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Design of Experiment

X ⊂ Rn: compact design space

An experiment with N trials is defined by a design

ξ =

{
x1 · · · xs

n1 · · · ns

}
,

where
x i ∈ X is the i th support point of the design
ni ∈ N is the replication at the i th design point∑s

i=1 ni = N.



Design of Experiment

X ⊂ Rn: compact design space

When N →∞, we can consider approximate designs:

ξ =

{
x1 · · · xs

w1 · · · ws

}
,

where
wi ∈ R+ is the proportion of the total number of trials
at i th design point
x i ∈ X is a support point of the design iff wi > 0∑s

i=1 wi = 1.

We denote by Ξ the set of all approximate designs



The Linear Model

We assume the following model:
A trial at the design point x ∈ X provides an observation

y = f (x)Tθ + ε,

where
θ ∈ Θ ⊂ Rm is an unknown vector of parameters;

f : X 7→ Rm is known;
E[ε] = 0, V[ε] = σ2 (a known constant), and the
noises ε, ε′ of two distinct trials are uncorrelated.

Definition
The Fisher information matrix (FIM) of a design ξ ∈ Ξ is

M(ξ) :=
s∑

i=1

wi f (x i) f (x i)
T ∈ S+

m.



Design for Estimation or Prediction

GOAL: Select a design ξ ∈ Ξ, such that
1 The vector θ can be estimated with the best possible

accuracy
2 OR, such that the function η : x → f (x)Tθ can be

predicted with the best possible accuracy

These goals are essentially multicriterial (there are
several θj ’s and many x ’s).
So an appropriate scalarization is required.



Standard Optimality Criterions
Designs for optimal estimation of θ:

D−Optimality: maxmize Determinant of information matrix
↔ min. volume of conf. ellipsoids for θ.

A−Optimality: minimize trace of inverse of information
matrix
↔ min. diagonal of conf. ellipsoids for θ.
AK−Optimality: minimize trace K T M(ξ)−1K
↔ min. diagonal of conf. ellipsoids for the estimation of K Tθ.

Designs for prediction of y(x) at unsampled x

G−Optimality: minimize worst-case prediction variance

min
ξ

max
x∈X

ρ(x)

Iµ−Optimality: minimize integrated prediction variance

min
ξ

∫
x∈X

ρ(x)dµ(x)
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Equivalence Theorems

Theorem
A design is G−optimal iff it is D−optimal.

Theorem
Let H =

∫
x∈X f (x)f (x)T dµ(x), and take any factorization

H = KK T . Then, a design is Iµ−optimal iff it is
AK−optimal.

Roughly speaking, all design problems (for prediction or
estimation) reduce to the maximization of a function of the
form Φ(M(ξ)), where Φ is a concave design criterion.



The Nonlinear Model

Now, we assume that a trial at x yields a response

y = η(x ,θ) + ε,

where η : X ×Θ 7→ R is a known function, and we define
the sensitivity function

f (x ,θ) :=
∂η

∂θ
(x, θ) ∈ Rm

Local FIM
The FIM of a design ξ ∈ Ξ now depends on θ ∈ Θ:

M(ξ;θ) :=
s∑

i=1

wi f (x i ;θ) f (x i ;θ)T ∈ S+
m

Remark: similar situation for the generalized linear model:

y ∈ {0,1}, P[y = 1] = η(x ,θ).



Dealing with parameter-dependency (1/2)

Given a design criterion Φ : S+
m 7→ R,

Local optimal design at θ ∈ Θ:

max
ξ∈Ξ

Φ(M(ξ;θ))

(Pseudo-)Bayesian optimal design:
Given a prior π (probability measure over Θ),

max
ξ∈Ξ

∫
θ∈Θ

Φ(M(ξ;θ)) dπ(θ)

Maximin Optimal Design

max
ξ∈Ξ

min
θ∈Θ

Φ(M(ξ;θ))



Dealing with parameter-dependency (2/2)

Standardized versions of these criterions have also been
considered. Define the local efficiency of a design as

eff(ξ;θ) :=
Φ(M(ξ;θ))

supξ∗∈Ξ Φ(M(ξ∗;θ))
∈ [0,1].

Standardized Bayesian optimal design:
Given a prior π (probability measure over Θ),

max
ξ∈Ξ

∫
θ∈Θ

eff(ξ;θ) dπ(θ)

Standardized Maximin Optimal Design:

max
ξ∈Ξ

min
θ∈Θ

eff(ξ;θ)



The Conic Programming approach

When X = {x1, . . . ,xs} is finite, the optimal design
problem reduces to finding the vector of weights
w ∈ Rs of the design.
→ This is a convex optimization problem.
A conic programming problem is a linear optimization
problem over a convex cone K
Interior Point Methods are algorithms that are
efficient both in theory and in practice, in particular for
the following cones

K = Rn
+: Linear Programming (LP)

K = Ln: Second Order Cone Programming (SOCP)
K = Sn

+: Semidefinite Programming (SDP)



Conic-representability

We say that a concave function f : Rn 7→ R is
K-representable if its hypograph

hypo f := {(x , t) ∈ Rn+1 : f (x) ≥ t}

is equal to the projection of a set of the form
{z : Az − b ∈ K}.
The optimal design problem (for the linear model) can
be reformulated as a conic optimization problem over
K if the criterion Φ is K−representable.
Conic representability of design criterions:

criterion EK AK DK c Φp,K (p ≤ 1,p ∈ Q)

SDP X X X X X
SOCP ? X X X ?

LP X



Example: A-optimality

ΦA(M) := (trace M−1)−1

Semidefinite representation of ΦA:

ΦA(M) ≥ t ⇐⇒ ∃Y ∈ Sm : trace Y ≤ t and
 Y tI

tI M

 � 0.

A-optimality SDP:

max
w ,t ,Y

t

s.t . trace Y ≤ t Y tI
tI M(w)

 � 0∑
i

wi = 1, w ≥ 0.
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Conic Programming Approach to DoE

Maxdet and SDP formulations [e.g. Boyd &
Vandenberghe, 2004]

SDP-approach to compute criterion-robust designs
[Harman, 2004]

(MI)SOCP formulations for approximate (exact) A− and
D−optimality [S., 2011], [S. & Harman, 2015]

SDP-approach to find support points in rational models
[Papp, 2012]

SDP formulation for Φp-optimality [S., 2013]

Extented formulation for Bayesian Designs [Duarte, Wong,
2015]

Extented formulation for Maximin Designs [Duarte, S.,
Wong, submitted]



Outline

1 Starters
Designs for the linear model
Designs for the nonlinear model
The Conic Programming approach

2 Distributionally Robust Optimization

3 DRO Designs

4 Numerical Illustration



Optimization under uncertainty

Terminology used in OR community
x : decision variable
X decision space
θ : uncertain parameter, with nominal value θ̄.
Θ : uncertainty set
F (x , θ): objective function (revenue)

Nominal (deterministic) Problem:

max
x∈X

F (x , θ̄)

Stochastic Programming:

max
x∈X

Eθ F (x ,θ)

Robust Optimization:

max
x∈X

min
θ∈Θ

F (x ,θ)



Distributionally Robust Optimization

Often, only a few samples from the uncertain
parameter are available (e.g., historical data).
This may not be enough to characterize exactly the
distribution of θ.
However, this data can be used to obtain
(probabilistic) bounds on the expected value or
variance of θ, or on the probability that θ ∈ Θ′ ⊂ Θ.

Definition
Given a family P of probability distributions for the
parameter θ, the distributionally robust counterpart (of the
deterministic optimization problem) is

max
x∈X

min
P∈P

Eθ∼P F (x ,θ)



Review of main developments

Introduced by Scarf (1958) for the Newsvendor Problem

A lot of advances in the last decade, with the raise of
Conic Programming (e.g. El Ghaoui et. al, 2003)

When F (x ,θ) is convex w.r.t. x and the ambiguity set P is
defined through expected value of functions of θ, DRO
reduces to a semi-infinite convex program

Delage & Ye’s seminal work (2010):

“Recipe” to construct an ambiguity set P from
historical samples of θ, with theoretical foundations
If θ 7→ F (x ,θ) is concave and x 7→ F (x ,θ) is convex,
separations oracles are provided, Θ is convex, then
DRO is tractable.
If moreover θ 7→ F (x ,θ) is PWL and Θ is a polytope
or an ellipsoid, the DRO problem reduces to an SDP.
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Distributionally Robust Optimal Designs

Given a design criterion Φ and a family P of priors for the
unknown vector of parameters θ, a design ξ ∈ Ξ is called
distributionally robust optimal (DRO) if it maximizes

min
π∈P

∫
θ∈Θ

Φ(M(ξ;θ)) dπ(θ).

Special cases:

If P = {π} is a singleton:
DRO design←→ Bayesian optimal design

If P = {P prob. measure : P(Θ) = 1}:
DRO design←→ Maximin optimal design



A simple example

We first assume that Θ is finite:

Θ = {θ1, . . . ,θN}.

Consider the following family of priors:
Given θ ∈ Θ and Σ � 0,

P =

p ∈ RN
+ :

∑
k pk = 1,∑
k pkθk = θ̄,∑
k pk (θk − θ̄)(θk − θ̄)T = Σ





SDP formulation: example

DRO-design:

max
ξ∈Ξ

min
P∈P

Eθ∼P[Φ(M(ξ,θ))]︸ ︷︷ ︸
ΦDRO(ξ)

The inner optimization problem is a Linear Program (LP):

ΦDRO(ξ) = min
p≥0

∑
k

pk Φ(M(ξ;θi))

s.t .
∑

k

pk = 1,∑
k

pkθk = θ̄,∑
k

pk (θk − θ̄)(θk − θ̄)T︸ ︷︷ ︸
Vk

= Σ

Finally, maximizing the above expression with respect to
ξ ∈ Ξ is an SDP when X is finite and Φ is
SDP-representable.
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Simple Example: the general case

P =

π prob. measure :

∫
Θ

dπ(θ) = 1,∫
Θ
θ dπ(θ) = θ̄,∫

Θ
(θ − θ̄)(θ − θ̄)T dπ(θ) = Σ


Theorem
A design ξ ∈ Ξ is DRO iff there exists a dual probability
measure π ∈ P, as well as (λ,µ,Λ) ∈ R× Rm × Sm such
that

ξ is Bayesian optimal for π
∀θ ∈ Θ, λ + µTθ + (θ − θ̄)T Λ(θ − θ̄) ≤ Φ(M(ξ;θ))

Moreover, the above inequality becomes an equality at
the support points of π.



Convex tractable sets of distribution families

The framework we propose is working for families P of
probability distributions P satisfying P(Θ) = 1, as well as
constraints of the form

Eθ∼P[ψi(θ)] = 0,
where ψi : Θ 7→ R is a continuous function

Eθ∼P[Ψj(θ)] � 0,
where Ψj : Θ 7→ Snj is a continuous function

(and we assume a Slater-type condition holds).

In particular, this allows constraints of the form

E[θ] belongs to a convex set
Bounds on the probability that θ ∈ Θ′, where Θ′ ⊆ Θ

V[θ] � Σ0 (w.r.t. Loewner ordering)

Indeed, this is equivalent to E
 (θθT − Σ0) θ

θT 1

 � 0
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Semi-infinite formulation for finite X

Let P =P prob. measure :
Eθ∼P[1] = 1
Eθ∼P[ψi(θ)] = 0 (i = 1, . . . ,p)
Eθ∼P[Ψj(θ)] � 0 (j = 1, . . . ,q)

,

and assume that X = {x1, . . . ,xs} is finite.

Then, the weights wk of a DRO-design ξ∗ = {xk ,wk}
solve the following semi-infinite SDP:

max
w ,λ,µ,Λj

λ

s.t . Φ(M(w ,θ)) ≥ λ+
∑

i

µiψi(θ) +
∑

j

〈Λj ,Ψj(θ)〉,

(∀θ ∈ Θ)∑
k

wk = 1, w ≥ 0

Λj � 0 (j = 1, . . . ,q).



Optimality conditions

P =

P prob. measure :
Eθ∼P[1] = 1
Eθ∼P[ψi(θ)] = 0 (i = 1, . . . ,p)
Eθ∼P[Ψj(θ)] � 0 (j = 1, . . . ,q)

.

Theorem
If the ambiguity set P contains a Slater-type point, then a
design ξ ∈ Ξ is DRO iff there exists a dual probability
measure π ∈ P, as well as

(λ,µ,Λ1, . . . ,Λq) ∈ R× Rp × Sn1 × · · · × Snq

such that
ξ is Bayesian optimal for π
∀θ ∈ Θ, λ+

∑
i µiψi(θ) +

∑
j〈Λj ,Ψj(θ)〉 ≤ Φ(M(ξ;θ))

Moreover, the above inequality becomes an equality at
the support points of π.



Example: Delage & Ye’s Ambiguity set

Ambiguity set of Delage and Ye for Data-Driven DRO:
Given some estimates µ and Σ for the mean and variance
of θ, and some confidence parameters γ1, γ2 ≥ 0,
P =P prob. measure :

Eθ∼P[1] = 1
E(θ∼P[(θ − µ)T Σ−1(θ − µ)] ≤ γ1

Eθ∼P[(θ − µ)(θ − µ)T ] � (1 + γ2)Σ

.
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max

w ,β,Q,t ,Yk
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s.t . tk = λ− (θk − µ)T (Σ−1 + Q)(θk − µ) ≥ tr Yk Yk tk I
tk I M(w ,θk )

 � 0 (k = 1, . . . ,N)∑
k

wk = 1, w ≥ 0, β ≥ 0,Q � 0.



Asymptotic result

Let ξ∗ be a DRO-design over a finite set of candidate
points X .

Let θ1, . . . ,θN be an i.i.d. sample over Θ (from any
continuous distribution), and denote by ξN the design
computed by the SDP over ΘN = {θ1, . . . ,θN}.

Theorem [Xiu, Liu & Sun, 2017]
Under some regularity conditions, for any ε > 0, there
exists constants C > 0 and β > 0 such that for N
sufficiently large,

Prob(|ΦDRO(ξ∗)− ΦDRO(ξN)| > ε) ≤ Ce−βN .
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A primal-dual cutting-plane algorithm

Start with a discretization X̂ = {x1, . . . ,xs} ⊂ X , and
Θ̂ = {θ1, . . . ,θN} ⊂ Θ
Repeat until convergence:

1 Solve the finite-size SDP over X̂ and Θ̂
2 The SDP solver returns a design ξ∗, Lagrange

multipliers λ, (µi)1≤i≤p, (Λj)1≤j≤q, and the optimal dual
variables yield a dual measure π∗ supported by Θ̂.

3 Find some points θ violating

λ+
∑

i

µiψi(θ) +
∑

j

〈Λj ,Ψj(θ)〉 ≤ Φ(M(ξ∗;θ))

and add them to Θ̂
4 Find some points x violating∫

θ∈Θ

(
DΦ(ξ∗;θ)[x ]− Φ(ξ∗;θ)

)
dπ∗(θ) ≤ 0

and add then to X̂



Outline

1 Starters
Designs for the linear model
Designs for the nonlinear model
The Conic Programming approach

2 Distributionally Robust Optimization

3 DRO Designs

4 Numerical Illustration



Logistic Regression in Two Variables

Model:
X = [1,21]× [1,21]

Θ = {0.1} × [0,0.3]× [0,0.4]

GLM with logit-link function:

Prob[y(x) = 1] = p(x ,θ)
exp(θ0 + x1θ1 + x2θ2)

1 + exp(θ0 + x1θ1 + x2θ2)

M(δx ,θ) = p(x ,θ)(1− p(x ,θ))


1
x1

x2




1
x1

x2


T

We compute a ΦA−DRO design over the family of priors s.t.:

E[θ] = [0.1,0.15,0.2],
V[θ] = diag([0,0.01,0.01])



Functions from the “equivalence theorem”

1st iteration

Plot of the function∫
θ∈Θ

(
DΦ(ξ∗;θ)[x ]−Φ(ξ∗;θ)

)
dπ∗(θ)

over x ∈ X

Plot of the function

λ+µTθ+(θ−θ̄)T Λ(θ−θ̄)−Φ(M(ξ∗;θ))

over θ ∈ Θ



Functions from the “equivalence theorem”

2nd iteration

Plot of the function∫
θ∈Θ

(
DΦ(ξ∗;θ)[x ]−Φ(ξ∗;θ)

)
dπ∗(θ)

over x ∈ X

Plot of the function

λ+µTθ+(θ−θ̄)T Λ(θ−θ̄)−Φ(M(ξ∗;θ))

over θ ∈ Θ



Functions from the “equivalence theorem”

3rd iteration

Plot of the function∫
θ∈Θ

(
DΦ(ξ∗;θ)[x ]−Φ(ξ∗;θ)

)
dπ∗(θ)

over x ∈ X

Plot of the function

λ+µTθ+(θ−θ̄)T Λ(θ−θ̄)−Φ(M(ξ∗;θ))

over θ ∈ Θ



Optimal Designs

Bayes (uniform) Maximin std. maximin

DRO (V[θi ]] = 0.01) DRO (V[θi ]] = 0.002) std.DRO (V[θi ]] = 0.01)



Conclusion

A new unifying framework to handle dependency to
unknown parameters
Flexibility to define the “ambiguity set”, partially
overcomes drawbacks of Bayesian and Maximin
approaches
SDP formulation when X and Θ are discretized
Primal-dual cutting-plane approach to find
DRO-optimal design
Approach can be extended to standardized design
criterions
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