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1) Introduction

1) Introduction & motivation

Objective:
Approximation/interpolation of a function f : x ∈X ⊂ Rd −→ R,

(with X compact: typically, X = [0, 1]d)
à Choose n points Xn = {x1, . . . , xn} ∈X n (the design)

where to evaluate f (no repetition)

Design criterion = minimax distance
à minimize ΦmM(Xn) = maxx∈X mini=1,...,n ‖x− xi‖ (`2-distance)

= maxx∈X d(x,Xn)
= dH(X ,Xn) (Hausdorff distance, `2)
= dispersion of Xn in X (Niederreiter, 1992, Chap. 6)

X∗n an optimal n-point design Ô ΦmM-efficiency EffmM(Xn) = Φ∗mM,n
ΦmM (Xn) ∈ (0, 1]

with Φ∗mM,n = ΦmM(X∗n )
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1) Introduction

d = 2, n = 7
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1) Introduction

Why ΦmM? two good reasons (at least) to minimize ΦmM(Xn):

¬ Suppose f ∈ RKHS H with kernel K (x, y) = C(‖x− y‖), then
∀x ∈X , |f (x)− η̂n(x)| ≤ ‖f ‖H ρn(x) where

η̂n(x) = BLUP based on the f (xi ), i = 1, . . . , n
ρ2n(x) = “kriging variance" at x

see, e.g., Vazquez and Bect (2011); Auffray et al. (2012)

Schaback (1995) à supx∈X ρn(x) ≤ S[ΦmM(Xn)]
for some increasing function S[·] (depending on K )

­ X∗n has no (or few) points on the boundary of X
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1) Introduction

Evaluation of ΦmM(Xn)? Not considered here!

To evaluate ΦmM(Xn) = maxx∈X mini=1,...,n ‖x− xi‖ = maxx∈X d(x,Xn)
we need to find x∗ = arg maxx∈X d(x,Xn)

Key idea: replace arg maxx∈X d(x,Xn) by arg maxx∈XQ d(x,Xn)
for a suitable finite XQ ∈X Q

Replacing XQ by a regular grid, or first Q points of a Low Discrepancy
Sequence in X , is not accurate:

à ΦmM(Xn; XQ) ≤ ΦmM(Xn) (optimistic result)
requires Q = O(1/εd ) to have ΦmM(Xn) < ΦmM(Xn; XQ) + ε

For d . 5, use tools from algorithmic geometry (Delaunay triangulation or
Voronoï tessellation) Þ exact result

For larger d , use MCMC with XQ = adaptive grid (LP, 2017a)
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1) Introduction

Bounds on Φ∗mM,n = ΦmM(X∗n ) when X = [0, 1]d

Lower bound: the n balls B(xi ,Φ∗mM,n) cover X

⇒ nVd (Φ∗mM,n)d ≥ vol(X ) (= 1), with Vd = vol[B(0, 1)] = πd/2/Γ(d/2 + 1)

R∗n = (nVd )−1/d ≤ Φ∗mM,n

Upper bound: use any design!

md -point regular grid in X :
Φ∗mM,md ≤

√
d

2m :

Take m = bn1/dc, so that md ≤ n and Φ∗mM,n ≤ Φ∗mM,md , therefore

Φ∗mM,n ≤ R∗n =
√

d
2bn1/dc
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1) Introduction

d = 2

Luc Pronzato (CNRS) Minimax-distance (sub-)optimal designs BIRS, Banff, Aug. 11, 2017 7 / 41



1) Introduction

d = 5
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1) Introduction

d = 10
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1) Introduction

d = 20
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1) Introduction

­ Minimization of ΦmM(Xn) with respect to Xn ∈X n for a given n

® n is not fixed (nmin ≤ n ≤ nmax, we may stop before nmax evaluations of f )

How to obtain good “anytime designs”, such that
all nested designs Xn have a high efficiency EffmM(Xn), nmin ≤ n ≤ nmax

¯ Design measures that minimize a regularized version of ΦmM
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed

2) Minimization of ΦmM(Xn), Xn ∈X n, n fixed

General global optimization method (e.g., simulated annealing): not
promising
2.1) k-means and centroids
2.2) Stochastic gradient
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

2.1/ k-means and centroids

Minimize the L2 energy functional

E2(Tn,Xn) =
∫

X

( n∑
i=1

ICi (x) ‖x− xi‖2
)

dx =
n∑

i=1

∫
Ci

‖x− xi‖2 dx

where Tn = {Ci , i = 1, . . . , n} is a tessellation of X
ICi = indicator function of Ci

Then (Du et al., 1999):
Ci = V(xi ) = Voronoï region for the site xi , for all i

(⇒ E2(Tn,Xn) =
∫

X d2(x,Xn) dx)
simultaneously xi = centroid of Ci (center of gravity) for all i :

xi = (
∫
Ci
x dx)/vol(Ci )

Þ such a Xn should thus perform reasonably well in terms of space-filling
(Lekivetz and Jones, 2015)
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

Lloyd’s method (1982): (= fixed-point iterations)

Þ Move each xi to the centroid of its own Voronoï cell, repeat . . .

à Algorithmic geometry (Voronoï tessellation) if d very small,
use a finite set XQ otherwise
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

30 points from Sobol’ LDS

k-means clustering (30 clusters) of 1,000 point from Sobol’ LDS
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

However. . . minimax-optimal design is related to the construction of a centroidal
tessellation for

Eq(Tn,Xn) =
∫

X

( n∑
i=1

ICi (x) ‖x− xi‖q

)
dx =

n∑
i=1

∫
Ci

‖x− xi‖q dx

for q →∞
à use Chebyshev centers
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

Variant of Lloyd’s method:

0) Select X (1)
n and ε� 1, set k = 1

1) Compute the Voronoï tessellation {Vi , i = 1, . . . , n} of X (or XQ) based on
X (k)

n

2) For i = 1, . . . , n
ä determine the smallest ball B(ci , ri ) enclosing Vi (= convex QP problem)
ä replace xi by ci in X (k)

n (Chebyshev center of Vi)
3) if ΦmM(X(k)

n )− ΦmM(X(k+1)
n ) < ε, then stop; otherwise k ← k + 1, return to

step 1

Þ Move each xi to the Chebyshev center of its own Voronoï cell, repeat . . .

[ΦmM(X(k)
n ) decreases monotonically, convergence to a local minimum (or a saddle point)]
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

Determination of the smallest enclosing ball containing Z = {z1, . . . , zN}
(vertices of a Voronoï cell, points of XQ closest to xi):

⇔ minimize f (c) = maxi=1,...,N ‖zi − c‖2 with respect to c ∈ Rd

Direct problem = convex QP
Take any c0 ∈ Rd , minimize ‖c− c0‖2 + t

with respect to (c, t) ∈ Rd+1,
subject to ‖zi − c0‖2 − 2(zi − c0)>(c− c0) ≤ t , i = 1, . . . ,N

(N linear constraints)

Luc Pronzato (CNRS) Minimax-distance (sub-)optimal designs BIRS, Banff, Aug. 11, 2017 16 / 41



2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

Determination of the smallest enclosing ball containing Z = {z1, . . . , zN}
(vertices of a Voronoï cell, points of XQ closest to xi):

⇔ minimize f (c) = maxi=1,...,N ‖zi − c‖2 with respect to c ∈ Rd

Direct problem = convex QP
Take any c0 ∈ Rd , minimize ‖c− c0‖2 + t

with respect to (c, t) ∈ Rd+1,
subject to ‖zi − c0‖2 − 2(zi − c0)>(c− c0) ≤ t , i = 1, . . . ,N

(N linear constraints)

Luc Pronzato (CNRS) Minimax-distance (sub-)optimal designs BIRS, Banff, Aug. 11, 2017 16 / 41



2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.1/ k-means and centroids

Determination of the smallest enclosing ball containing Z = {z1, . . . , zN}

Dual problem = similar to an optimal design problem:
maximize trace[V(ξ)], with ξ a prob. measure on Z,

V(ξ) = covariance matrix for ξ
center of the ball = c(ξ) =

∫
Z z ξ(dz)

Þ Algorithms of the exchange-type (Yildirim, 2008)
(≈ Fedorov algorithm for D-optimal design: optimal step length is available)

Þ One can remove inessential points from Z: (LP, 2017b)
à Combine this with the use of a standard QP solver for the direct problem
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.2/ Stochastic gradient

2.2/ Stochastic gradient

d is large: Lloyd’s algorithm cannot be used (computational geometry
is too complicated, regular grids or LDS are not dense enough)

minimize Eq
∗(Xn) =

∫
X

( n∑
i=1

IVi (x) ‖x− xi‖q

)
dx

with Vi = Voronoï region for the site xi

Þ Stochastic gradient algorithm:
(MacQueen, 1967) for q = 2, (Cardot et al., 2012) for q = 1

0) k = 1, X (1)
n , set ni,0 = 0 for all i = 1, . . . , n

1) sample X uniformly distributed in X

2) find i∗ = arg mini=1,...,n ‖X − x(k)
i ‖, ni∗,k ← ni∗,k + 1 [← X ∈ cell V∗

i ]

3) x(k+1)
i∗ = x(k)

i∗ − γi∗,k q‖X − x(k)
i∗ ‖

q−2 (x(k)
i∗ − X )︸ ︷︷ ︸

=gradient

, k ← k + 1,

return to step 1, stop when k = K
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.2/ Stochastic gradient

Typical choice for γi∗,k = c/nαi∗,k , with α ∈ (1/2, 1]
and consider X̂n = 1

K
∑K

k=1 X (k)
n when α < 1

Little information to store (no grid or other finite approximation of X )
Þ can also be used with large d
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.2/ Stochastic gradient

Example: n = 10 d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2d+8 points

from a LDS (Sobol’)

d = 2, n = 20 (R∗n ≈ 0.1262, R∗n ≈ 0.1768)
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.2/ Stochastic gradient

Example: n = 10 d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2d+8 points

from a LDS (Sobol’)

d = 3, n = 30 (R∗n ≈ 0.1996, R∗n ≈ 0.2887)
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.2/ Stochastic gradient

Example: n = 10 d
all methods are initialized at the same random design, 100 repetitions
k-means and Lloyd’s method with Chebyshev centers use 2d+8 points

from a LDS (Sobol’)

d = 4, n = 40 (R∗n ≈ 0.2668, R∗n = 0.5)
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2) Minimization of ΦmM (Xn), Xn ∈ X n , n fixed 2.2/ Stochastic gradient

Example:

d = 10, n = 100 (R∗n ≈ 0.5746, R∗n ≈ 1.5811)
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3) Nested designs

3) Nested designs

à obtain a high ΦmM-efficiency EffmM(Xn) = Φ∗mM,n
ΦmM (Xn) for all Xn, nmin ≤ n ≤ nmax

[EffmM(Xn) ∈ (0, 1]]
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3) Nested designs 3.1/ Coffee-house design

3.1/ Coffee-house design

x1 at the centre of X , then xn+1 furthest point from Xn for all n ≥ 1
(called coffee-house design (Müller, 2007, Chap. 4))

Guarantees EffmM(Xn) = Φ∗mM,n
ΦmM (Xn) ≥

1
2 and EffMm(Xn) = ΦMm(Xn)

Φ∗Mm,n
≥ 1

2 for all n

with ΦMm(Xn) = mini 6=j∈{1,...,n} ‖xi − xj‖ the maximin-distance criterion,
and Φ∗Mm,n its optimal (maximum) value

Proof. (Gonzalez, 1985)
by construction:
ΦMm(Xn+1) , minxi 6=xj∈Xn+1 ‖xi − xj‖ = d(xn+1,Xn) = ΦmM(Xn)
X∗n a ΦmM-optimal design: the n balls B(x∗i ,ΦmM(X∗n )), x∗i ∈ X∗n , cover X
⇒ one of them contains 2 points xi , xj in Xn+1 for any Xn+1 (n + 1 points)
⇒ ΦMm(Xn+1) ≤ ‖xi − xj‖ ≤ 2ΦmM(X∗n )
⇒ Φ∗Mm,n+1 ≤ 2ΦmM(X∗n ) ≤ 2ΦmM(Xn) = ΦMm(Xn+1)
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Proof. (Gonzalez, 1985)
by construction:
ΦMm(Xn+1) , minxi 6=xj∈Xn+1 ‖xi − xj‖ = d(xn+1,Xn) = ΦmM(Xn)
X∗n a ΦmM-optimal design: the n balls B(x∗i ,ΦmM(X∗n )), x∗i ∈ X∗n , cover X
⇒ one of them contains 2 points xi , xj in Xn+1 for any Xn+1 (n + 1 points)
⇒ ΦMm(Xn+1) ≤ ‖xi − xj‖ ≤ 2ΦmM(X∗n )
⇒ Φ∗Mm,n+1 ≤ 2ΦmM(X∗n ) ≤ 2ΦmM(Xn) = ΦMm(Xn+1)
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3) Nested designs 3.1/ Coffee-house design
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3) Nested designs 3.1/ Coffee-house design

X = [0, 1]2, n = 7
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3) Nested designs 3.2/ Submodularity and greedy algorithms

3.2/ Submodularity and greedy algorithms

XQ = {x(1), . . . , x(Q)} a finite set with Q points in X
(regular grid, first Q points of a LDS — Halton, Sobol’ . . . )

ψ: 2XQ −→ R a set function (to be maximized)
non-decreasing: ψ(A ∪ {x}) ≥ ψ(A ) for all A ⊂XQ and x ∈XQ

Definition 1:
ψ is submodular iff ψ(A ) +ψ(B) ≥ ψ(A ∪B) +ψ(A ∩B) for all A ,B ⊂XQ

Equivalently, Definition 1’ (diminishing return property):
ψ is submodular iff ψ(A ∪ {x})− ψ(A ) ≥ ψ(B ∪ {x})− ψ(B) for all
A ⊂ B ⊂XQ and x ∈XQ \B

(a sort of concavity property for set functions)
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3) Nested designs 3.2/ Submodularity and greedy algorithms

Greedy Algorithm:
1 set A = ∅
2 while |A | < k

find x in XQ such that ψ(A ∪ {x}) is maximal
A ← A ∪ {x}

3 end while
4 return Ak = A

Denote ψ∗k = maxB⊂XQ , |B|≤k ψ(B)

Theorem (Nemhauser, Wolsey & Fisher, 1978): When ψ is non-decreasing and
submodular, then for all k ∈ {1, . . . ,Q} the algorithm returns a set Ak such that

ψ(Ak)− ψ(∅)
ψ∗k − ψ(∅) ≥ 1− (1− 1/k)k ≥ 1− 1/e > 0.6321

Bad news: we maximize −ΦmM which is non-decreasing but not submodular
à no guaranteed efficiency for sequential optimization
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

3.3/ Submodular alternatives to minimax

A) Covering measure, c.d.f. and dispersion [SIAM UQ, Lausanne, 2016]
For any r ≥ 0, any Xn ∈X n, define the covering measure of Xn by

ψr (Xn) = vol{X ∩ [∪n
i=1B(xi , r)]} à non-decreasing and submodular

Maximizing ψr (Xn) is equivalent to maximizing
FXn (r) = ψr (Xn)/vol(X ) = µL{X ∩[∪n

i=1B(xi ,r)]}
µL(X )

which can be considered as a c.d.f., with FXn (r) ∈ [0, 1], increasing in r ,
and FXn (0) = 0, FXn (r) = 1 for any r ≥ ΦmM(Xn)

Take any probability measure µ on X (e.g., with finite support XQ)
à define FXn (r) = µ{X ∩ [∪n

i=1B(xi , r)]}
as a function of r Ô forms a c.d.f.,
as a function of Xn Ô non-decreasing and submodular
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

Which r should we take in FXn (r)?
A positive linear combination of non-decreasing submodular functions is
non-decreasing and submodular

à Consider Ψb,B,q(Xn) =
∫ B

b rq FXn (r) dr , for B > b ≥ 0, q > 0
Ô guaranteed efficiency bounds when maximizing with a greedy algorithm

Justification:

Ψ0,B,q(Xn) = Bq+1

q+1 FXn (B)− 1
q+1

∫ B
0 rq+1 FXn (dr)

Take any B ≥ ΦmM(Xn) Ô FXn (B) = 1
Maximizing Ψ0,B,q(Xn) for B large enough ⇔ minimizing

∫ B
0 rq+1 FXn (dr)

⇔ minimizing
[∫ B

0 rq+1 FXn (dr)
]1/(q+1)

and
[∫ B

0 rq+1 FXn (dr)
]1/(q+1)

→ ΦmM(Xn) as q →∞
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

Implementation
Easy when

X approximated by XQ = {s1, . . . , sQ} ∈X Q , µ = 1
Q
∑Q

j=1 δsj

Xn ∈XQ
n

(inter-distances ‖si − sj‖ are only computed once)
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

Ex: X = [0, 1]2, XQ = grid with Q = 33× 33 = 1089 points
nmin = 15, nmax = 50, q = 2 in Ψb,B,q(·)

à EffmM(Xn) as a function of n

EffmM(Xn): Ψb,B,q(·) —,
Halton LDS —, Sobol’ LDS - -

Centered L2 discrepancies
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

Ex: X = [0, 1]3, XQ = grid with Q = 113 = 1331 points
nmin = 15, nmax = 50, q = 2 in Ψb,B,q(·)

à EffmM(Xn) as a function of n

EffmM(Xn): Ψb,B,q(·) —,
Halton LDS —, Sobol’ LDS - -

Centered L2 discrepancies
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

Large d (d > 3, say): we cannot use a regular grid XQ

Þ adaptive grid with MCMC: illustration for d = 2 (Q ≈ nmaxd)
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

Ex: X = [0, 1]10, XQ = adaptive grid with Q = 1000 points
nmin = 30, nmax = 100, q = 2 in Ψb,B,q(·)

à EffmM(Xn) = R∗n
ΦmM (Xn) as a function of n

EffmM(Xn): Ψb,B,q(·) —,
Halton LDS —, Sobol’ LDS - -

Centered L2 discrepancies
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

B) Lq relaxation

Approximate X by XQ with Q elements sk , k = 1, . . . , q, q > 0, minimize

Φq,Q(Xn) ,

 1
Q

Q∑
k=1

(
1
n

n∑
i=1
‖sk − xi‖−q

)−11/q

For any Xn, Φq,Q(Xn)→ ΦmM(Xn; XQ), q →∞

where ΦmM(Xn; XQ) = maxx∈XQ d(x,Xn)
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3) Nested designs 3.3/ Submodular alternatives to minimax-distance optimal design

Efficiency:

If X∗n,q minimizes Φq,Q(·), then

EffmM(X∗n,q; XQ) ≥ (nQ)−1/q

Φq,Q(·) is non-increasing
Ψ(·) = 1

n Φq
q,Q(·) is supermodular

[ongoing joint work with João Rendas (CNRS, I3S, UCA) & Céline Helbert (École
Centrale Lyon)]
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4) Measures minimizing regularized dispersion

4) Measures minimizing regularized dispersion
— joint work with Anatoly Zhigljavsky (LP & AZ, 2017)

For a n-point design, Lq relaxation:

Φq,Q(Xn) ,

 1
Q

Q∑
k=1

(
1
n

n∑
i=1
‖sk − xi‖−q

)−11/q

, q > 0

For a design measure ξ, integral version:

φq(ξ) ,
[∫

X

(∫
X

‖s− x‖−q ξ(dx)
)−1

µ(ds)
]1/q

, q > 0

with µ uniform prob. measure on X (µ(X ) = 1)

Th 1: φq
q(·), q > 0, is convex, and is strictly convex when 0 < q < d
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4) Measures minimizing regularized dispersion

q ≥ d

φq(ξ) > 0 for any discrete measure ξ
φq(ξ) = 0 for any ξ equivalent to the Lebesgue measure on X

. . . not very interesting

0 < q < d

(Strict) convexity of φq
q(·) Þ “equivalence theorem”

Th 2: ξq,∗ minimizes φq(·) iff ∀y ∈X , d(ξq,∗, y) ≤ φq
q(ξq,∗)

where d(ξ, y) =
∫

X

{
‖y− x‖−q [∫

X ‖x− z‖−q ξ(dz)
]−2}

µ(dx)
= directional derivative of φq

q(·) at ξ in the direction of δy

ξq,∗ is unique and d(ξq,∗, y) = φq
q(ξq,∗) for ξq,∗-almost all y ∈X
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4) Measures minimizing regularized dispersion

Two distinct situations

0 < q ≤ d − 2

ξq,∗ may be singular

Ex: X = Bd (0, 1); ξq,∗ = δ0 is optimal

max{0, d − 2} < q < d

Th 3: ξq,∗ does not possess atoms in the interior of X

Þ Minimization of Φq,Q(Xn): take q > d − 2 to be space-filling
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4) Measures minimizing regularized dispersion

Construction of ξq,∗?

Discretize X (again): replace µ by µQ = 1
Q
∑Q

k=1 δsk (grid or LDS)

φq
q(ξ;µQ) = trace[M−1(ξ)]

with M(ξ) =
∫

X diag{Q ‖x− sk‖−q, k = 1, . . . ,Q} ξ(dx) (Q × Q-dimensional)
Þ an A-optimal design problem: multiplicative, or vertex-direction, algorithm
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4) Measures minimizing regularized dispersion

Ex: X = Bd (0, 1), make use of symmetry
(only consider distributions of the radii)

φq
q(ξ) function of q for ξ = δ0 (. . .), ξ = µ (- - -) and ξ = ξq,∗ (—)

d = 3
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4) Measures minimizing regularized dispersion

µ(r) uniform on Bd (0, r), d = 3

efficiency φq
q(ξq,∗)
φq

q(µ(r)) of µ(r) function of r
q = 0.5, q = 1.5
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optimal r function of q
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4) Measures minimizing regularized dispersion

d = 3, optimal density of radii for ξq,∗ (with respect to ϕ(r) = drd−1)

q = 2, q = 2.1
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4) Measures minimizing regularized dispersion

d = 3, optimal density of radii for ξq,∗ (with respect to ϕ(r) = drd−1)

q = 2, q = 2.1
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Minimization of Φq,Q(Xn):
take q > d − 2 to be space-filling,
no point near the border of X
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4) Measures minimizing regularized dispersion

Conclusions

Several methods to evaluate ΦmM(Xn) (MCMC if d ≥ 5)
d small: optimization by a variant of Lloyd’s method with Chebyshev centers
(requires Voronoï tessellation or a fixed finite set approximation XQ)
d large: optimization by a stochastic gradient

(without any evaluation of ΦmM(Xn))

Greedy methods based on submodular alternatives to dispersion can generate
nested designs with reasonably good minimax efficiency (better than LDS,
also without any evaluation of ΦmM(Xn))

Use an adaptive grid XQ (MCMC) if d is large
Consider projections on lower dimensional subspaces?
Which submodular alternative is best?

What about very large d (d > 20 say)? Random designs may be
useful. . . (Janson, 1986, 1987)
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