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FP models



Royston & Altman (1994)

φ2(x ;p) = α0 + α1x (p1) + α2x (p2)



Fractional Polynomial (FP) models

φm(x ;p) = α0 +
m∑
j=1

αjHj(x)

• H1(x) = x (p1)

Hj(x) =
{

x (pj ), if pj 6= pj−1,
Hj−1(x) ln[x ], if pj = pj−1,

for j = 2, . . . ,m.

• x (pj ) =
{

ln[x ] if pj = 0
xpj otherwise (Box-Tidwell transformation)

• p = (p1, . . . , pm) with pj ∈ P = {−2,−1,−1
2 , 0,

1
2 , 1, 2, 3}

(p1 ≤ . . . ≤ pm) ⇓
x 6= 0(> 0)



Fractional Polynomial (FP) models

φm(x ;p) = α0 +
m∑
j=1

αjHj(x)

• H1(x) = x (p1)

Hj(x) =
{

x (pj ), if pj 6= pj−1,
Hj−1(x) ln[x ], if pj = pj−1,

for j = 2, . . . ,m.

• x (pj ) =
{

ln[x ] if pj = 0
xpj otherwise (Box-Tidwell transformation)

• p = (p1, . . . , pm) with pj ∈ P = {−2,−1,−1
2 , 0,

1
2 , 1, 2, 3}

(p1 ≤ . . . ≤ pm) ⇓
x 6= 0(> 0)



Fractional Polynomial (FP) models

φm(x ;p) = α0 +
m∑
j=1

αjHj(x)

• H1(x) = x (p1)

Hj(x) =
{

x (pj ), if pj 6= pj−1,
Hj−1(x) ln[x ], if pj = pj−1,

for j = 2, . . . ,m.

• x (pj ) =
{

ln[x ] if pj = 0
xpj otherwise (Box-Tidwell transformation)

• p = (p1, . . . , pm) with pj ∈ P = {−2,−1,−1
2 , 0,

1
2 , 1, 2, 3}

(p1 ≤ . . . ≤ pm) ⇓
x 6= 0(> 0)



Design Theory



Optimal Design Theory

• Approximate designs: ξ =
{

x1 x2 . . . xk
w1 w2 . . . wk

}
xi ∈ χ

ξ is implemented by realizing about nwi experiments at xi

• M(ξ) =
∫
χ

f (x)f (x)T ξ(dx)

• Criteria:

• ΦD(ξ) = − ln |M(ξ)|,
• ΦI(ξ) =

∫
S

f (x)TM−1(ξ)f (x)(dx) = tr AM−1(ξ),

• T21(ξ) = minθ2∈Θ2

[∫
X {η(x , θ1)− η2(x , θ2)}2ξ(dx)

]
.

(assuming θ completely known).
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Optimality

• Equivalence Theorems:
• f (x)TM−1(ξ?D)f (x)− (m + 1) ≤ 0 for all x ∈ X .

• f (x)TM−1(ξ?I )AM−1(ξ?I )f (x)− trAM−1(ξ?I ) ≤ 0 for all
x ∈ X .

• maxx ψ(x , ξs) ≤ 0 for all x ∈ X , where
ψ(x , ξs) = [f T (x)θ− f T1 (x)θ̂1]2−

∫
χ

[f T (x)θ− f T1 (x)θ̂1]2ξ(dx),
and θ̂1 = argminθ1

∫
χ

[f T (x)θ − f T1 (x)θ1]2ξ(dx).

• Efficiencies:
(
|M(ξ)|
|M(ξ?D)|

) 1
m + 1 , ΦI(ξ?I )

ΦI(ξ) , T21(ξ)
T21(ξ?T ) .
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Optimal designs for FP models

• χ = [ε, a],

• Closed–formed formulae,

• A user-friendly applet

http://areaestadistica.uclm.es/oed/index.php/
computer-tools/

http://areaestadistica.uclm.es/oed/index.php/computer-tools/
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... for FP1(p) models
D–optimality:

• Tchebyshev system (Karlin & Studden, 1966):
No non-trivial polynomial in this system has at most n − 1
zeros, counting multiplicity.

• For FP1, the GET for D–optimality says
c(x) = f T (x)M−1(ξ?)f (x)− 2 ≤ 0 for all x ∈ [ε, a].

• c(x) is a linear combination of 1, xp, x2p.
• They form a Tchebyshev system on the interval [ε, a] because

1 xp
1 x2p

1
1 xp

2 x2p
2

1 xp
3 x2p

3

= −(xp
1 − xp

2 )(xp
1 − xp

3 )(xp
2 − xp

3 ),

has the same sign for any ε ≤ x1 < x2 < x3 ≤ a.
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... for FP1(p) models

• Then for each 0 6= p ∈ P, c(x) has at most 2 zeros, so the
D–optimal design is equally supported at 2 points
(Pukelsheim, 1993; Fedorov, 1972).

• Direct calculations show that a design equally supported at
the two end–points is D–optimal:

c(x) = 4 (ap − xp) (εp − xp) / (ap − εp)2 ≤ 0, p 6= 0.

• A similar argument applies when p = 0.
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... for FP1(p) models
I–optimality:

• Components of the sensitivity function: 1, xp, x2p when p 6= 0
and {1, ln[x ], ln[x ]2} when p = 0.

• They form a Tchebyshev system on [ε, a].
• The weights are found by finding the roots of the sensitivity
function of the design supported at x = ε and x = a.
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... for FP1(p) models

ξ?D =
{

ε a
1/2 1/2

}

ξ?I =
{

ε a
w 1− w

}
1
w

= 1 +

√
(p+1)a2p+1+a(2p+1)[(p+1)ε2p−2(aε)p]−2p2ε2p+1

2p2a2p+1−(p+1)(2p+1)εa2p+ε[2(2p+1)(aε)p−(p+1)ε2p]
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... for FP2(p,q)

• c(x) has at most 6 components: 1, xp, x2p, xq, x2q and xp+q.

• The Wronskians (Gasull et al., 2012) are positive for any p
and q,

f1(x) f2(x) · · · fk(x)
f ′1(x) f ′2(x) · · · f ′k(x)
· · · · · · · · · · · ·

f (k)
1 (x) f (k)

2 (x) · · · f (k)
k (x)

,

• Thus, they form a Tchebyshev system.
• There are at most 5 zeroes (counting multiplicities).
• The interior support points have multiplicity two.
• Thus, only three support points are possible: either 1 or 2
interior support points.
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f1(x) f2(x) · · · fk(x)
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f (k)
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The two extreme points are within the optimal designs:

• Suppose an equally weighted design supported at s1 < s2 < a.

• If 0 6= p ≤ q,

|M(ξ)| = 1
27

∣∣∣∣∣∣∣
1 sp1 sq1
1 sp2 sq2
1 ap aq

∣∣∣∣∣∣∣
2

= 1
27D2 > 0

• D is always either positive or negative for any values of s1, s2
and a (Chebyshev system).

• Moreover,

∂D
∂s1

= qsq−11 (ap − sp2 )− psp−11 (aq − sq2 ) < 0

implies that ∂|M(ξ)|
∂s1 = (2/27)D ∂D

∂s1 < 0.
• Thus, D is a decreasing function of s1.
• Consequently, ε is a support point of the D–optimal design.
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... for FP2(p,q)

• Last equation holds iff sq−p1
q(ap−sp2 )
p(aq−sq2 ) < q1.

• On the one hand psp−11 (aq − sq2 ) < q0.
• On the other hand by the mean value theorem, there exists a

c ∈ [s2, a] such that (ap − sp2 )/(aq − sq2 ) = cp−qp/q.
• Then, sq−p1

q(ap−sp2 )
p(aq−sq2 ) = (s1/c)q−p < 1.

• Then ∂|M(ξ)|/∂s1 < 0.
• The determinant of the FIM is a decreasing function of s1 and
its maximum is reached at s1 = ε.

• Similarly, the optimal design is supported at s3 = a.
• The above arguments apply to other cases:

• 0 = p 6= q,
• p = q 6= 0 and
• p = q = 0.

• The interior support point is the unique root of the derivative
of the sensitivity function.
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... for FP2(p,q)

ξ?D =
{

ε s a
1/3 1/3 1/3

}
. . .

s =
((aq − εq) p

(ap − εp) q

)1/(−p+q)

●

●

●

●

●

●

●

●

■

■

■

■

■

■
■

◆

◆

◆

◆
◆◆

▲

▲

▲▲▲ ▼▼▼▼ ○○○ □□◇◇

-2 -1 -0.5 0 0.5 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Values of p

In
te
rv
al

[0
.0
00
1
,1
]

Values of q
● 3

■ 2

◆ 1

▲ 0.5

▼ 0

○ -0.5

□ -1

◇ -2



... for FP2(p,q)

ξ?D =
{

ε s a
1/3 1/3 1/3

}
. . . s =

((aq − εq) p
(ap − εp) q

)1/(−p+q)

●

●

●

●

●

●

●

●

■

■

■

■

■

■
■

◆

◆

◆

◆
◆◆

▲

▲

▲▲▲ ▼▼▼▼ ○○○ □□◇◇

-2 -1 -0.5 0 0.5 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Values of p

In
te
rv
al

[0
.0
00
1
,1
]

Values of q
● 3

■ 2

◆ 1

▲ 0.5

▼ 0

○ -0.5

□ -1

◇ -2



ξ?I =
{

ε s a
w1 w2 1− w1 − w2

}



... FP3(p,q,r)

ξ?D =
{

ε s1 s2 a
1/4 1/4 1/4 1/4

}
ξ?I =

{
ε s1 s2 a

w1 w2 w3 1−
∑

i wi

}

FP3(1,2,3)

FP3(-2,2,3)



Model Uncertainty (FP2)
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Order in FP2 models

Sorted by “s” (interior support point)
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T–opt

Introduced by Atkinson and Fedorov (1975a, b) for discriminating
between two rival linear models

T21(ξ) = min
θ2∈Θ2

[∫
X
{η(x , θ1)− η2(x , θ2)}2ξ(dx)

]
.

KL–optimality for any distribution (López-Fidalgo, Tommasi and
Trandafir, 2007):

I21(ξ) = min
θ2∈Θ2

{∫
X
I(f , f2, x , θ2)ξ(dx)

}

where I(f , f2, x , θ2) =
∫

f (y , x , τ) log
{ f (y , x , τ)

f2(y , x , θ2, τ)

}
is the

Kullback–Leibler (KL) distance.
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General KL–opt algorithm

1 Given a design ξs at step s, compute

θ2,s = arg min
θ2∈Θ2

{∫
X
I(f , f2, x , θ2)ξ(dx)

}
xs = argmax

x∈X
{I(f , f2, x , θ2,s)}.

2 Then
ξs+1 = (1− αs)ξs + αsξxs

(0 ≤ αs ≤ 1, lims→∞ αs = 0,
∑∞

s=0 αs =∞,
∑∞

s=0 α
2
s <∞).

3 The stopping rule for the algorithm is based on the GET[
1 + maxx∈Xψ(x , ξs)

I21(ξs)

]−1
> δ(= 0.999)
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Some results

f=FP1(0); f2=FP1(1/2)
{

0.01 0.153269 1
73
216

1
2

35
216

}

f=FP1(1/2); f2=FP1(0)
{

0.01 0.152248 1
19
93

1
2

55
186

}

f=FP1(0); f2=FP1(3)
{

0.01 0.417462 1
89
192

1
2

7
192

}

f=FP1(-2); f2=FP1(3)
{

0.01 0.148491 1
263
528

1
2

1
528

}



Efficiencies for FP1(p)

D-eff D-eff I-eff I-eff T-eff T-eff
(0) (1/2) (0) (1/2) (0, 1/2) (1/2, 0)

ξD(0, 1/2) 100 100 80.9 95.6 0.0 0.0
ξI(0) 87.4 87.4 100 91.2 0.0 0.0
ξI(1/2) 97.7 97.7 92.8 100 0.0 0.0
ξT (0, 1/2) 71.4 66.2 55.7 51.4 100 85.9
ξT (1/2, 0) 69.6 74.5 73.5 75.1 87.0 100

The value of p is between parentheses.



Applications to biomedical
studies



Application 1
Chitty et al. (1993):

• Fetal measurements of mandible length for 158 fetuses
between 12 and 28 weeks.

• The logarithm of the mandible length given the gestational
age is approximately homoscedastic and normally distributed.

• Royston and Altman (1994):
• Goodness-of-fit of FP1 and FP2 models.
• The best were FP1(-1) and FP2(-2,1).
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Application 1

ξ?D =
{

12 28
1/2 1/2

}
ξ?I =

{
12 28

0.4226 0.5774

}
µ = U[12, 28]

I–eff(ξ?D) = 97.7% D–eff(ξ?I ) = 97.6%
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Application 2
Isaacs et al. (1983): Serum immunoglobulin G.

• IgG concentration: Monoclonal gammopathies and immune
deficiencies in children between 6 months and 6 years old.

• 298 independent observations.
• Goal: how changing age affects IgG.
• IgG was skewed and was quite effectively removed by a square
root transformation.

• STATA or mfp package from R: Best fitting for FP2(-2,2).
• Clinicians were interested in the IgG levels for children aged
between 6 and 7 years old.

• Question was how best predict the IgG levels for this age
group.
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Application 3: longitudinal studies (growth curve with FP)



... using appropriate OED theory

• Longitudinal study (gene expression data).

• Linear mixed effects model.
• Optimal designs (Prus and Schwabe, 2016)
• Random intercept: Results depend on the dispersion matrix,

cov(αi).
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2p2a2p+1 − (p + 1)(2p + 1)εa2p + ε [2(2p + 1)(aε)p − (p + 1)ε2p] .
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More covariates... Multi-factor FP models

1 Product type designs (Rafajlowicz and Myszka, 1992).

2 Multiplicative or additive regression functions.

3 ξD1 ⊗ . . .⊗ ξDk D–optimal (multiplicative or additive).

4 ξI1 ⊗ . . .⊗ ξIk I–optimal under stringent conditions on µ:

1 Multiplicative model: independent marginals µ1, . . . , µk ,.
2 Additive model:

∫
χ?
i

f ?i (x?i )µ?i (dx?i ) = 0, for i = 1, . . . , k.
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