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Improving the reliability and efficiency of scientific research will increase the credibility of the published sci
and accelerate discovery. Here we argue for lhe adoption cf measures to optimize key elements of the scienti
andil

ods, reporting and di:

°, Eric-Jan i

There is some evidence from both

empirical studies supporting the likely effectiveness of these measures, but their broad adoption by researchers,

tions,
funders and journals will require iterative evaluation and improvement. We dlscuss the goals of these measures, and how they
s - d

towardil

can be implemented, in the hope that this will
of scientific research.

hat proportion of published research is likely to be false?
Low sample size, small effect sizes, data dredging (also
known as P-hacking), conflicts of interest, large num-

bers of scientists working competitively in silos without combin-
in their efforts. and so on. mav consoire to dramatically increase

the P an y

The problem

A hallmark of scientific creativity is the ability to see novel and
unexpected patterns in data. John Snow’s identification of links
between cholera and water supply, Paul Broca’s work on language
lateralization** and Tocelvn Bell Burnell’s discoverv of pulsars® are
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Manifesto for reproducible science

e Claims for a rigorous research methodology.

o Key measures to optimize the scientific process.

e The word design appears 25 times in 7 pages in all sections.
Demands “ (...) the process of describing in full the study design
and data collected that underlie the results reported, rather than a
curated version of the design, and/or a subset of the data
collected".

Por una investigacién de calidad (http://www.elespanol.com/
opinion/tribunas/20170227/197100289_12.html)
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FP models
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da(x; p) = ap + arxP) 4 apx(P?)
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Royston & Altman (1994)
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Fractional Polynomial (FP) models

Pm(x;p) = a0 + Y _ ajH;(x)
j=1

° H].(X) — X(Pl)

(pi) if p: .
. _ ) X if p;j # pj-1, P
H;i(x) { Hi1()Inlx], i pj = pj1, forj=2,...,m.

o x(P) = In[g] if pj :_0 (Box-Tidwell transformation)
xPi otherwise

1 1
® p:(plv"'apm) with pjGP:{_27_17_§707§a17273}
(PL< ... < pm) .
x #0(>0)
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Optimal Design Theory

. . X1 X2 ... X
e Approximate designs: £ = Wl W2 Wk } Xi € X

& is implemented by realizing about nw; experiments at x;
/ f(x)f(x)T€&(dx)

e Criteria:
o Bp(E) = — In[M(E)],
. (6) = /S Fx)T MY E)F(x)u(dx) = tr AML(¢),

1, user-selected weighting
measure over S

o Tr1(€) = ming,co, [ [ {n(x,01) — m2(x, 02) }2¢(dx)] .

(assuming 6 completely known).
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e Equivalence Theorems:
o f(x)TM7HERF(x) —(m+1) < 0forall x € X.

o F(x)TM7YHEHNAMTLE)F(x) — trAMTL(&r) < 0 for all
x € X.

e max, ¥(x,&s) < 0 for all x € X, where .
b(x,&) = [FT ()0 — AT ()01 = [ [F T (x)0 — £ (x)1]2¢(d),
and 0; = argming, N [FT(x)0 — AT (x)01]%¢(dx).

1
IM(€)| >m+1 O/(&)  Ta(f)
IM(5)] L) Tale)

e Efficiencies: <
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Optimal designs for FP models

* X = [Eva]v

e Closed—formed formulae,

Wolfram

e A user-friendly applet ): Mathematica

http://areaestadistica.uclm.es/oed/index.php/
computer-tools/


http://areaestadistica.uclm.es/oed/index.php/computer-tools/
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D-optimality:

e Tchebyshev system (Karlin & Studden, 1966):
No non-trivial polynomial in this system has at most n — 1
zeros, counting multiplicity.

e For FP1, the GET for D—optimality says
c(x) = FT(x)M~L(£)F(x) — 2 <0 for all x € [e, a].
e c(x) is a linear combination of 1, xP, x2P.

e They form a Tchebyshev system on the interval [e, a] because

xP

._.
R

2
X" 1= =04 =) —x3)0g =),

Re]
N
he]

X3 X3

has the same sign for any € < x1 < x2 < x3 < a.
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e Then for each 0 # p € P, c¢(x) has at most 2 zeros, so the
D—optimal design is equally supported at 2 points
(Pukelsheim, 1993; Fedorov, 1972).

e Direct calculations show that a design equally supported at
the two end—points is D—optimal:

c(x) = 4(aP — xP) (P — xP) / (aP — €P)*> < 0,p # 0.

e A similar argument applies when p = 0.
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... for FP1(p) models

I-optimality:
e Components of the sensitivity function: 1, xP, x2? when p # 0
and {1,In[x], In[x]?} when p = 0.
e They form a Tchebyshev system on [e, a].

e The weights are found by finding the roots of the sensitivity
function of the design supported at x = ¢ and x = a.
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o = € a
b 1/2 1/2
Criteria [D_opt I-opt
FP 123
p|3 -
f,(0.0001 1
o\ 05 05

... for FP1(p) models

€ a
w 1—w

& =

1 (p+1)a?P+L4a(2p+1)[(p+1)e?P —2(ac)P] —2p22P+1
+ 2p2a2Pt1— (p+1)(2p+1)ea2P+e[2(2p+1)(ae)P — (p+1)€2P]

CriteriaD-opt [Izopt |
i Ez 3

p 3 -
v |Ule T U, 120 inel1,1.2] decr1,1.2]
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o 0e 0 10
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... for FP2(p,q)

c(x) has at most 6 components: 1,xP, x?P, x9, x?9 and xP*9.

The Wronskians (Gasull et al., 2012) are positive for any p
and q,

A(x)  BK) - R(X)
Ax)  Bkx) - fx)
90) B9 - 1)

Thus, they form a Tchebyshev system.
There are at most 5 zeroes (counting multiplicities).
The interior support points have multiplicity two.

Thus, only three support points are possible: either 1 or 2
interior support points.
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e Suppose an equally weighted design supported at 51 < s2 < a

e If0#p<q,
2
M= L1 331y
201 & 4 27

D is always either positive or negative for any values of s1, s

and a (Chebyshev system).

e Moreover,
oD _
D _ g5y~ (P — £) — psf (a7 — ) < 0
851
implies that 8|M(5 (2/27)DgE < 0.

Thus, D is a decreasmg function of s;.
Consequently, € is a support point of the D—optimal design
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: cc q—pa(aP—s))
Last equation holds iff s; P(aq—sz’) < ql.

On the one hand psP ' (a? — sJ) < q0.
On the other hand by the mean value theorem, there exists a
¢ € [s2, a] such that (aP — sb)/(a% — s3) = cP~9p/q.

_ p_gsP _
Then, s/ ng:q_g = (s1/c)9 P <1
Then 9|M(&)|/0s1 < 0.

The determinant of the FIM is a decreasing function of s; and

its maximum is reached at s; = €.

Similarly, the optimal design is supported at s3 = a.
The above arguments apply to other cases:

e 0=p#q,
e p=g#0and

The interior support point is the unique root of the derivative
of the sensitivity function.



... for FP2(p,q)

. ) e s a
D=V 13 13 13 (



Interval [0.0001,1]

... for FP2(p.,q)

x _ € 5 a B (a% —€9) p 1/(—p+aq)

0.7 o
[ ]
0.6 0.6
L]
05 . 05 | Valuesofq
°3
2
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* * 1
‘ » 05
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o -05
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L] N :
0.1 S o
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Values of p



. ) e s a
/ wi wo 1—w—w
[+] (-]
Criteria p_apt [I-apt| Criteria D—opt [I—opt |
FP 112 3 FP 1|23
[:] L]
: :
a SEN
u U[1,1.2] inaf1,12] decr1,1.2] ¥ Ule, 11 [UR,1.2) inaf1,12] decrt,1.2]
& 0.0001 0.5699 1 .{0.0001 0.5811 1
"10.2821 0.4941 0.2238 "\ 0.0806 0.3055 0.6139
0.0 0.2 0.4 06 0.8 1.0

0.0 02 0.4 08 08

o>



... FP3(p,q.r)
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Model Uncertainty (FP2)
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Order in FP2 models

Sorted by “s” (interior support point)

FP2_36 4
0.7 0.7
o FP2_35
06 . FP2_34 06
_05 . 05 Va.lueé’s of q
= o FP2_30 o 2
o .
1= o FP2.29 o1
= o FP2_28 s 05
g 03 K I
= oFP2.27
-05
02 0z | .4
L ] a _2
0.1 * 0.1
: .
. - .
00_# ) ® M . . . . 00
-2 -1 -0.5 0 0.5 1 2 3

Values of p
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Introduced by Atkinson and Fedorov (1975a, b) for discriminating
between two rival linear models

Taa(€) = min | [ {0(x61) — (. 62) ()

0,€0,

KL—-optimality for any distribution (Lépez-Fidalgo, Tommasi and
Trandafir, 2007):

ba(€) = min {/Xl'(f,fg,x,eg)g(dx)}

0,0,

fy,x,7) }
here Z(f,f,x,0>) = [ f I 2 th
where Z(f, f, x, 02) / (y,x,7) og{fz(ij’%ﬁ) is the
Kullback-Leibler (KL) distance.



General KL—opt algorithm

@ Given a design & at step s, compute

02,5 = arg min {/XI(f, fz,x,92)§(dx)}

0,0,

Xs = arg Xmeag{l'(f, f2,x,02.5)}.



General KL—opt algorithm

@ Given a design & at step s, compute

02,5 = arg min {/XI(f, fz,x,92)§(dx)}

0,0,

Xs = arg Xmeag{l'(f, f2,x,02.5)}.

® Then
£s+1 = (1 - O‘s)fs + OéSng

(0 <as <1, limg oo as = 0,32 g as = 00,3225 a2 < o).



General KL—opt algorithm

@ Given a design & at step s, compute

02,5 = arg min {/Xl'(f, fz,x,92)§(dx)}

0,0,

Xs = arg Tea%({l'(f, f2,x,02.5)}.

® Then
Es+1 = (1 — as)és + asés,
(0 <as <1, limg oo as = 0,32 g as = 00,3225 a2 < o).
© The stopping rule for the algorithm is based on the GET

maxeexr(x, €))7

bt h1(&s)

> §(= 0.999)



Some results
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Efficiencies for FP1(p)

D-eff  D-eff l-eff |-eff T-eff T-eff
0  (@/2) (0 (1/2) (0,1/2) (1/2,0)

€p(0,1/2) 100 100 809 956 0.0 0.0
£(0) 874 874 100 912 0.0 0.0
¢(1/2) 97.7 977 928 100 0.0 0.0

¢r(0,1/2) 714 662 557 514 100 85.9
¢r(1/2,0) 69.6 745 735 751  87.0 100

The value of p is between parentheses.
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Application 1

Chitty et al. (1993):

e Fetal measurements of mandible length for 158 fetuses
between 12 and 28 weeks.

e The logarithm of the mandible length given the gestational
age is approximately homoscedastic and normally distributed.

¢ Royston and Altman (1994):

e Goodness-of-fit of FP1 and FP2 models.
e The best were FP1(-1) and FP2(-2,1).
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Mandible length (mm), log scale

© 1B 20 24 B 2
Gestational age (weeks)

Fig. 3. Extrapolated fit for the mandible data (shown on a log-scale) using two models: , fractional
polynomial ¢, (X; —1); -—------, cubic polynomial
o] 12 28 o] 12 28
b 1/2 1/2 ! 0.4226 0.5774

p = U[12,28]
I-eff(¢5) = 97.7% D—eff(¢}) = 97.6%
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Isaacs et al. (1983): Serum immunoglobulin G.
e lgG concentration: Monoclonal gammopathies and immune
deficiencies in children between 6 months and 6 years old.
e 298 independent observations.
e Goal: how changing age affects IgG.

e IgG was skewed and was quite effectively removed by a square
root transformation.

e STATA or mfp package from R: Best fitting for FP2(-2,2).

e Clinicians were interested in the IgG levels for children aged
between 6 and 7 years old.

e Question was how best predict the IgG levels for this age
group.
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Application 3: longitudinal studies (growth curve with FP)

Advances in Bioinformatics
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FiGURE 2: Time-course expression patterns for the 15 significant genes plotted according to the estimated power for transformation and sign
of the regression coefficient.
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. using appropriate OED theory

Longitudinal study (gene expression data).
Linear mixed effects model.
Optimal designs (Prus and Schwabe, 2016)

Random intercept: Results depend on the dispersion matrix,
cov(a;).

. Jo 24 0 24
FP1(-05): &p = {0.5 0.5} &= {0.2280 0.7720} , U[0, 24]

0 24 0 24
. * *
FP1(3): &) = {0.5 0.5} &= {0.6726 0.3274} U0, 24]
Obs: For &;:

1
7:1_’_
w

\/ (p+1)a2r*1 + a(2p + 1) [(p + 1)€2P — 2(ae)P] — 2p2e2p+1
2p2a%rtl — (p+1)(2p+ 1)ea®P + €[2(2p + 1)(ae)P — (p+ 1)
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More covariates... Multi-factor FP models
@ Product type designs (Rafajlowicz and Myszka, 1992).
® Multiplicative or additive regression functions.
© P ®...® &P D-optimal (multiplicative or additive).

(4] {{ ®...® 5,’( [-optimal under stringent conditions on p:

@ Multiplicative model: independent marginals p1, ..., fik,-
@ Additive model: fx-* X (x)ur(dxr) =0, for i=1,... k.
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© Applications:
@ Bio—medical studies.

® Longitudinal models.
©® Multi-factor FP models.
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@ BiokmodWeb, applications to pharmacokinetic, internal dosimetry and nuclear medicine, by Dr. Guillermo
Sanchez Leon. (web link)

= Computer tool based on webMathematica for Mathematics and Statistics, by Dr. Guillermo Sanchez Leon.
(web link)

@ Computer tool based on webMathematica for Optimal Desing, by Dr. Juan Manuel Rodriguez-Diaz. (web link)

 OEDferFPTIodels: Interactive Applet (developed using Mathematica) to generate Oplimal Experimet

" for Fractional Polynomial models up to degree 3, by Victor Casero-Alonso, Jests Lopez-Fidalgo and Weng
Kee Wong (with the help of Diego Urruchi) _

“The-free CDF Player from wolfram.com is needed (or @ version 8 or higher of Math

& MVbinary: Interactive Applet (developed using Mathematica) to generate Optimal Designs for the minimax
criterion MV in binary response and heteroscedastic simple regression models, by Victor Casero-Alonso,
Jesus Lopez-Fidalgo and Ben Torsney (with the help of Diego Urruchi).

The free CDF Player from wolfram.com is needed (or a version 8 or higher of Mathematica software).
Based on paper: Casero-Alonso, Lépez-Fidalgo and Torsnery (2017)

In: Computer Methods and Programs in Biomedicine

DOI: http://dx.doi.org/10.1016/j.cmpb.2016.10.009

© OED_Hormesis: Interactive web App (based on R-Shiny) to generate Optimal Experimental Design for
detecting Hormesis by Victor Casero-Alonso, Andrey Pepelyshev and Weng Kee Wong
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