 2$

 $\xi^{q,*}$ may be singular

Ex: $\mathscr{X} = \mathscr{B}_d(0,1)$; $\xi^{q,*} = \delta_0$ is optimal

Two distinct situations

 $0 < q \leq d - 2$

 $\xi^{q,*}$ may be singular

Ex: $\mathscr{X} = \mathscr{B}_d(0,1)$; $\xi^{q,*} = \delta_0$ is optimal

 $\max\{0, d-2\} < q < d$

Th 3: $\xi^{q,*}$ does not possess atoms in the interior of \mathscr{X}

→ Minimization of $\Phi_{q,Q}(X_n)$: take q > d - 2 to be space-filling

Construction of $\xi^{q,*}$?

Discretize \mathscr{X} (again): replace μ by $\mu_Q = \frac{1}{Q} \sum_{k=1}^{Q} \delta_{s_k}$ (grid or LDS)

 $\phi_q^q(\xi;\mu_Q) = \operatorname{trace}[\mathsf{M}^{-1}(\xi)]$

with $\mathbf{M}(\xi) = \int_{\mathscr{X}} \operatorname{diag}\{Q \| \mathbf{x} - \mathbf{s}_k \|^{-q}, k = 1, ..., Q\} \xi(\mathrm{d}\mathbf{x}) (Q \times Q \text{-dimensional})$ \rightarrow an A-optimal design problem: multiplicative, or vertex-direction, algorithm **Ex:** $\mathscr{X} = \mathscr{B}_d(0, 1)$, make use of symmetry (only consider distributions of the radii)

 $\phi^q_q(\xi)$ function of q for $\xi = \delta_0$ (...), $\xi = \mu$ (- -) and $\xi = \xi^{q,*}$ (—)

$$\mu^{(r)}$$
 uniform on $\mathscr{B}_d(0,r), d=3$

d = 3, optimal density of radii for $\xi^{q,*}$ (with respect to $\varphi(r) = dr^{d-1}$)

d = 3, optimal density of radii for $\xi^{q,*}$ (with respect to $\varphi(r) = dr^{d-1}$)

- Several methods to evaluate $\Phi_{mM}(X_n)$ (MCMC if $d \ge 5$)
- *d* small: optimization by a variant of Lloyd's method with Chebyshev centers (requires Voronoï tessellation or a <u>fixed</u> finite set approximation \mathscr{X}_Q)
- *d* large: optimization by a stochastic gradient (without any evaluation of $\Phi_{mM}(X_n)$)

- Several methods to evaluate $\Phi_{mM}(X_n)$ (MCMC if $d \ge 5$)
- *d* small: optimization by a variant of Lloyd's method with Chebyshev centers (requires Voronoï tessellation or a fixed finite set approximation \mathscr{X}_Q)
- *d* large: optimization by a stochastic gradient (without any evaluation of $\Phi_{mM}(X_n)$)
- Greedy methods based on submodular alternatives to dispersion can generate nested designs with reasonably good minimax efficiency (better than LDS, also without any evaluation of $\Phi_{mM}(X_n)$)

- Several methods to evaluate $\Phi_{mM}(X_n)$ (MCMC if $d \ge 5$)
- *d* small: optimization by a variant of Lloyd's method with Chebyshev centers (requires Voronoï tessellation or a fixed finite set approximation \mathscr{X}_Q)
- *d* large: optimization by a stochastic gradient (without any evaluation of $\Phi_{mM}(X_n)$)
- Greedy methods based on submodular alternatives to dispersion can generate nested designs with reasonably good minimax efficiency (better than LDS, also without any evaluation of $\Phi_{mM}(X_n)$)
 - Use an adaptive grid \mathscr{X}_Q (MCMC) if d is large

- Several methods to evaluate $\Phi_{mM}(X_n)$ (MCMC if $d \ge 5$)
- *d* small: optimization by a variant of Lloyd's method with Chebyshev centers (requires Voronoï tessellation or a fixed finite set approximation \mathscr{X}_Q)
- *d* large: optimization by a stochastic gradient (without any evaluation of $\Phi_{mM}(X_n)$)
- Greedy methods based on submodular alternatives to dispersion can generate nested designs with reasonably good minimax efficiency (better than LDS, also without any evaluation of $\Phi_{mM}(X_n)$)
 - Use an adaptive grid \mathscr{X}_Q (MCMC) if d is large
 - Consider projections on lower dimensional subspaces?

- Several methods to evaluate $\Phi_{mM}(X_n)$ (MCMC if $d \ge 5$)
- *d* small: optimization by a variant of Lloyd's method with Chebyshev centers (requires Voronoï tessellation or a fixed finite set approximation \mathscr{X}_Q)
- *d* large: optimization by a stochastic gradient (without any evaluation of $\Phi_{mM}(X_n)$)
- Greedy methods based on submodular alternatives to dispersion can generate nested designs with reasonably good minimax efficiency (better than LDS, also without any evaluation of $\Phi_{mM}(X_n)$)
 - Use an adaptive grid \mathscr{X}_Q (MCMC) if d is large
 - Consider projections on lower dimensional subspaces?
 - Which submodular alternative is best?
- What about very large *d* (*d* > 20 say)? Random designs may be useful...(Janson, 1986, 1987)

References

References I

- Auffray, Y., Barbillon, P., Marin, J.-M., 2012. Maximin design on non hypercube domains and kernel interpolation. Statistics and Computing 22 (3), 703–712.
- Cardot, H., Cénac, P., Monnez, J.-M., 2012. A fast and recursive algorithm for clustering large datasets. Comput. Statist. Data Anal. 56 (6), 1434–1449.
- Du, Q., Faber, V., Gunzburger, M., 1999. Centroidal Voronoi tessellations: applications and algorithms. SIAM Review 41 (4), 637-676.
- Gonzalez, T., 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38, 293-306.
- Janson, S., 1986. Random coverings in several dimensions. Acta Mathematica 156 (1), 83-118.
- Janson, S., 1987. Maximal spacings in several dimensions. The Annals of Probability 15 (1), 274-280.
- Lekivetz, R., Jones, B., 2015. Fast flexible space-filling designs for nonrectangular regions. Quality and Reliability Engineering International 31 (5), 829-837.
- Lloyd, S., 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28 (2), 129-137.
- MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: LeCam, L., Neyman, J. (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1. pp. 281–297.
- Müller, W., 2007. Collecting Spatial Data. Springer, Berlin, [3rd ed.].
- Nemhauser, G., Wolsey, L., Fisher, M., 1978. An analysis of approximations for maximizing submodular set functions–I. Mathematical Programming 14 (1), 265–294.
- Niederreiter, H., 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia.
- Pronzato, L., 2017a. Minimax and maximin space-filling designs: some properties and methods for construction. Journal de la Société Française de Statistique 158 (1), 7–36.
- Pronzato, L., 2017b. On the elimination of inessential points in the smallest enclosing ball problem. Optimization Methods and SoftwareTo appear.
- Pronzato, L., Zhigljavsky, A., 2017. Measures minimizing regularized dispersion. Submitted.
- Schaback, R., 1995. Error estimates and condition numbers for radial basis function interpolation. Advances in Computational Mathematics 3 (3), 251-264.
- Vazquez, E., Bect, J., 2011. Sequential search based on kriging: convergence analysis of some algorithms. Proc. 58th World Statistics Congress of the ISI, August 21-26, Dublin, Ireland, arXiv preprint arXiv:1111.3866v1.
- Yildirim, E., 2008. Two algorithms for the minimum enclosing ball problem. SIAM Journal on Optimization 19 (3), 1368-1391.