Optimal designs for longitudinal studies with fractional polynomial models

Jesús López Fidalgo fidalgo@unav.es

ics
 Universidad de Navarra

 Institute for Culture and SocietyJoint work with Víctor Casero-Alonso \& Weng Kee Wong Latest Advances Theory \& Applications of Design \& Analysis of Experiments, Banff 2017

Reproducible Science

PERSPECTIVE

A manifesto for reproducible science

Marcus R. Munafó1,2*, Brian A. Nosek ${ }^{3,4}$, Dorothy V. M. Bishop ${ }^{5}$, Katherine S. Button ${ }^{6}$, Christopher D. Chambers ${ }^{7}$, Nathalie Percie du Sert ${ }^{8}$, Uri Simonsohn ${ }^{9}$, Eric-Jan Wagenmakers ${ }^{10}$, Jennifer J. Ware ${ }^{11}$ and John P. A. Ioannidis ${ }^{12,13,14}$

Abstract

Improving the reliability and efficiency of scientific research will increase the credibility of the published scientific literature and accelerate discovery. Here we argue for the adoption of measures to optimize key elements of the scientific process: methods, reporting and dissemination, reproducibility, evaluation and incentives. There is some evidence from both simulations and empirical studies supporting the likely effectiveness of these measures, but their broad adoption by researchers, institutions, funders and journals will require iterative evaluation and improvement. We discuss the goals of these measures, and how they can be implemented, in the hope that this will facilitate action toward improving the transparency, reproducibility and efficiency of scientific research.

What proportion of published research is likely to be false? Low sample size, small effect sizes, data dredging (also known as P-hacking), conflicts of interest, large numbers of scientists working competitively in silos without combinind their efforts. and so on. mav conspire to dramaticallv increase

The problem
A hallmark of scientific creativity is the ability to see novel and unexpected patterns in data. John Snow's identification of links between cholera and water supply ${ }^{17}$, Paul Broca's work on language lateralization ${ }^{18}$ and Jocelvn Bell Burnell's discoverv of pulsars ${ }^{19}$ are

Manifesto for reproducible science

Manifesto for reproducible science

- Claims for a rigorous research methodology.

Manifesto for reproducible science

- Claims for a rigorous research methodology.
- Key measures to optimize the scientific process.

Manifesto for reproducible science

- Claims for a rigorous research methodology.
- Key measures to optimize the scientific process.
- The word design appears 25 times in 7 pages in all sections.

Manifesto for reproducible science

- Claims for a rigorous research methodology.
- Key measures to optimize the scientific process.
- The word design appears 25 times in 7 pages in all sections.

Demands " (...) the process of describing in full the study design and data collected that underlie the results reported, rather than a curated version of the design, and/or a subset of the data collected".

Manifesto for reproducible science

- Claims for a rigorous research methodology.
- Key measures to optimize the scientific process.
- The word design appears 25 times in 7 pages in all sections.

Demands " (...) the process of describing in full the study design and data collected that underlie the results reported, rather than a curated version of the design, and/or a subset of the data collected".

Por una investigación de calidad (http://www.elespanol.com/ opinion/tribunas/20170227/197100289_12.html)

Outline

(1) FP models.

Outline

(1) FP models.
(2) Optimal design notation.

Outline

(1) FP models.
(2) Optimal design notation.
(3) D- and I-optimal designs for FP1, FP2 and FP3 models.

Outline

(1) FP models.
(2) Optimal design notation.
(3) D- and I-optimal designs for FP1, FP2 and FP3 models.
(4) T-optimal designs for model discrimination.

Outline

（1）FP models．
（2）Optimal design notation．
（3）D－and I－optimal designs for FP1，FP2 and FP3 models．
（4）T－optimal designs for model discrimination．
（5）Applications：

Outline

(1) FP models.
(2) Optimal design notation.
(3) D- and I-optimal designs for FP1, FP2 and FP3 models.
(4) T-optimal designs for model discrimination.
(5) Applications:
(1) Bio-medical models.

Outline

（1）FP models．
（2）Optimal design notation．
（3）D－and I－optimal designs for FP1，FP2 and FP3 models．
（4）T－optimal designs for model discrimination．
（5）Applications：
（1）Bio－medical models．
（2）Longitudinal studies．

Outline

（1）FP models．
（2）Optimal design notation．
（3）D－and I－optimal designs for FP1，FP2 and FP3 models．
（4）T－optimal designs for model discrimination．
（5）Applications：
（1）Bio－medical models．
（2）Longitudinal studies．
（3）Multi－factor models．

Outline

(1) FP models.
(2) Optimal design notation.
(3) D- and I-optimal designs for FP1, FP2 and FP3 models.
(4) T-optimal designs for model discrimination.
(5) Applications:
(1) Bio-medical models.
(2) Longitudinal studies.
(3) Multi-factor models.
(6) Conclusions.

Robust estimation

Robust estimation

Maximum Likely Look Estimator (MLLE)

FP models

Royston \& Altman (1994)

$$
\phi_{2}(x ; \mathbf{p})=\alpha_{0}+\alpha_{1} x^{\left(p_{1}\right)}+\alpha_{2} x^{\left(p_{2}\right)}
$$

Fractional Polynomial (FP) models

$$
\phi_{m}(x ; \mathbf{p})=\alpha_{0}+\sum_{j=1}^{m} \alpha_{j} H_{j}(x)
$$

- $H_{1}(x)=x^{\left(p_{1}\right)}$

$$
H_{j}(x)=\left\{\begin{array}{ll}
x^{\left(p_{j}\right)}, & \text { if } p_{j} \neq p_{j-1}, \\
H_{j-1}(x) \ln [x], & \text { if } p_{j}=p_{j-1},
\end{array} \quad \text { for } j=2, \ldots, m .\right.
$$

Fractional Polynomial（FP）models

$$
\phi_{m}(x ; \mathbf{p})=\alpha_{0}+\sum_{j=1}^{m} \alpha_{j} H_{j}(x)
$$

－$H_{1}(x)=x^{\left(p_{1}\right)}$

$$
\begin{gathered}
H_{j}(x)=\left\{\begin{array}{ll}
x^{\left(p_{j}\right)}, & \text { if } p_{j} \neq p_{j-1}, \\
H_{j-1}(x) \ln [x], & \text { if } p_{j}=p_{j-1},
\end{array} \quad \text { for } j=2, \ldots, m .\right. \\
\qquad x^{\left(p_{j}\right)}=\left\{\begin{array}{ll}
\ln [x] & \text { if } p_{j}=0 \\
x^{p_{j}} & \text { otherwise }
\end{array}\right. \text { (Box-Tidwell transformation) }
\end{gathered}
$$

Fractional Polynomial (FP) models

$$
\phi_{m}(x ; \mathbf{p})=\alpha_{0}+\sum_{j=1}^{m} \alpha_{j} H_{j}(x)
$$

- $H_{1}(x)=x^{\left(p_{1}\right)}$

$$
H_{j}(x)=\left\{\begin{array}{ll}
x^{\left(p_{j}\right)}, & \text { if } p_{j} \neq p_{j-1}, \\
H_{j-1}(x) \ln [x], & \text { if } p_{j}=p_{j-1},
\end{array} \quad \text { for } j=2, \ldots, m .\right.
$$

- $x^{\left(p_{j}\right)}=\left\{\begin{array}{ll}\ln [x] & \text { if } p_{j}=0 \\ x^{p_{j}} & \text { otherwise }\end{array}\right.$ (Box-Tidwell transformation)
- $\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right)$ with $p_{j} \in \mathcal{P}=\left\{-2,-1,-\frac{1}{2}, 0, \frac{1}{2}, 1,2,3\right\}$

$$
\left(p_{1} \leq \ldots \leq p_{m}\right)
$$

$$
x \neq 0(>0)
$$

Design Theory

Optimal Design Theory

－Approximate designs：$\xi=\left\{\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{k} \\ w_{1} & w_{2} & \ldots & w_{k}\end{array}\right\} \quad x_{i} \in \chi$ ξ is implemented by realizing about $n w_{i}$ experiments at x_{i}

Optimal Design Theory

- Approximate designs: $\xi=\left\{\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{k} \\ w_{1} & w_{2} & \ldots & w_{k}\end{array}\right\} \quad x_{i} \in \chi$ ξ is implemented by realizing about $n w_{i}$ experiments at x_{i}
- $M(\xi)=\int_{\chi} f(x) f(x)^{T} \xi(d x)$

Optimal Design Theory

- Approximate designs: $\xi=\left\{\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{k} \\ w_{1} & w_{2} & \ldots & w_{k}\end{array}\right\} \quad x_{i} \in \chi$ ξ is implemented by realizing about $n w_{i}$ experiments at x_{i}
- $M(\xi)=\int_{\chi} f(x) f(x)^{T} \xi(d x)$
- Criteria:

Optimal Design Theory

- Approximate designs: $\xi=\left\{\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{k} \\ w_{1} & w_{2} & \ldots & w_{k}\end{array}\right\} \quad x_{i} \in \chi$ ξ is implemented by realizing about $n w_{i}$ experiments at x_{i}
- $M(\xi)=\int_{\chi} f(x) f(x)^{T} \xi(d x)$
- Criteria:
- $\Phi_{D}(\xi)=-\ln |M(\xi)|$,

Optimal Design Theory

- Approximate designs: $\xi=\left\{\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{k} \\ w_{1} & w_{2} & \ldots & w_{k}\end{array}\right\} \quad x_{i} \in \chi$ ξ is implemented by realizing about $n w_{i}$ experiments at x_{i}
- $M(\xi)=\int_{\chi} f(x) f(x)^{T} \xi(d x)$
- Criteria:
- $\Phi_{D}(\xi)=-\ln |M(\xi)|$,
- $\Phi_{l}(\xi)=\int_{S} f(x)^{T} M^{-1}(\xi) f(x) \mu(d x)=\operatorname{tr} A M^{-1}(\xi)$,

Optimal Design Theory

－Approximate designs：$\xi=\left\{\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{k} \\ w_{1} & w_{2} & \ldots & w_{k}\end{array}\right\} \quad x_{i} \in \chi$ ξ is implemented by realizing about $n w_{i}$ experiments at x_{i}
－$M(\xi)=\int_{\chi} f(x) f(x)^{T} \xi(d x)$
－Criteria：
－$\Phi_{D}(\xi)=-\ln |M(\xi)|$ ，
－$\Phi_{I}(\xi)=\int_{S} f(x)^{T} M^{-1}(\xi) f(x) \mu(d x)=\operatorname{tr} A M^{-1}(\xi)$ ，
μ ，user－selected weighting measure over S
－$T_{21}(\xi)=\min _{\theta_{2} \in \Theta_{2}}\left[\int_{\mathcal{X}}\left\{\eta\left(x, \theta_{1}\right)-\eta_{2}\left(x, \theta_{2}\right)\right\}^{2} \xi(d x)\right]$ ． （assuming θ completely known）．

Optimality

- Equivalence Theorems:
- $f(x)^{T} M^{-1}\left(\xi_{D}^{\star}\right) f(x)-(m+1) \leq 0$ for all $x \in X$.
- $f(x)^{T} M^{-1}\left(\xi_{l}^{\star}\right) A M^{-1}\left(\xi_{l}^{\star}\right) f(x)-\operatorname{tr}^{\prime} A M^{-1}\left(\xi_{l}^{\star}\right) \leq 0$ for all $x \in X$.
- $\max _{x} \psi\left(x, \xi_{s}\right) \leq 0$ for all $x \in X$, where $\psi\left(x, \xi_{s}\right)=\left[f^{T}(x) \theta-f_{1}^{T}(x) \hat{\theta}_{1}\right]^{2}-\int_{\chi}\left[f^{T}(x) \theta-f_{1}^{T}(x) \hat{\theta}_{1}\right]^{2} \xi(d x)$, and $\hat{\theta}_{1}=\arg \min _{\theta_{1}} \int_{\chi}\left[f^{T}(x) \theta-f_{1}^{T}(x) \theta_{1}\right]^{2} \xi(d x)$.

Optimality

- Equivalence Theorems:
- $f(x)^{T} M^{-1}\left(\xi_{D}^{\star}\right) f(x)-(m+1) \leq 0$ for all $x \in X$.
- $f(x)^{T} M^{-1}\left(\xi_{l}^{\star}\right) A M^{-1}\left(\xi_{l}^{\star}\right) f(x)-\operatorname{tr} A M^{-1}\left(\xi_{l}^{\star}\right) \leq 0$ for all $x \in X$.
- $\max _{x} \psi\left(x, \xi_{s}\right) \leq 0$ for all $x \in X$, where

$$
\begin{aligned}
& \psi\left(x, \xi_{s}\right)=\left[f^{T}(x) \theta-f_{1}^{T}(x) \hat{\theta}_{1}\right]^{2}-\int_{\chi}\left[f^{T}(x) \theta-f_{1}^{T}(x) \hat{\theta}_{1}\right]^{2} \xi(d x), \\
& \text { and } \hat{\theta}_{1}=\arg \min _{\theta_{1}} \int_{\chi}\left[f^{T}(x) \theta-f_{1}^{T}(x) \theta_{1}\right]^{2} \xi(d x) .
\end{aligned}
$$

- Efficiencies: $\left(\frac{|M(\xi)|}{\left|M\left(\xi_{D}^{\star}\right)\right|}\right)^{\frac{1}{m+1}}, \frac{\Phi_{I}\left(\xi_{l}^{\star}\right)}{\Phi_{I}(\xi)}, \frac{T_{21}(\xi)}{T_{21}\left(\xi_{T}^{\star}\right)}$.

Optimal designs for FP models

Optimal designs for FP models

- $\chi=[\epsilon, a]$,

Optimal designs for FP models

- $\chi=[\epsilon, a]$,
- Closed-formed formulae,

Optimal designs for FP models

- $\chi=[\epsilon, a]$,
- Closed-formed formulae,
- A user-friendly applet

http://areaestadistica.uclm.es/oed/index.php/ computer-tools/

D-optimality:

D－optimality：

－Tchebyshev system（Karlin \＆Studden，1966）： No non－trivial polynomial in this system has at most $n-1$ zeros，counting multiplicity．

D-optimality:

- Tchebyshev system (Karlin \& Studden, 1966): No non-trivial polynomial in this system has at most $n-1$ zeros, counting multiplicity.
- For FP1, the GET for D-optimality says

$$
c(x)=f^{T}(x) M^{-1}\left(\xi^{\star}\right) f(x)-2 \leq 0 \text { for all } x \in[\epsilon, a] .
$$

D-optimality:

- Tchebyshev system (Karlin \& Studden, 1966): No non-trivial polynomial in this system has at most $n-1$ zeros, counting multiplicity.
- For FP1, the GET for D-optimality says

$$
c(x)=f^{T}(x) M^{-1}\left(\xi^{\star}\right) f(x)-2 \leq 0 \text { for all } x \in[\epsilon, a] .
$$

- $c(x)$ is a linear combination of $1, x^{p}, x^{2 p}$.

D-optimality:

- Tchebyshev system (Karlin \& Studden, 1966):

No non-trivial polynomial in this system has at most $n-1$ zeros, counting multiplicity.

- For FP1, the GET for D-optimality says

$$
c(x)=f^{T}(x) M^{-1}\left(\xi^{\star}\right) f(x)-2 \leq 0 \text { for all } x \in[\epsilon, a] .
$$

- $c(x)$ is a linear combination of $1, x^{p}, x^{2 p}$.
- They form a Tchebyshev system on the interval $[\epsilon, a]$ because

$$
\left|\begin{array}{ccc}
1 & x_{1}^{p} & x_{1}^{2 p} \\
1 & x_{2}^{p} & x_{2}^{2 p} \\
1 & x_{3}^{p} & x_{3}^{2 p}
\end{array}\right|=-\left(x_{1}^{p}-x_{2}^{p}\right)\left(x_{1}^{p}-x_{3}^{p}\right)\left(x_{2}^{p}-x_{3}^{p}\right)
$$

has the same sign for any $\epsilon \leq x_{1}<x_{2}<x_{3} \leq a$.
... for FP1(p) models
－Then for each $0 \neq p \in \mathcal{P}, c(x)$ has at most 2 zeros，so the D－optimal design is equally supported at 2 points （Pukelsheim，1993；Fedorov，1972）．

- Then for each $0 \neq p \in \mathcal{P}, c(x)$ has at most 2 zeros, so the D-optimal design is equally supported at 2 points (Pukelsheim, 1993; Fedorov, 1972).
- Direct calculations show that a design equally supported at the two end-points is D-optimal:

$$
c(x)=4\left(a^{p}-x^{p}\right)\left(\epsilon^{p}-x^{p}\right) /\left(a^{p}-\epsilon^{p}\right)^{2} \leq 0, p \neq 0 .
$$

- Then for each $0 \neq p \in \mathcal{P}, c(x)$ has at most 2 zeros, so the D-optimal design is equally supported at 2 points (Pukelsheim, 1993; Fedorov, 1972).
- Direct calculations show that a design equally supported at the two end-points is D-optimal:

$$
c(x)=4\left(a^{p}-x^{p}\right)\left(\epsilon^{p}-x^{p}\right) /\left(a^{p}-\epsilon^{p}\right)^{2} \leq 0, p \neq 0 .
$$

- A similar argument applies when $p=0$.

I-optimality:

- Components of the sensitivity function: $1, x^{p}, x^{2 p}$ when $p \neq 0$ and $\left\{1, \ln [x], \ln [x]^{2}\right\}$ when $p=0$.

I-optimality:

- Components of the sensitivity function: $1, x^{p}, x^{2 p}$ when $p \neq 0$ and $\left\{1, \ln [x], \ln [x]^{2}\right\}$ when $p=0$.
- They form a Tchebyshev system on $[\epsilon, a]$.

I-optimality:

- Components of the sensitivity function: $1, x^{p}, x^{2 p}$ when $p \neq 0$ and $\left\{1, \ln [x], \ln [x]^{2}\right\}$ when $p=0$.
- They form a Tchebyshev system on $[\epsilon, a]$.
- The weights are found by finding the roots of the sensitivity function of the design supported at $x=\epsilon$ and $x=a$.

$$
\xi_{D}^{\star}=\left\{\begin{array}{cc}
\epsilon & a \\
1 / 2 & 1 / 2
\end{array}\right\}
$$

... for FP1(p) models

$$
\begin{array}{rc}
\xi_{D}^{\star}=\left\{\begin{array}{cc}
\epsilon & a \\
1 / 2 & 1 / 2
\end{array}\right\} & \xi_{l}^{\star}=\left\{\begin{array}{cc}
\epsilon & a \\
w & 1-w
\end{array}\right\}
\end{array}
$$

Criteria D-opt 1-opt
FP 123

- $c(x)$ has at most 6 components: $1, x^{p}, x^{2 p}, x^{q}, x^{2 q}$ and x^{p+q}.
\qquad
- $c(x)$ has at most 6 components: $1, x^{p}, x^{2 p}, x^{q}, x^{2 q}$ and x^{p+q}.
- The Wronskians (Gasull et al., 2012) are positive for any p and q,

$$
\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{k}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{k}^{\prime}(x) \\
\cdots & \cdots & \cdots & \cdots \\
f_{1}^{(k)}(x) & f_{2}^{(k)}(x) & \cdots & f_{k}^{(k)}(x)
\end{array}\right|
$$

- $c(x)$ has at most 6 components: $1, x^{p}, x^{2 p}, x^{q}, x^{2 q}$ and x^{p+q}.
- The Wronskians (Gasull et al., 2012) are positive for any p and q,

$$
\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{k}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{k}^{\prime}(x) \\
\cdots & \cdots & \cdots & \cdots \\
f_{1}^{(k)}(x) & f_{2}^{(k)}(x) & \cdots & f_{k}^{(k)}(x)
\end{array}\right|
$$

- Thus, they form a Tchebyshev system.
－$c(x)$ has at most 6 components： $1, x^{p}, x^{2 p}, x^{q}, x^{2 q}$ and x^{p+q} ．
－The Wronskians（Gasull et al．，2012）are positive for any p and q ，

$$
\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{k}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{k}^{\prime}(x) \\
\cdots & \cdots & \cdots & \cdots \\
f_{1}^{(k)}(x) & f_{2}^{(k)}(x) & \cdots & f_{k}^{(k)}(x)
\end{array}\right|
$$

－Thus，they form a Tchebyshev system．
－There are at most 5 zeroes（counting multiplicities）．

- $c(x)$ has at most 6 components: $1, x^{p}, x^{2 p}, x^{q}, x^{2 q}$ and x^{p+q}.
- The Wronskians (Gasull et al., 2012) are positive for any p and q,

$$
\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{k}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{k}^{\prime}(x) \\
\cdots & \cdots & \cdots & \cdots \\
f_{1}^{(k)}(x) & f_{2}^{(k)}(x) & \cdots & f_{k}^{(k)}(x)
\end{array}\right|
$$

- Thus, they form a Tchebyshev system.
- There are at most 5 zeroes (counting multiplicities).
- The interior support points have multiplicity two.
- $c(x)$ has at most 6 components: $1, x^{p}, x^{2 p}, x^{q}, x^{2 q}$ and x^{p+q}.
- The Wronskians (Gasull et al., 2012) are positive for any p and q,

$$
\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{k}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{k}^{\prime}(x) \\
\cdots & \cdots & \cdots & \cdots \\
f_{1}^{(k)}(x) & f_{2}^{(k)}(x) & \cdots & f_{k}^{(k)}(x)
\end{array}\right|
$$

- Thus, they form a Tchebyshev system.
- There are at most 5 zeroes (counting multiplicities).
- The interior support points have multiplicity two.
- Thus, only three support points are possible: either 1 or 2 interior support points.

The two extreme points are within the optimal designs:

- Suppose an equally weighted design supported at $s_{1}<s_{2}<a$.

The two extreme points are within the optimal designs：
－Suppose an equally weighted design supported at $s_{1}<s_{2}<a$ ．
－If $0 \neq p \leq q$ ，

$$
|M(\xi)|=\frac{1}{27}\left|\begin{array}{ccc}
1 & s_{1}^{p} & s_{1}^{q} \\
1 & s_{2}^{p} & s_{2}^{q} \\
1 & a^{p} & a^{q}
\end{array}\right|^{2}=\frac{1}{27} D^{2}>0
$$

The two extreme points are within the optimal designs:

- Suppose an equally weighted design supported at $s_{1}<s_{2}<a$.
- If $0 \neq p \leq q$,

$$
|M(\xi)|=\frac{1}{27}\left|\begin{array}{ccc}
1 & s_{1}^{p} & s_{1}^{q} \\
1 & s_{2}^{p} & s_{2}^{q} \\
1 & a^{p} & a^{q}
\end{array}\right|^{2}=\frac{1}{27} D^{2}>0
$$

- D is always either positive or negative for any values of s_{1}, s_{2} and a (Chebyshev system).

The two extreme points are within the optimal designs:

- Suppose an equally weighted design supported at $s_{1}<s_{2}<a$.
- If $0 \neq p \leq q$,

$$
|M(\xi)|=\frac{1}{27}\left|\begin{array}{ccc}
1 & s_{1}^{p} & s_{1}^{q} \\
1 & s_{2}^{p} & s_{2}^{q} \\
1 & a^{p} & a^{q}
\end{array}\right|^{2}=\frac{1}{27} D^{2}>0
$$

- D is always either positive or negative for any values of s_{1}, s_{2} and a (Chebyshev system).
- Moreover,

$$
\frac{\partial D}{\partial s_{1}}=q s_{1}^{q-1}\left(a^{p}-s_{2}^{p}\right)-p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<0
$$

implies that $\frac{\partial|M(\xi)|}{\partial s_{1}}=(2 / 27) D \frac{\partial D}{\partial s_{1}}<0$.

The two extreme points are within the optimal designs:

- Suppose an equally weighted design supported at $s_{1}<s_{2}<a$.
- If $0 \neq p \leq q$,

$$
|M(\xi)|=\frac{1}{27}\left|\begin{array}{ccc}
1 & s_{1}^{p} & s_{1}^{q} \\
1 & s_{2}^{p} & s_{2}^{q} \\
1 & a^{p} & a^{q}
\end{array}\right|^{2}=\frac{1}{27} D^{2}>0
$$

- D is always either positive or negative for any values of s_{1}, s_{2} and a (Chebyshev system).
- Moreover,

$$
\frac{\partial D}{\partial s_{1}}=q s_{1}^{q-1}\left(a^{p}-s_{2}^{p}\right)-p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<0
$$

implies that $\frac{\partial|M(\xi)|}{\partial s_{1}}=(2 / 27) D \frac{\partial D}{\partial s_{1}}<0$.

- Thus, D is a decreasing function of s_{1}.

The two extreme points are within the optimal designs:

- Suppose an equally weighted design supported at $s_{1}<s_{2}<a$.
- If $0 \neq p \leq q$,

$$
|M(\xi)|=\frac{1}{27}\left|\begin{array}{ccc}
1 & s_{1}^{p} & s_{1}^{q} \\
1 & s_{2}^{p} & s_{2}^{q} \\
1 & a^{p} & a^{q}
\end{array}\right|^{2}=\frac{1}{27} D^{2}>0
$$

- D is always either positive or negative for any values of s_{1}, s_{2} and a (Chebyshev system).
- Moreover,

$$
\frac{\partial D}{\partial s_{1}}=q s_{1}^{q-1}\left(a^{p}-s_{2}^{p}\right)-p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<0
$$

implies that $\frac{\partial|M(\xi)|}{\partial s_{1}}=(2 / 27) D \frac{\partial D}{\partial s_{1}}<0$.

- Thus, D is a decreasing function of s_{1}.
- Consequently, ϵ is a support point of the D-optimal design.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- On the other hand by the mean value theorem, there exists a $c \in\left[s_{2}, a\right]$ such that $\left(a^{p}-s_{2}^{p}\right) /\left(a^{q}-s_{2}^{q}\right)=c^{p-q} p / q$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- On the other hand by the mean value theorem, there exists a $c \in\left[s_{2}, a\right]$ such that $\left(a^{p}-s_{2}^{p}\right) /\left(a^{q}-s_{2}^{q}\right)=c^{p-q} p / q$.
- Then, $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}=\left(s_{1} / c\right)^{q-p}<1$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- On the other hand by the mean value theorem, there exists a $c \in\left[s_{2}, a\right]$ such that $\left(a^{p}-s_{2}^{p}\right) /\left(a^{q}-s_{2}^{q}\right)=c^{p-q} p / q$.
- Then, $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}=\left(s_{1} / c\right)^{q-p}<1$.
- Then $\partial|M(\xi)| / \partial s_{1}<0$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- On the other hand by the mean value theorem, there exists a $c \in\left[s_{2}, a\right]$ such that $\left(a^{p}-s_{2}^{p}\right) /\left(a^{q}-s_{2}^{q}\right)=c^{p-q} p / q$.
- Then, $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}=\left(s_{1} / c\right)^{q-p}<1$.
- Then $\partial|M(\xi)| / \partial s_{1}<0$.
- The determinant of the FIM is a decreasing function of s_{1} and its maximum is reached at $s_{1}=\epsilon$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- On the other hand by the mean value theorem, there exists a $c \in\left[s_{2}, a\right]$ such that $\left(a^{p}-s_{2}^{p}\right) /\left(a^{q}-s_{2}^{q}\right)=c^{p-q} p / q$.
- Then, $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}=\left(s_{1} / c\right)^{q-p}<1$.
- Then $\partial|M(\xi)| / \partial s_{1}<0$.
- The determinant of the FIM is a decreasing function of s_{1} and its maximum is reached at $s_{1}=\epsilon$.
- Similarly, the optimal design is supported at $s_{3}=a$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- On the other hand by the mean value theorem, there exists a $c \in\left[s_{2}, a\right]$ such that $\left(a^{p}-s_{2}^{p}\right) /\left(a^{q}-s_{2}^{q}\right)=c^{p-q} p / q$.
- Then, $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}=\left(s_{1} / c\right)^{q-p}<1$.
- Then $\partial|M(\xi)| / \partial s_{1}<0$.
- The determinant of the FIM is a decreasing function of s_{1} and its maximum is reached at $s_{1}=\epsilon$.
- Similarly, the optimal design is supported at $s_{3}=a$.
- The above arguments apply to other cases:
- $0=p \neq q$,
- $p=q \neq 0$ and
- $p=q=0$.
- Last equation holds iff $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}<q 1$.
- On the one hand $p s_{1}^{p-1}\left(a^{q}-s_{2}^{q}\right)<q 0$.
- On the other hand by the mean value theorem, there exists a $c \in\left[s_{2}, a\right]$ such that $\left(a^{p}-s_{2}^{p}\right) /\left(a^{q}-s_{2}^{q}\right)=c^{p-q} p / q$.
- Then, $s_{1}^{q-p} \frac{q\left(a^{p}-s_{2}^{p}\right)}{p\left(a^{q}-s_{2}^{q}\right)}=\left(s_{1} / c\right)^{q-p}<1$.
- Then $\partial|M(\xi)| / \partial s_{1}<0$.
- The determinant of the FIM is a decreasing function of s_{1} and its maximum is reached at $s_{1}=\epsilon$.
- Similarly, the optimal design is supported at $s_{3}=a$.
- The above arguments apply to other cases:
- $0=p \neq q$,
- $p=q \neq 0$ and
- $p=q=0$.
- The interior support point is the unique root of the derivative of the sensitivity function.

$$
\xi_{D}^{\star}=\left\{\begin{array}{ccc}
\epsilon & s & a \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right\} \quad \cdots
$$

$$
\begin{aligned}
& \xi_{D}^{\star}=\left\{\begin{array}{ccc}
\epsilon & s & a \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right\} \quad \ldots \quad s=\left(\frac{\left(a^{q}-\epsilon^{q}\right) p}{\left(a^{p}-\epsilon^{p}\right) q}\right)^{1 /(-p+q)} \\
& \text { 0.7 } \\
& 0.6
\end{aligned}
$$

$$
\xi_{I}^{\star}=\left\{\begin{array}{ccc}
\epsilon & s & a \\
w_{1} & w_{2} & 1-w_{1}-w_{2}
\end{array}\right\}
$$

$\xi_{D}^{\star}=\left\{\begin{array}{cccc}\epsilon & s_{1} & s_{2} & a \\ 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4\end{array}\right\} \quad \xi_{l}^{\star}=\left\{\begin{array}{cccc}\epsilon & s_{1} & s_{2} & a \\ w_{1} & w_{2} & w_{3} & 1-\sum_{i} w_{i}\end{array}\right\}$
FP3(1,2,3) $\quad \xi_{0}:\left(\begin{array}{cccc}0.0001 & 0.2765 & 0.7236 & 1 \\ 0.25 & 0.25 & 0.25 & 0.25\end{array}\right) \quad \xi_{i}\left(\begin{array}{llll}0.0001 & 0.2818 & 0.7183 & 1 \\ 0.1549 & 0.3451 & 0.3451 & 0.1549\end{array}\right)$

FP3(-2,2,3) $\quad \xi_{0}:\left(\begin{array}{cccc}0.0001 & 0.0068 & 0.6667 & 1 \\ 0.25 & 0.25 & 0.25 & 0.25\end{array}\right) \quad \xi_{1}:\left(\begin{array}{lll}0.0001 & 0.0078 & 0.6582 \\ 0.0039 & 0.3597 & 0.4401 \\ 0.1963\end{array}\right)$

Model Uncertainty (FP2)

Order in FP2 models

Sorted by "s" (interior support point)

Introduced by Atkinson and Fedorov (1975a, b) for discriminating between two rival linear models

$$
T_{21}(\xi)=\min _{\theta_{2} \in \Theta_{2}}\left[\int_{\mathcal{X}}\left\{\eta\left(x, \theta_{1}\right)-\eta_{2}\left(x, \theta_{2}\right)\right\}^{2} \xi(d x)\right]
$$

Introduced by Atkinson and Fedorov (1975a, b) for discriminating between two rival linear models

$$
T_{21}(\xi)=\min _{\theta_{2} \in \Theta_{2}}\left[\int_{\mathcal{X}}\left\{\eta\left(x, \theta_{1}\right)-\eta_{2}\left(x, \theta_{2}\right)\right\}^{2} \xi(d x)\right] .
$$

KL-optimality for any distribution (López-Fidalgo, Tommasi and Trandafir, 2007):

$$
I_{21}(\xi)=\min _{\theta_{2} \in \Theta_{2}}\left\{\int_{\mathcal{X}} \mathcal{I}\left(f, f_{2}, x, \theta_{2}\right) \xi(d x)\right\}
$$

where $\mathcal{I}\left(f, f_{2}, x, \theta_{2}\right)=\int f(y, x, \tau) \log \left\{\frac{f(y, x, \tau)}{f_{2}\left(y, x, \theta_{2}, \tau\right)}\right\}$ is the Kullback-Leibler (KL) distance.

General KL-opt algorithm

(1) Given a design ξ_{s} at step s, compute

$$
\begin{gathered}
\theta_{2, s}=\arg \min _{\theta_{2} \in \Theta_{2}}\left\{\int_{\mathcal{X}} \mathcal{I}\left(f, f_{2}, x, \theta_{2}\right) \xi(d x)\right\} \\
x_{s}=\arg \max _{x \in \mathcal{X}}\left\{\mathcal{I}\left(f, f_{2}, x, \theta_{2, s}\right)\right\}
\end{gathered}
$$

General KL-opt algorithm

(1) Given a design ξ_{s} at step s, compute

$$
\begin{gathered}
\theta_{2, s}=\arg \min _{\theta_{2} \in \Theta_{2}}\left\{\int_{\mathcal{X}} \mathcal{I}\left(f, f_{2}, x, \theta_{2}\right) \xi(d x)\right\} \\
x_{s}=\arg \max _{x \in \mathcal{X}}\left\{\mathcal{I}\left(f, f_{2}, x, \theta_{2, s}\right)\right\}
\end{gathered}
$$

(2) Then

$$
\begin{gathered}
\xi_{s+1}=\left(1-\alpha_{s}\right) \xi_{s}+\alpha_{s} \xi_{x_{s}} \\
\left(0 \leq \alpha_{s} \leq 1, \lim _{s \rightarrow \infty} \alpha_{s}=0, \sum_{s=0}^{\infty} \alpha_{s}=\infty, \sum_{s=0}^{\infty} \alpha_{s}^{2}<\infty\right)
\end{gathered}
$$

General KL-opt algorithm

(1) Given a design ξ_{s} at step s, compute

$$
\begin{gathered}
\theta_{2, s}=\arg \min _{\theta_{2} \in \Theta_{2}}\left\{\int_{\mathcal{X}} \mathcal{I}\left(f, f_{2}, x, \theta_{2}\right) \xi(d x)\right\} \\
x_{s}=\arg \max _{x \in \mathcal{X}}\left\{\mathcal{I}\left(f, f_{2}, x, \theta_{2, s}\right)\right\}
\end{gathered}
$$

(2) Then

$$
\begin{gathered}
\xi_{s+1}=\left(1-\alpha_{s}\right) \xi_{s}+\alpha_{s} \xi_{x_{s}} \\
\left(0 \leq \alpha_{s} \leq 1, \lim _{s \rightarrow \infty} \alpha_{s}=0, \sum_{s=0}^{\infty} \alpha_{s}=\infty, \sum_{s=0}^{\infty} \alpha_{s}^{2}<\infty\right)
\end{gathered}
$$

(3) The stopping rule for the algorithm is based on the GET

$$
\left[1+\frac{\max _{x \in \mathcal{X}} \psi\left(x, \xi_{s}\right)}{l_{21}\left(\xi_{s}\right)}\right]^{-1}>\delta(=0.999)
$$

Some results

$$
\begin{aligned}
& f=\operatorname{FP} 1(0) ; \mathrm{f}_{2}=\operatorname{FP} 1(1 / 2) \quad\left\{\begin{array}{ccc}
0.01 & 0.153269 & 1 \\
\frac{73}{216} & \frac{1}{2} & \frac{35}{216}
\end{array}\right\} \\
& \mathrm{f}=\mathrm{FP} 1(1 / 2) ; \mathrm{f}_{2}=\operatorname{FP} 1(0) \quad\left\{\begin{array}{ccc}
0.01 & 0.152248 & 1 \\
\frac{19}{93} & \frac{1}{2} & \frac{55}{186}
\end{array}\right\} \\
& \mathrm{f}=\mathrm{FP} 1(0) ; \mathrm{f}_{2}=\operatorname{FP} 1(3) \quad\left\{\begin{array}{ccc}
0.01 & 0.417462 & 1 \\
\frac{89}{192} & \frac{1}{2} & \frac{7}{192}
\end{array}\right\} \\
& f=\operatorname{FP} 1(-2) ; \mathrm{f}_{2}=\operatorname{FP} 1(3) \quad\left\{\begin{array}{ccc}
0.01 & 0.148491 & 1 \\
\frac{263}{528} & \frac{1}{2} & \frac{1}{528}
\end{array}\right\}
\end{aligned}
$$

Efficiencies for FP1(p)

	D-eff (0)	D-eff $(1 / 2)$	l-eff (0)	I-eff $(1 / 2)$	T-eff $(0,1 / 2)$	T-eff $(1 / 2,0)$
$\xi_{D}(0,1 / 2)$	100	100	80.9	95.6	0.0	0.0
$\xi_{l}(0)$	87.4	87.4	100	91.2	0.0	0.0
$\xi_{l}(1 / 2)$	97.7	97.7	92.8	100	0.0	0.0
$\xi_{T}(0,1 / 2)$	71.4	66.2	55.7	51.4	100	85.9
$\xi_{T}(1 / 2,0)$	69.6	74.5	73.5	75.1	87.0	100

The value of p is between parentheses.

Applications to biomedical studies

Application 1
Chitty et al. (1993):

Chitty et al. (1993):

- Fetal measurements of mandible length for 158 fetuses between 12 and 28 weeks.

Application 1

Chitty et al. (1993):

- Fetal measurements of mandible length for 158 fetuses between 12 and 28 weeks.
- The logarithm of the mandible length given the gestational age is approximately homoscedastic and normally distributed.

Application 1

Chitty et al. (1993):

- Fetal measurements of mandible length for 158 fetuses between 12 and 28 weeks.
- The logarithm of the mandible length given the gestational age is approximately homoscedastic and normally distributed.
- Royston and Altman (1994):

Application 1

Chitty et al. (1993):

- Fetal measurements of mandible length for 158 fetuses between 12 and 28 weeks.
- The logarithm of the mandible length given the gestational age is approximately homoscedastic and normally distributed.
- Royston and Altman (1994):
- Goodness-of-fit of FP1 and FP2 models.

Application 1

Chitty et al. (1993):

- Fetal measurements of mandible length for 158 fetuses between 12 and 28 weeks.
- The logarithm of the mandible length given the gestational age is approximately homoscedastic and normally distributed.
- Royston and Altman (1994):
- Goodness-of-fit of FP1 and FP2 models.
- The best were FP1(-1) and FP2(-2,1).

Fig. 3. Extrapolated fit for the mandible data (shown on a log-scale) using two models: __ , fractional polynomial $\phi_{1}(X ;-1)$; --------, cubic polynomial

$$
\xi_{D}^{\star}=\left\{\begin{array}{cc}
12 & 28 \\
1 / 2 & 1 / 2
\end{array}\right\} \quad \xi_{l}^{\star}=\left\{\begin{array}{cc}
12 & 28 \\
0.4226 & 0.5774 \\
\mu=U[12,28]
\end{array}\right\}
$$

Application 1

FRACTIONAL POLYNOMIALS OF CONTINUOUS COVARIATES

Fig. 3. Extrapolated fit for the mandible data (shown on a log-scale) using two models: __, fractional polynomial $\phi_{1}(X ;-1)$; --------, cubic polynomial

$$
\begin{array}{cc}
\xi_{D}^{\star}=\left\{\begin{array}{cc}
12 & 28 \\
1 / 2 & 1 / 2
\end{array}\right\} & \xi_{l}^{\star}=\left\{\begin{array}{cc}
12 & 28 \\
0.4226 & 0.5774 \\
\mu=U[12,28]
\end{array}\right\} \\
\text { I-eff }\left(\xi_{D}^{\star}\right)=97.7 \% & \text { D-eff }\left(\xi_{l}^{\star}\right)=97.6 \%
\end{array}
$$

Application 2

Isaacs et al. (1983): Serum immunoglobulin G.

- IgG concentration: Monoclonal gammopathies and immune deficiencies in children between 6 months and 6 years old.

Application 2

Isaacs et al. (1983): Serum immunoglobulin G.

- IgG concentration: Monoclonal gammopathies and immune deficiencies in children between 6 months and 6 years old.
- 298 independent observations.

Application 2

Isaacs et al. (1983): Serum immunoglobulin G.

- IgG concentration: Monoclonal gammopathies and immune deficiencies in children between 6 months and 6 years old.
- 298 independent observations.
- Goal: how changing age affects \lg.

Application 2

Isaacs et al. (1983): Serum immunoglobulin G.

- IgG concentration: Monoclonal gammopathies and immune deficiencies in children between 6 months and 6 years old.
- 298 independent observations.
- Goal: how changing age affects IgG.
- $\lg G$ was skewed and was quite effectively removed by a square root transformation.

Application 2

Isaacs et al．（1983）：Serum immunoglobulin G．
－IgG concentration：Monoclonal gammopathies and immune deficiencies in children between 6 months and 6 years old．
－ 298 independent observations．
－Goal：how changing age affects IgG．
－ $\lg G$ was skewed and was quite effectively removed by a square root transformation．
－STATA or mfp package from R：Best fitting for FP2（－2，2）．

Application 2

Isaacs et al. (1983): Serum immunoglobulin G.

- IgG concentration: Monoclonal gammopathies and immune deficiencies in children between 6 months and 6 years old.
- 298 independent observations.
- Goal: how changing age affects \lg.
- IgG was skewed and was quite effectively removed by a square root transformation.
- STATA or mfp package from R: Best fitting for FP2(-2,2).
- Clinicians were interested in the $\lg G$ levels for children aged between 6 and 7 years old.

Application 2

Isaacs et al. (1983): Serum immunoglobulin G.

- IgG concentration: Monoclonal gammopathies and immune deficiencies in children between 6 months and 6 years old.
- 298 independent observations.
- Goal: how changing age affects \lg.
- IgG was skewed and was quite effectively removed by a square root transformation.
- STATA or mfp package from R: Best fitting for FP2(-2,2).
- Clinicians were interested in the $\lg G$ levels for children aged between 6 and 7 years old.
- Question was how best predict the $\lg G$ levels for this age group.

Fig. 5. Fits for IgG data: (a) $\phi_{2}(X ;-2,2)(-)$, quartic $(------)$; (b) $\phi_{2}\left(X ; \frac{1}{2}, 1\right)(-)$, cubic (-------)

$$
\xi_{D}^{\star}=\left\{\begin{array}{ccc}
0.5 & 1.7321 & 6 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right\}
$$

Fig. 5. Fits for IgG data: (a) $\phi_{2}(X ;-2,2)(-)$, quartic $(------)$; (b) $\phi_{2}\left(X ; \frac{1}{2}, 1\right)(-)$, cubic (-------)

$$
\begin{gathered}
\xi_{D}^{\star}=\left\{\begin{array}{ccc}
0.5 & 1.7321 & 6 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right\} \\
\text { D-eff }\left(\xi_{\text {implem. }}\right)=53.2 \%
\end{gathered}
$$

Fig. 5. Fits for IgG data: (a) $\phi_{2}(X ;-2,2)(-)$, quartic $(-----)$; (b) $\phi_{2}\left(X ; \frac{1}{2}, 1\right)(-)$, cubic

$$
\begin{array}{cc}
\xi_{D}^{\star}=\left\{\begin{array}{ccc}
0.5 & 1.7321 & 6 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right\} & \xi_{l}^{\star}=\left\{\begin{array}{ccc}
0.5 & 1.8491 & 6 \\
0.1194 & 0.5511 & 0.3295
\end{array}\right\}, U[.5,6] \\
\text { D-eff }\left(\xi_{\text {implem. } .}\right)=53.2 \% & \xi_{l}^{\star}=\left\{\begin{array}{ccc}
0.5 & 1.7391 & 6 \\
0.0135 & 0.1881 & 0.7984
\end{array}\right\}, \\
\ldots & \underbrace{\operatorname{incr}[6,7]}_{\mu}
\end{array}
$$

Application 3: longitudinal studies (growth curve with FP)

Advances in Bioinformatics

Figure 2: Time-course expression patterns for the 15 significant genes plotted according to the estimated power for transformation and sign of the regression coefficient.

- Longitudinal study (gene expression data).
- Longitudinal study (gene expression data).
- Linear mixed effects model.
- Longitudinal study (gene expression data).
- Linear mixed effects model.
- Optimal designs (Prus and Schwabe, 2016)
- Longitudinal study (gene expression data).
- Linear mixed effects model.
- Optimal designs (Prus and Schwabe, 2016)
- Random intercept: Results depend on the dispersion matrix, $\operatorname{cov}\left(\alpha_{i}\right)$.

... using appropriate OED theory

- Longitudinal study (gene expression data).
- Linear mixed effects model.
- Optimal designs (Prus and Schwabe, 2016)
- Random intercept: Results depend on the dispersion matrix, $\operatorname{cov}\left(\alpha_{i}\right)$.
FP1 $(-0.5): \xi_{D}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.5 & 0.5\end{array}\right\} \xi_{l}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.2280 & 0.7720\end{array}\right\}, U[0,24]$
$\operatorname{FP} 1(3): \xi_{D}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.5 & 0.5\end{array}\right\} \xi_{l}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.6726 & 0.3274\end{array}\right\}, U[0,24]$

... using appropriate OED theory

- Longitudinal study (gene expression data).
- Linear mixed effects model.
- Optimal designs (Prus and Schwabe, 2016)
- Random intercept: Results depend on the dispersion matrix, $\operatorname{cov}\left(\alpha_{i}\right)$.
FP1 $(-0.5): \xi_{D}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.5 & 0.5\end{array}\right\} \xi_{l}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.2280 & 0.7720\end{array}\right\}, U[0,24]$
$\operatorname{FP} 1(3): \xi_{D}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.5 & 0.5\end{array}\right\} \xi_{l}^{\star}=\left\{\begin{array}{cc}0 & 24 \\ 0.6726 & 0.3274\end{array}\right\}, U[0,24]$
Obs: For ξ_{l}^{\star} :

$$
\frac{1}{w}=1+\sqrt{\frac{(p+1) a^{2 p+1}+a(2 p+1)\left[(p+1) \epsilon^{2 p}-2(a \epsilon)^{p}\right]-2 p^{2} \epsilon^{2 p+1}}{2 p^{2} a^{2 p+1}-(p+1)(2 p+1) \epsilon a^{2 p}+\epsilon\left[2(2 p+1)(a \epsilon)^{p}-(p+1)\right.}}
$$

More covariates... Multi-factor FP models

(1) Product type designs (Rafajlowicz and Myszka, 1992).

More covariates... Multi-factor FP models

(1) Product type designs (Rafajlowicz and Myszka, 1992).
(2) Multiplicative or additive regression functions.

More covariates．．．Multi－factor FP models

（1）Product type designs（Rafajlowicz and Myszka，1992）．
（2）Multiplicative or additive regression functions．
（3）$\xi_{1}^{D} \otimes \ldots \otimes \xi_{k}^{D}$ D－optimal（multiplicative or additive）．

More covariates．．．Multi－factor FP models

（1）Product type designs（Rafajlowicz and Myszka，1992）．
（2）Multiplicative or additive regression functions．
（3）$\xi_{1}^{D} \otimes \ldots \otimes \xi_{k}^{D}$ D－optimal（multiplicative or additive）．
（4）$\xi_{1}^{\prime} \otimes \ldots \otimes \xi_{k}^{\prime}$ I－optimal under stringent conditions on μ ：

More covariates... Multi-factor FP models

(1) Product type designs (Rafajlowicz and Myszka, 1992).
(2) Multiplicative or additive regression functions.
(3) $\xi_{1}^{D} \otimes \ldots \otimes \xi_{k}^{D}$ D-optimal (multiplicative or additive).
(4) $\xi_{1}^{\prime} \otimes \ldots \otimes \xi_{k}^{\prime}$ I-optimal under stringent conditions on μ :
(1) Multiplicative model: independent marginals μ_{1}, \ldots, μ_{k},

More covariates... Multi-factor FP models

(1) Product type designs (Rafajlowicz and Myszka, 1992).
(2) Multiplicative or additive regression functions.
(3) $\xi_{1}^{D} \otimes \ldots \otimes \xi_{k}^{D}$ D-optimal (multiplicative or additive).
(4) $\xi_{1}^{\prime} \otimes \ldots \otimes \xi_{k}^{\prime}$ I-optimal under stringent conditions on μ :
(1) Multiplicative model: independent marginals μ_{1}, \ldots, μ_{k}, .
(2) Additive model: $\int_{\chi_{i}^{\star}} f_{i}^{\star}\left(x_{i}^{\star}\right) \mu_{i}^{\star}\left(d x_{i}^{\star}\right)=0$, for $i=1, \ldots, k$.

Conclusions

Conclusions

(1) FP models increasingly used, more flexible than polynomials.

Conclusions

(1) FP models increasingly used, more flexible than polynomials.
(2) D-, I- and T-optimal designs for FP1, FP2 and FP3 models.

Conclusions

(1) FP models increasingly used, more flexible than polynomials.
(2) D-, I- and T-optimal designs for FP1, FP2 and FP3 models.
(1) Closed-formed formulae.

Conclusions

(1) FP models increasingly used, more flexible than polynomials.
(2) D-, I- and T-optimal designs for FP1, FP2 and FP3 models.
(1) Closed-formed formulae.
(2) A user-friendly applet

http://areaestadistica.uclm.es/oed/index.php/ computer-tools/

Conclusions

(1) FP models increasingly used, more flexible than polynomials.
(2) D-, I- and T-optimal designs for FP1, FP2 and FP3 models.
(1) Closed-formed formulae.
(2) A user-friendly applet

http://areaestadistica.uclm.es/oed/index.php/ computer-tools/
(3) Applications:

Conclusions

(1) FP models increasingly used, more flexible than polynomials.
(2) D-, I- and T-optimal designs for FP1, FP2 and FP3 models.
(1) Closed-formed formulae.
(2) A user-friendly applet

http://areaestadistica.uclm.es/oed/index.php/ computer-tools/
(3) Applications:
(1) Bio-medical studies.

Conclusions

(1) FP models increasingly used, more flexible than polynomials.
(2) D-, I- and T-optimal designs for FP1, FP2 and FP3 models.
(1) Closed-formed formulae.
(2) A user-friendly applet

http://areaestadistica.uclm.es/oed/index.php/ computer-tools/
(3) Applications:
(1) Bio-medical studies.
(2) Longitudinal models.

Conclusions

(1) FP models increasingly used, more flexible than polynomials.
(2) D-, I- and T-optimal designs for FP1, FP2 and FP3 models.
(1) Closed-formed formulae.
(2) A user-friendly applet

http://areaestadistica.uclm.es/oed/index.php/ computer-tools/
(3) Applications:
(1) Bio-medical studies.
(2) Longitudinal models.
(3) Multi-factor FP models.

Our web site

Optimun Experimental Design Group

\checkmark Researchers \vee Projects Publications Computer Tools Consulting Events Links

Computer Tools

- BiokmodWeb, applications to pharmacokinetic, internal dosimetry and nuclear medicine, by Dr. Guillermo Sánchez León. (web link)
- Computer tool based on webMathematica for Mathematics and Statistics, by Dr. Guillermo Sánchez León. (web link)
- Computer tool based on webMathematica for Optimal Desing, by Dr. Juan Manuel Rodriguez-Diaz. (web link)
- OEDferFPTmodels: Interactive Applet (developed using Mathematica) to generate Optimal Experimental Design for Fractional Polynomial models up to degree 3, by Victor Casero-Alonso, Jesús López-Fidalgo and Weng Kee Wong (with the help of Diego Urruchi).
The free CDF Player from wolfram.com is needed (or a version 8 or higher of Mathematica software).
- MVbinary: Interactive Applet (developed using Mathematica) to generate Optimal Designs for the minimax criterion MV in binary response and heteroscedastic simple regression models, by Victor Casero-Alonso, Jesús López-Fidalgo and Ben Torsney (with the help of Diego Urruchi).
The free CDF Player from wolfram.com is needed (or a version 8 or higher of Mathematica software).
Based on paper: Casero-Alonso, López-Fidalgo and Torsnery (2017)
In: Computer Methods and Programs in Biomedicine
DOI: http://dx.doi.org/10.1016/J.cmpb.2016.10.009
- OED_Hormesis: Interactive web App (based on R-Shiny) to generate Optimal Experimental Design for detecting Hormesis by Victor Casero-Alonso, Andrey Pepelyshev and Weng Kee Wong.

Optimum experimental design group

The world of Statistics

Selected references

Fedorov V.V. (1972), Theory of optimal experiments, Academic Press.
López-Fidalgo J and Tommasi Ch and Trandafir C (2007) An optimal experimental design criterion for discriminating between non-normal models. Journal of the Royal Statistical Society, Series B 69, 231-242,

Royston P. and Altman D.G. (1994), Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling, Applied Statistics, 43, 429-467.Royston P. and Sauerbrei W. (2004), A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials, Statist. Med., 23, 2509-2525.

Prus M. and Schwabe R. (2016) Optimal designs for the prediction of individual parameters in hierarchical models, J. R. Statist. Soc. B, 78, 175?-191

Rafajłowicz E. and Myszka W. (1992), When product type experimental design is optimal? Brief survey and new results, Metrika, 39, 321-333,Wong W.K. (1994), G-optimal designs for multi-factor experiments with heteroscedastic errors, Journal of Statistical Planning and Inference, 40, 127-133.

