Distributionally Robust Optimal Designs

Guillaume Sagnol

TU Berlin

Latest Advances in the Theory and Applications of Design and Analysis of Experiments, BIRS Workshop, Banff, August 8, 2017

Outline

1 Starters

- Designs for the linear model
- Designs for the nonlinear model
- The Conic Programming approach

2 Distributionally Robust Optimization

3 DRO Designs

4 Numerical Illustration

• $X \subset \mathbb{R}^n$: compact design space

An experiment with N trials is defined by a design

$$\xi = \left\{ \begin{array}{ccc} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_s \\ \boldsymbol{n}_1 & \cdots & \boldsymbol{n}_s \end{array} \right\},\$$

where

- **•** $\boldsymbol{x}_i \in X$ is the *i*th *support point* of the design
- *n_i* ∈ ℕ is the replication at the *i*th design point
 ∑^s_{i=1} *n_i* = *N*.

Design of Experiment

• $X \subset \mathbb{R}^n$: compact design space

When $N \rightarrow \infty$, we can consider *approximate designs*:

$$\xi = \left\{ \begin{array}{ccc} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_s \\ \boldsymbol{w}_1 & \cdots & \boldsymbol{w}_s \end{array} \right\},\$$

where

w_i ∈ ℝ₊ is the proportion of the total number of trials at *i*th design point

•
$$\mathbf{x}_i \in X$$
 is a *support point* of the design iff $w_i > 0$
• $\sum_{i=1}^{s} w_i = 1$.

We denote by Ξ the set of all approximate designs

The Linear Model

We assume the following model:

A trial at the design point $\boldsymbol{x} \in X$ provides an observation

$$y = f(\mathbf{x})^T \boldsymbol{\theta} + \boldsymbol{\epsilon}$$

where

• $\theta \in \Theta \subset \mathbb{R}^m$ is an *unknown* vector of parameters;

f : *X* → ℝ^m is known;
 𝔼[ϵ] = 0, 𝒱[ϵ] = σ² (a known constant), and the noises ϵ, ϵ' of two distinct trials are uncorrelated.

Definition

The Fisher information matrix (FIM) of a design $\xi \in \Xi$ is

$$M(\xi) := \sum_{i=1}^{s} w_i f(\boldsymbol{x}_i) f(\boldsymbol{x}_i)^T \in \mathbb{S}_m^+.$$

GOAL: Select a design $\xi \in \Xi$, such that

- 1 The vector θ can be *estimated* with the best possible accuracy
- 2 OR, such that the function $\eta : \mathbf{X} \to f(\mathbf{X})^T \boldsymbol{\theta}$ can be *predicted* with the best possible accuracy
 - These goals are essentially multicriterial (there are several θ_j's and many **x**'s).
 - So an appropriate scalarization is required.

- **Designs for optimal estimation of** θ :
 - *D*-**Optimality:** maxmize Determinant of information matrix \leftrightarrow min. volume of conf. ellipsoids for θ .

- Designs for optimal estimation of θ :
 - *D*-**Optimality:** maxmize Determinant of information matrix \leftrightarrow min. volume of conf. ellipsoids for θ .
 - A-Optimality: minimize trace of inverse of information matrix
 - \leftrightarrow min. diagonal of conf. ellipsoids for θ .

- Designs for optimal estimation of θ :
 - *D*-**Optimality:** maxmize Determinant of information matrix \leftrightarrow min. volume of conf. ellipsoids for θ .
 - A-Optimality: minimize trace of inverse of information matrix
 - \leftrightarrow min. diagonal of conf. ellipsoids for θ .
 - A_K -**Optimality:** minimize trace $K^T M(\xi)^{-1} K$
 - \leftrightarrow min. diagonal of conf. ellipsoids for the estimation of $K^T \theta$.

- Designs for optimal estimation of θ :
 - *D*-**Optimality:** maxmize Determinant of information matrix \leftrightarrow min. volume of conf. ellipsoids for θ .
 - A-Optimality: minimize trace of inverse of information matrix

 \leftrightarrow min. diagonal of conf. ellipsoids for θ .

- $A_{\mathcal{K}}$ -**Optimality:** minimize trace $\mathcal{K}^T \mathcal{M}(\xi)^{-1} \mathcal{K}$ \leftrightarrow min. diagonal of conf. ellipsoids for the estimation of $\mathcal{K}^T \theta$.
- **Designs for prediction of** y(x) at unsampled x
 - G-Optimality: minimize worst-case prediction variance

 $\min_{\boldsymbol{\xi}} \max_{\boldsymbol{x} \in \boldsymbol{X}} \rho(\boldsymbol{x})$

- Designs for optimal estimation of θ :
 - *D*-**Optimality:** maxmize Determinant of information matrix \leftrightarrow min. volume of conf. ellipsoids for θ .
 - A-Optimality: minimize trace of inverse of information matrix

 \leftrightarrow min. diagonal of conf. ellipsoids for θ .

■ $A_{\mathcal{K}}$ -**Optimality:** minimize trace $\mathcal{K}^T \mathcal{M}(\xi)^{-1} \mathcal{K}$ \leftrightarrow min. diagonal of conf. ellipsoids for the estimation of $\mathcal{K}^T \theta$.

Designs for prediction of $y(\mathbf{x})$ at unsampled \mathbf{x}

■ G-Optimality: minimize worst-case prediction variance

 $\min_{\xi} \max_{\boldsymbol{x} \in X} \rho(\boldsymbol{x})$

• I_{μ} -Optimality: minimize integrated prediction variance

$$\min_{\xi} \int_{\boldsymbol{x} \in \boldsymbol{X}} \rho(\boldsymbol{x}) d\mu(\boldsymbol{x})$$

Theorem

A design is *G*-optimal iff it is *D*-optimal.

Theorem

Let $\boldsymbol{H} = \int_{\boldsymbol{x} \in X} f(\boldsymbol{x}) f(\boldsymbol{x})^T d\mu(\boldsymbol{x})$, and take any factorization $\boldsymbol{H} = \boldsymbol{K} \boldsymbol{K}^T$. Then, a design is I_{μ} -optimal iff it is $A_{\mathcal{K}}$ -optimal.

Roughly speaking, all design problems (for prediction or estimation) reduce to the maximization of a function of the form $\Phi(M(\xi))$, where Φ is a concave design criterion.

The Nonlinear Model

Now, we assume that a trial at \boldsymbol{x} yields a response

$$\mathbf{y} = \eta(\mathbf{x}, \mathbf{\theta}) + \boldsymbol{\epsilon},$$

where $\eta: X \times \Theta \mapsto \mathbb{R}$ is a known function, and we define the sensitivity function

$$f(\boldsymbol{x}, \boldsymbol{ heta}) := rac{\partial \eta}{\partial \boldsymbol{ heta}}(\boldsymbol{x}, \boldsymbol{ heta}) \in \mathbb{R}^m$$

Local FIM

The FIM of a design $\xi \in \Xi$ now depends on $\theta \in \Theta$:

$$M(\xi; oldsymbol{ heta}) := \sum_{i=1}^{s} w_i f(oldsymbol{x}_i; oldsymbol{ heta}) f(oldsymbol{x}_i; oldsymbol{ heta})^T \in \mathbb{S}_m^+$$

Remark: similar situation for the generalized linear model:

$$\boldsymbol{y} \in \{\boldsymbol{0},\boldsymbol{1}\}, \qquad \mathbb{P}[\boldsymbol{y}=\boldsymbol{1}] = \eta(\boldsymbol{x},\boldsymbol{ heta}).$$

Dealing with parameter-dependency (1/2)

Given a design criterion $\Phi : \mathbb{S}_m^+ \mapsto \mathbb{R}$,

Local optimal design at $\theta \in \Theta$:

 $\max_{\xi\in\Xi} \Phi(M(\xi;\theta))$

(Pseudo-)Bayesian optimal design:
 Given a prior π (probability measure over Θ),

$$\max_{\xi\in\Xi} \int_{\boldsymbol{\theta}\in\Theta} \Phi(\boldsymbol{M}(\xi;\boldsymbol{\theta})) \, \boldsymbol{d}\pi(\boldsymbol{\theta})$$

Maximin Optimal Design

$$\max_{\xi\in\Xi} \min_{\theta\in\Theta} \Phi(M(\xi;\theta))$$

Dealing with parameter-dependency (2/2)

Standardized versions of these criterions have also been considered. Define the local efficiency of a design as

$$\mathsf{eff}(\xi;\boldsymbol{\theta}) := \frac{\Phi(\boldsymbol{M}(\xi;\boldsymbol{\theta}))}{\sup_{\xi^* \in \Xi} \Phi(\boldsymbol{M}(\xi^*;\boldsymbol{\theta}))} \in [0,1].$$

Standardized Bayesian optimal design:
 Given a prior π (probability measure over Θ),

$$\max_{\xi \in \Xi} \int_{\boldsymbol{\theta} \in \Theta} \operatorname{eff}(\xi; \boldsymbol{\theta}) \, \boldsymbol{d} \pi(\boldsymbol{\theta})$$

Standardized Maximin Optimal Design:

$$\max_{\xi \in \Xi} \min_{\theta \in \Theta} \operatorname{eff}(\xi; \theta)$$

The Conic Programming approach

When X = {x₁,..., x_s} is finite, the optimal design problem reduces to finding the vector of weights w ∈ ℝ^s of the design.

- \rightarrow This is a convex optimization problem.
- A conic programming problem is a linear optimization problem over a convex cone K
- Interior Point Methods are algorithms that are efficient both in theory and in practice, in particular for the following cones
 - $\mathcal{K} = \mathbb{R}^{n}_{+}$: Linear Programming (LP)
 - $\mathcal{K} = \mathcal{L}_n$: Second Order Cone Programming (SOCP)
 - $\mathcal{K} = \mathbb{S}^n_+$: Semidefinite Programming (SDP)

Conic-representability

• We say that a concave function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is \mathcal{K} -representable if its hypograph

hypo $f := \{ (x, t) \in \mathbb{R}^{n+1} : f(x) \ge t \}$

is equal to the projection of a set of the form $\{ \boldsymbol{z} : \boldsymbol{A} \boldsymbol{z} - \boldsymbol{b} \in \mathcal{K} \}.$

- The optimal design problem (for the linear model) can be reformulated as a conic optimization problem over *K* if the criterion Φ is *K*-representable.
- Conic representability of design criterions:

criterion	E _K	A _K	D_K	С	Ф _{р,К}	$(p \leq 1, p \in \mathbb{Q})$
SDP	Х	Х	Х	Х	Х	
SOCP	?	Х	Х	Х	?	
LP				Х		

Example: A-optimality

$$\Phi_{\mathcal{A}}(\mathit{M}):=(\mathsf{trace}\,\mathit{M}^{-1})^{-1}$$

Semidefinite representation of Φ_A :

$$\Phi_A(M) \ge t \iff \exists Y \in \mathbb{S}_m : \text{trace } Y \le t \text{ and } \begin{bmatrix} Y & tI \\ tI & M \end{bmatrix} \succeq 0.$$

Example: A-optimality

$$\Phi_A(M) := (\operatorname{trace} M^{-1})^{-1}$$

Semidefinite representation of Φ_A :

$$\Phi_{\mathcal{A}}(M) \geq t \iff \exists Y \in \mathbb{S}_m : \text{trace } Y \leq t \text{ and } \begin{bmatrix} Y & t \\ t & M \end{bmatrix} \succeq 0.$$

A-optimality SDP:

$$\begin{array}{ll} \max_{\boldsymbol{w},t,Y} & t \\ \boldsymbol{s}.t. & \text{trace } Y \leq t \\ & \left[\begin{array}{c} Y & tl \\ tl & M(\boldsymbol{w}) \end{array} \right] \succeq 0 \\ & \sum_{i} w_{i} = 1, \ \boldsymbol{w} \geq \boldsymbol{0}. \end{array}$$

Conic Programming Approach to DoE

- Maxdet and SDP formulations [e.g. Boyd & Vandenberghe, 2004]
- SDP-approach to compute criterion-robust designs [Harman, 2004]
- (MI)SOCP formulations for approximate (exact) A- and D-optimality [S., 2011], [S. & Harman, 2015]
- SDP-approach to find support points in rational models [Papp, 2012]
- **SDP** formulation for Φ_p -optimality [S., 2013]
- Extented formulation for Bayesian Designs [Duarte, Wong, 2015]
- Extented formulation for Maximin Designs [Duarte, S., Wong, submitted]

Outline

1 Starters

- Designs for the linear model
- Designs for the nonlinear model
- The Conic Programming approach

2 Distributionally Robust Optimization

3 DRO Designs

4 Numerical Illustration

Optimization under uncertainty

Terminology used in OR community

- **x** : decision variable
- X decision space
- θ : uncertain parameter, with *nominal value* $\bar{\theta}$.
- Θ : uncertainty set
- $F(\mathbf{x}, \theta)$: objective function (revenue)

Nominal (deterministic) Problem:

$$\max_{\boldsymbol{x}\in X} F(\boldsymbol{x},\bar{\boldsymbol{\theta}})$$

Stochastic Programming:

$$\max_{\boldsymbol{x}\in X} \mathbb{E}_{\boldsymbol{\theta}} F(\boldsymbol{x}, \boldsymbol{\theta})$$

Robust Optimization:

 $\max_{\boldsymbol{x}\in X} \min_{\boldsymbol{\theta}\in\Theta} F(\boldsymbol{x},\boldsymbol{\theta})$

Distributionally Robust Optimization

- Often, only a few samples from the uncertain parameter are available (e.g., historical data).
- This may not be enough to characterize exactly the distribution of θ.
- However, this data can be used to obtain (probabilistic) bounds on the expected value or variance of θ, or on the probability that θ ∈ Θ' ⊂ Θ.

Definition

Given a family \mathcal{P} of probability distributions for the parameter θ , the *distributionally robust counterpart* (of the deterministic optimization problem) is

$$\max_{\boldsymbol{x}\in X} \min_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\boldsymbol{\theta}\sim\mathbb{P}} F(\boldsymbol{x},\boldsymbol{\theta})$$

Review of main developments

- Introduced by Scarf (1958) for the Newsvendor Problem
- A lot of advances in the last decade, with the raise of Conic Programming (e.g. El Ghaoui et. al, 2003)
- When F(x, θ) is convex w.r.t. x and the ambiguity set P is defined through expected value of functions of θ, DRO reduces to a semi-infinite convex program
- Delage & Ye's seminal work (2010):
 - "Recipe" to construct an ambiguity set *P* from historical samples of θ, with theoretical foundations
 - If θ → F(x, θ) is concave and x → F(x, θ) is convex, separations oracles are provided, Θ is convex, then DRO is *tractable*.
 - If moreover θ → F(x, θ) is PWL and Θ is a polytope or an ellipsoid, the DRO problem reduces to an SDP.

Outline

1 Starters

- Designs for the linear model
- Designs for the nonlinear model
- The Conic Programming approach

2 Distributionally Robust Optimization

3 DRO Designs

4 Numerical Illustration

Given a design criterion Φ and a family \mathcal{P} of priors for the unknown vector of parameters θ , a design $\xi \in \Xi$ is called *distributionally robust optimal* (DRO) if it maximizes

$$\min_{\pi\in\mathcal{P}}\int_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\Phi(\boldsymbol{M}(\boldsymbol{\xi};\boldsymbol{\theta}))\,\boldsymbol{d}\pi(\boldsymbol{\theta}).$$

Special cases:

- If P = {π} is a singleton: DRO design ↔ Bayesian optimal design
- If P = {ℙ prob. measure : ℙ(Θ) = 1}:
 DRO design → Maximin optimal design

We first assume that Θ is finite:

$$\Theta = \{\boldsymbol{\theta}_1, \ldots, \boldsymbol{\theta}_N\}.$$

Consider the following family of priors: Given $\theta \in \Theta$ and $\Sigma \succ 0$,

$$\mathcal{P} = \left\{ \boldsymbol{p} \in \mathbb{R}^{N}_{+} : \begin{array}{l} \sum_{k} \boldsymbol{p}_{k} = 1, \\ \sum_{k} \boldsymbol{p}_{k} \boldsymbol{\theta}_{k} = \bar{\boldsymbol{\theta}}, \\ \sum_{k} \boldsymbol{p}_{k} (\boldsymbol{\theta}_{k} - \bar{\boldsymbol{\theta}}) (\boldsymbol{\theta}_{k} - \bar{\boldsymbol{\theta}})^{T} = \Sigma \end{array} \right\}$$

SDP formulation: example

DRO-design:

$$\max_{\xi \in \Xi} \underbrace{\min_{\mathcal{P} \in \mathcal{P}} \mathbb{E}_{\theta \sim \mathbb{P}}[\Phi(M(\xi, \theta))]}_{\Phi_{\text{DRO}}(\xi)}$$

The inner optimization problem is a Linear Program (LP):

$$\Phi_{\text{DRO}}(\xi) = \min_{\boldsymbol{p} \ge \boldsymbol{0}} \sum_{k} p_{k} \Phi(\boldsymbol{M}(\xi; \boldsymbol{\theta}_{i}))$$

s.t.
$$\sum_{k} p_{k} = 1,$$
$$\sum_{k} p_{k} \boldsymbol{\theta}_{k} = \bar{\boldsymbol{\theta}},$$
$$\sum_{k} p_{k} \underbrace{(\boldsymbol{\theta}_{k} - \bar{\boldsymbol{\theta}})(\boldsymbol{\theta}_{k} - \bar{\boldsymbol{\theta}})^{T}}_{V_{k}} = \Sigma$$

SDP formulation: example

DRO-design:

$$\max_{\xi \in \Xi} \underbrace{\min_{\mathcal{P} \in \mathcal{P}} \mathbb{E}_{\theta \sim \mathbb{P}}[\Phi(M(\xi, \theta))]}_{\Phi_{\text{DRO}}(\xi)}$$

By the strong LP-duality theorem,

$$\begin{split} \Phi_{\mathrm{DRO}}(\xi) &= \max_{\lambda \in \mathbb{R}, \boldsymbol{\mu} \in \mathbb{R}^m, \Lambda \in \mathbb{S}^m} \quad \lambda + \boldsymbol{\mu}^T \bar{\boldsymbol{\theta}} + \langle \Lambda, \Sigma \rangle \\ \mathbf{s.}t. \quad \lambda + \boldsymbol{\mu}^T \boldsymbol{\theta}_k + \langle \Lambda, V_k \rangle \leq \Phi(\boldsymbol{M}(\xi; \boldsymbol{\theta}_k)) \\ (\forall k = 1, \dots, N) \end{split}$$

SDP formulation: example

DRO-design:

$$\max_{\xi \in \Xi} \underbrace{\min_{\mathcal{P} \in \mathcal{P}} \mathbb{E}_{\theta \sim \mathbb{P}}[\Phi(M(\xi, \theta))]}_{\Phi_{\text{DRO}}(\xi)}$$

By the strong LP-duality theorem,

$$\begin{split} \Phi_{\mathrm{DRO}}(\xi) &= \max_{\lambda \in \mathbb{R}, \mu \in \mathbb{R}^m, \Lambda \in \mathbb{S}^m} \quad \lambda + \mu^T \bar{\boldsymbol{\theta}} + \langle \Lambda, \Sigma \rangle \\ s.t. \quad \lambda + \mu^T \boldsymbol{\theta}_k + \langle \Lambda, V_k \rangle \leq \Phi(\boldsymbol{M}(\xi; \boldsymbol{\theta}_k)) \\ (\forall k = 1, \dots, N) \end{split}$$

Finally, maximizing the above expression with respect to $\xi \in \Xi$ is an SDP when X is finite and Φ is SDP-representable.

Simple Example: the general case

$$\mathcal{P} = \left\{ \pi \text{ prob. measure} : \begin{array}{l} \int_{\Theta} d\pi(\theta) = 1, \\ \int_{\Theta} \theta \, d\pi(\theta) = \bar{\theta}, \\ \int_{\Theta} (\theta - \bar{\theta})(\theta - \bar{\theta})^{T} \, d\pi(\theta) = \Sigma \end{array} \right\}$$

Theorem

A design $\xi \in \Xi$ is DRO iff there exists a dual probability measure $\pi \in \mathcal{P}$, as well as $(\lambda, \mu, \Lambda) \in \mathbb{R} \times \mathbb{R}^m \times \mathbb{S}^m$ such that

\xi is Bayesian optimal for π

• $\forall \theta \in \Theta$, $\lambda + \mu^T \theta + (\theta - \overline{\theta})^T \Lambda(\theta - \overline{\theta}) \leq \Phi(M(\xi; \theta))$ Moreover, the above inequality becomes an equality at the support points of π .

The framework we propose is working for families \mathcal{P} of probability distributions \mathbb{P} satisfying $\mathbb{P}(\Theta) = 1$, as well as constraints of the form

$$\blacksquare \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}}[\psi_i(\boldsymbol{\theta})] = \mathbf{0},$$

where $\psi_i : \Theta \mapsto \mathbb{R}$ is a continuous function

The framework we propose is working for families \mathcal{P} of probability distributions \mathbb{P} satisfying $\mathbb{P}(\Theta) = 1$, as well as constraints of the form

■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\psi_i(\theta)] = 0$, where $\psi_i : \Theta \mapsto \mathbb{R}$ is a continuous function ■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\Psi_j(\theta)] \succeq 0$, where $\Psi_j : \Theta \mapsto \mathbb{S}_{n_j}$ is a continuous function (and we assume a Slater-type condition holds).

The framework we propose is working for families \mathcal{P} of probability distributions \mathbb{P} satisfying $\mathbb{P}(\Theta) = 1$, as well as constraints of the form

■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\psi_i(\theta)] = 0$, where $\psi_i : \Theta \mapsto \mathbb{R}$ is a continuous function ■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\Psi_j(\theta)] \succeq 0$, where $\Psi_j : \Theta \mapsto \mathbb{S}_{n_j}$ is a continuous function (and we assume a Slater-type condition holds).

In particular, this allows constraints of the form

\blacksquare $\mathbb{E}[\theta]$ belongs to a convex set

The framework we propose is working for families \mathcal{P} of probability distributions \mathbb{P} satisfying $\mathbb{P}(\Theta) = 1$, as well as constraints of the form

■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\psi_i(\theta)] = 0$, where $\psi_i : \Theta \mapsto \mathbb{R}$ is a continuous function ■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\Psi_j(\theta)] \succeq 0$, where $\Psi_j : \Theta \mapsto \mathbb{S}_{n_j}$ is a continuous function (and we assume a Slater-type condition holds).

In particular, this allows constraints of the form

- **\blacksquare** $\mathbb{E}[\theta]$ belongs to a convex set
- Bounds on the probability that $\theta \in \Theta'$, where $\Theta' \subseteq \Theta$

The framework we propose is working for families \mathcal{P} of probability distributions \mathbb{P} satisfying $\mathbb{P}(\Theta) = 1$, as well as constraints of the form

■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\psi_i(\theta)] = 0$, where $\psi_i : \Theta \mapsto \mathbb{R}$ is a continuous function ■ $\mathbb{E}_{\theta \sim \mathbb{P}}[\Psi_j(\theta)] \succeq 0$, where $\Psi_j : \Theta \mapsto \mathbb{S}_{n_j}$ is a continuous function (and we assume a Slater-type condition holds).

In particular, this allows constraints of the form

- **\blacksquare** $\mathbb{E}[\theta]$ belongs to a convex set
- Bounds on the probability that $\theta \in \Theta'$, where $\Theta' \subseteq \Theta$

■
$$\mathbb{V}[\theta] \succeq \Sigma_0$$
 (w.r.t. Loewner ordering)
Indeed, this is equivalent to $\mathbb{E}\begin{bmatrix} (\theta \theta^T - \Sigma_0) & \theta \\ \theta^T & 1 \end{bmatrix} \succeq 0$

Semi-infinite formulation for finite X

I at D

$$\begin{cases} \mathbb{E}_{\theta \sim \mathbb{P}}[1] = 1 \\ \mathbb{P} \text{ prob. measure} : & \mathbb{E}_{\theta \sim \mathbb{P}}[\psi_i(\theta)] = 0 \\ & \mathbb{E}_{\theta \sim \mathbb{P}}[\psi_j(\theta)] \succeq 0 & (j = 1, \dots, p) \\ & \mathbb{E}_{\theta \sim \mathbb{P}}[\psi_j(\theta)] \succeq 0 & (j = 1, \dots, q) \end{cases} \end{cases},$$

and assume that $X = \{x_1, \ldots, x_s\}$ is finite.

Then, the weights w_k of a DRO-design $\xi^* = \{x_k, w_k\}$ solve the following semi-infinite SDP:

$$\begin{split} \max_{\boldsymbol{w},\lambda,\boldsymbol{\mu},\Lambda_j} & \lambda \\ \boldsymbol{s}.t. & \Phi(\boldsymbol{M}(\boldsymbol{w},\boldsymbol{\theta})) \geq \lambda + \sum_{i} \mu_i \psi_i(\boldsymbol{\theta}) + \sum_{j} \langle \Lambda_j, \Psi_j(\boldsymbol{\theta}) \rangle, \\ & (\forall \boldsymbol{\theta} \in \Theta) \\ & \sum_{k} w_k = 1, \ \boldsymbol{w} \geq \boldsymbol{0} \\ & \Lambda_i \succeq 0 \ (j = 1, \dots, q). \end{split}$$

Optimality conditions

$$\mathcal{P} = \left\{ \begin{array}{ll} \mathbb{E}_{\theta \sim \mathbb{P}}[1] = 1 \\ \mathbb{P} \text{ prob. measure} : & \mathbb{E}_{\theta \sim \mathbb{P}}[\psi_i(\theta)] = 0 \\ & \mathbb{E}_{\theta \sim \mathbb{P}}[\Psi_j(\theta)] \succeq 0 \end{array} \begin{array}{l} (i = 1, \dots, p) \\ & \mathbb{E}_{\theta \sim \mathbb{P}}[\Psi_j(\theta)] \succeq 0 \end{array} \right\}.$$

Theorem

If the *ambiguity set* \mathcal{P} contains a Slater-type point, then a design $\xi \in \Xi$ is DRO iff there exists a dual probability measure $\pi \in \mathcal{P}$, as well as

$$(\lambda, \mu, \Lambda_1, \dots, \Lambda_q) \in \mathbb{R} \times \mathbb{R}^p \times \mathbb{S}^{n_1} \times \dots \times \mathbb{S}^{n_q}$$

such that

\xi is Bayesian optimal for π

• $\forall \theta \in \Theta$, $\lambda + \sum_{i} \mu_{i} \psi_{i}(\theta) + \sum_{j} \langle \Lambda_{j}, \Psi_{j}(\theta) \rangle \leq \Phi(M(\xi; \theta))$ Moreover, the above inequality becomes an equality at the support points of π . Ambiguity set of Delage and Ye for Data-Driven DRO: Given some *estimates* μ and Σ for the mean and variance of θ , and some confidence parameters $\gamma_1, \gamma_2 \ge 0$, $\mathcal{P} = \begin{cases} \mathbb{E}_{\theta \sim \mathbb{P}}[1] = 1 \\ \mathbb{E}_{(\theta \sim \mathbb{P}}[(\theta - \mu)^T \Sigma^{-1}(\theta - \mu)] \le \gamma_1 \\ \mathbb{E}_{\theta \sim \mathbb{P}}[(\theta - \mu)(\theta - \mu)^T] \le (1 + \gamma_2)\Sigma \end{cases}$

Example: Delage & Ye's Ambiguity set

Ambiguity set of Delage and Ye for Data-Driven DRO: Given some *estimates* μ and Σ for the mean and variance of θ , and some confidence parameters $\gamma_1, \gamma_2 \ge 0$, $\mathcal{P} =$

$$\begin{cases} \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}}[1] = 1 \\ \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}}[(\boldsymbol{\theta} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta} - \boldsymbol{\mu})] \leq \gamma_1 \\ \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}}[(\boldsymbol{\theta} - \boldsymbol{\mu})(\boldsymbol{\theta} - \boldsymbol{\mu})^T] \leq (1 + \gamma_2) \boldsymbol{\Sigma} \end{cases} \end{cases}.$$

Semi-infinite SDP:

$$\begin{split} \max_{\substack{\boldsymbol{w},\boldsymbol{\beta},\boldsymbol{Q} \\ \boldsymbol{w},\boldsymbol{\beta},\boldsymbol{Q}}} & \lambda - \beta \gamma_1 - (1+\gamma_2) \langle \boldsymbol{Q},\boldsymbol{\Sigma} \rangle \\ s.t. & \Phi(\boldsymbol{M}(\boldsymbol{w},\boldsymbol{\theta})) \geq \lambda - (\boldsymbol{\theta}-\boldsymbol{\mu})^T (\boldsymbol{\Sigma}^{-1} + \boldsymbol{Q}) (\boldsymbol{\theta}-\boldsymbol{\mu}) \quad (\forall \boldsymbol{\theta} \in \Theta) \\ & \sum_k w_k = 1, \ \boldsymbol{w} \geq \boldsymbol{0} \\ & \beta \geq \boldsymbol{0}, \boldsymbol{Q} \succeq \boldsymbol{0}. \end{split}$$

Example: Delage & Ye's Ambiguity set

Ambiguity set of Delage and Ye for Data-Driven DRO: Given some *estimates* μ and Σ for the mean and variance of θ , and some confidence parameters $\gamma_1, \gamma_2 \ge 0$, $\mathcal{P} =$

$$\begin{cases} \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}}[1] = 1 \\ \mathbb{E}_{(\boldsymbol{\theta} \sim \mathbb{P}}[(\boldsymbol{\theta} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta} - \boldsymbol{\mu})] \leq \gamma_1 \\ \mathbb{E}_{\boldsymbol{\theta} \sim \mathbb{P}}[(\boldsymbol{\theta} - \boldsymbol{\mu})(\boldsymbol{\theta} - \boldsymbol{\mu})^T] \leq (1 + \gamma_2) \boldsymbol{\Sigma} \end{cases} \end{cases}.$$

SDP for A-optimality over a finite $\Theta = \{\theta_1, \dots, \theta_N\}$:

$$\begin{split} \max_{\boldsymbol{w},\beta,\boldsymbol{Q},\boldsymbol{t},\boldsymbol{Y}_{k}} & \lambda - \beta\gamma_{1} - (1+\gamma_{2})\langle\boldsymbol{Q},\boldsymbol{\Sigma}\rangle \\ \boldsymbol{s}.\boldsymbol{t}. & \boldsymbol{t}_{k} = \lambda - (\boldsymbol{\theta}_{k} - \boldsymbol{\mu})^{T} (\boldsymbol{\Sigma}^{-1} + \boldsymbol{Q})(\boldsymbol{\theta}_{k} - \boldsymbol{\mu}) \geq \operatorname{tr}\boldsymbol{Y}_{k} \\ & \begin{bmatrix} \boldsymbol{Y}_{k} & \boldsymbol{t}_{k} \boldsymbol{I} \\ \boldsymbol{t}_{k} \boldsymbol{I} & \boldsymbol{M}(\boldsymbol{w},\boldsymbol{\theta}_{k}) \end{bmatrix} \succeq \boldsymbol{0} \quad (k = 1, \dots, N) \\ & \sum_{k} \boldsymbol{w}_{k} = 1, \ \boldsymbol{w} \geq \boldsymbol{0}, \beta \geq 0, \boldsymbol{Q} \succeq \boldsymbol{0}. \end{split}$$

Let ξ^* be a DRO-design over a finite set of candidate points *X*.

Let $\theta_1, \ldots, \theta_N$ be an i.i.d. sample over Θ (from any *continuous* distribution), and denote by ξ_N the design computed by the SDP over $\Theta_N = \{\theta_1, \ldots, \theta_N\}$.

Let ξ^* be a DRO-design over a finite set of candidate points *X*.

Let $\theta_1, \ldots, \theta_N$ be an i.i.d. sample over Θ (from any *continuous* distribution), and denote by ξ_N the design computed by the SDP over $\Theta_N = \{\theta_1, \ldots, \theta_N\}$.

Theorem [Xiu, Liu & Sun, 2017]

Under some regularity conditions, for any $\epsilon > 0$, there exists constants C > 0 and $\beta > 0$ such that for N sufficiently large,

 $\mathsf{Prob}(|\Phi_{\mathsf{DRO}}(\xi^*) - \Phi_{\mathsf{DRO}}(\xi_N)| > \epsilon) \leq C e^{-\beta N}.$

A primal-dual cutting-plane algorithm

- Start with a discretization $\hat{X} = \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_s \} \subset X$, and $\hat{\Theta} = \{ \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_N \} \subset \Theta$
- Repeat until convergence:
 - 1 Solve the finite-size SDP over \hat{X} and $\hat{\Theta}$
 - 2 The SDP solver returns a design ξ*, Lagrange multipliers λ, (μ_i)_{1≤i≤p}, (Λ_j)_{1≤j≤q}, and the optimal dual variables yield a dual measure π* supported by Ô.
 - **3** Find some points θ violating

$$\lambda + \sum_{i} \mu_{i} \psi_{i}(\boldsymbol{\theta}) + \sum_{j} \langle \Lambda_{j}, \Psi_{j}(\boldsymbol{\theta}) \rangle \leq \Phi(\boldsymbol{M}(\xi^{*}; \boldsymbol{\theta}))$$

and add them to $\hat{\Theta}$

4 Find some points x violating

$$\int_{\boldsymbol{\theta}\in\Theta} \left(\boldsymbol{D} \Phi(\xi^*;\boldsymbol{\theta})[\boldsymbol{x}] - \Phi(\xi^*;\boldsymbol{\theta}) \right) \boldsymbol{d} \pi^*(\boldsymbol{\theta}) \leq \boldsymbol{0}$$

and add then to \hat{X}

Outline

1 Starters

- Designs for the linear model
- Designs for the nonlinear model
- The Conic Programming approach

2 Distributionally Robust Optimization

3 DRO Designs

Logistic Regression in Two Variables

Model:

$$\bullet \ \Theta = \{0.1\} \times [0, 0.3] \times [0, 0.4]$$

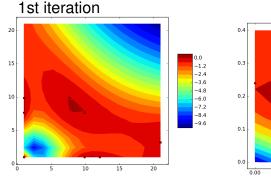
GLM with logit-link function:

$$\operatorname{Prob}[\boldsymbol{y}(\boldsymbol{x}) = 1] = p(\boldsymbol{x}, \boldsymbol{\theta}) \frac{\exp(\theta_0 + x_1\theta_1 + x_2\theta_2)}{1 + \exp(\theta_0 + x_1\theta_1 + x_2\theta_2)}$$
$$= M(\delta_{\boldsymbol{x}}, \boldsymbol{\theta}) = p(\boldsymbol{x}, \boldsymbol{\theta})(1 - p(\boldsymbol{x}, \boldsymbol{\theta})) \begin{bmatrix} 1\\ x_1\\ x_2 \end{bmatrix} \begin{bmatrix} 1\\ x_1\\ x_2 \end{bmatrix}^T$$

We compute a Φ_A -DRO design over the family of priors s.t.:

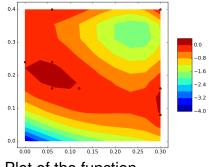
$$\mathbb{E}[\theta] = [0.1, 0.15, 0.2],$$
$$\mathbb{V}[\theta] = diag([0, 0.01, 0.01])$$

Functions from the "equivalence theorem"



Plot of the function

over $\boldsymbol{x} \in \boldsymbol{X}$

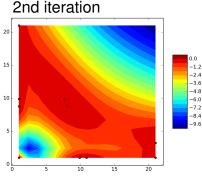


Plot of the function

 $(D\Phi(\xi^*;\theta)[\mathbf{x}] - \Phi(\xi^*;\theta)) d\pi^*(\theta) \quad \lambda + \mu^T \theta + (\theta - \bar{\theta})^T \Lambda(\theta - \bar{\theta}) - \Phi(M(\xi^*;\theta))$

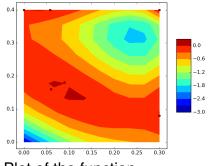
over $\boldsymbol{\theta} \in \Theta$

Functions from the "equivalence theorem"



Plot of the function

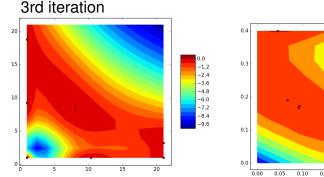
over $\boldsymbol{x} \in X$



Plot of the function

 $(D\Phi(\xi^*;\theta)[\mathbf{x}] - \Phi(\xi^*;\theta)) d\pi^*(\theta) \quad \lambda + \mu^T \theta + (\theta - \bar{\theta})^T \Lambda(\theta - \bar{\theta}) - \Phi(M(\xi^*;\theta))$ over $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

Functions from the "equivalence theorem"



Plot of the function

over $\boldsymbol{x} \in X$

Plot of the function

 $(D\Phi(\xi^*;\theta)[\mathbf{x}] - \Phi(\xi^*;\theta)) d\pi^*(\theta) \quad \lambda + \mu^T \theta + (\theta - \bar{\theta})^T \Lambda(\theta - \bar{\theta}) - \Phi(M(\xi^*;\theta))$ over $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

0.0

-0.8

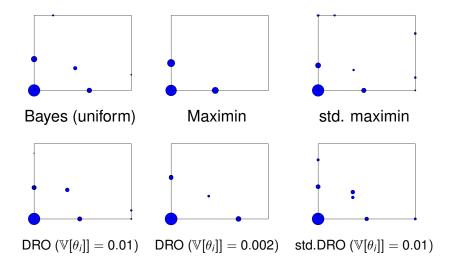
-1.6

-2.4

-3.2

0.30

Optimal Designs



- A new unifying framework to handle dependency to unknown parameters
- Flexibility to define the "ambiguity set", partially overcomes drawbacks of Bayesian and Maximin approaches
- SDP formulation when X and Θ are discretized
- Primal-dual cutting-plane approach to find DRO-optimal design
- Approach can be extended to standardized design criterions

A few references (on DRO only):

- Scarf, H. 1958. A min-max solution of an inventory problem. K. Arrow, ed. Studies in the Mathematical Theory of Inventory and Production. Stanford University Press, Stanford, CA, 201–209.
- El Ghaoui, L., M. Oks, F. Oustry. 2003. Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Oper. Res. 51(4) 543–556.
- Delage, E. and Ye, Y., 2010. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Operations research, 58(3), pp.595-612.
- Xu, H., Liu, Y., Sun, H. 2017. Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods. Math. Program., Ser. A, 2017. To Appear.