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1. New criterion for optimal experimental design
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Very brief introduction to Optimal Design

▶ The data (xi, yi)1≤i≤N ∈ X × R
(X ⊂ (−∞,∞) is the domain of explanatory variable x.)

▶ Assume a regression model

yi = b⊤f(xi) + εi, εi ∼ N(0, σ2(xi)) i.i.d.

b ∈ Rn×1 (unknown), f(x) ∈ Rn×1 (known), σ2(x) > 0
(known)

▶ The LS: b̂ ∼ N(b,Σ), where

Σ = M−1, M =

N∑
i=1

f(xi)f(xi)
⊤ 1

σ2(xi)
(information matrix)

▶ “Optimal design” is to find a good {x1, . . . , xN} ∈ XN and
hence good M , e.g., that maximizes

det(Var(̂b))−1 = det(M) (D-optimal criterion)
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Simultaneous confidence bands

▶ 100(1− α)%-simultaneous confidence band:

P
(
b⊤f(x) ∈ b̂⊤f(x)± ∥M− 1

2 f(x)∥ · cα︸ ︷︷ ︸
confidence band

for all x ∈ X
)
= 1−α

▶ Example of a confidence band:

b⊤f(x) = x2−x+1, σ2(x) ≡ 1, xi = 1, 0,−1, X = [−1, 1]
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Blue : Estimated curves (20 times)
Red : 90% Confidence band (Naiman’s volume-of-tube method)
Black : Conservative 90% confidence band (Scheffè)
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Volume-of-tube method (to determine cα)

▶ The trajectory of the normalized regression basis vector

Γ =

{
± M− 1

2 f(x)

∥M− 1
2 f(x)∥

| x ∈ X

}
⊂ Sn−1 (unit sphere in Rn)

Let

Vol1(Γ) : 1-dim volume (length) of Γ

χ(Γ) : the number of connected components of Γ

Proposition 1 (Naiman’s (1986) volume-of-tube method)

P
(
b⊤f(x) ∈ b̂⊤f(x)± ∥M− 1

2 f(x)∥ · c for all x ∈ X
)

⪆ 1− Vol1(Γ)

2π
P
(
χ2
2 > c2

)
− χ(Γ)

2
P
(
χ2
1 > c2

)
(1)

(“≥” holds for all c ≥ 0, “≈” holds when c is large)

▶ By equating the RHS (1) to 1− α, c = cα is obtained.
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Volume criterion — New optimal design criterion

▶ Naiman’s formula (redisplay)

P
(
b⊤f(x) ∈ b̂⊤f(x)± ∥M− 1

2 f(x)∥ · cα︸ ︷︷ ︸
band width

for all x ∈ X
)

⪆ 1− Vol1(Γ)

2π
P
(
χ2
2 > c2α

)
− χ(Γ)

2
P
(
χ2
1 > c2α

)
(= 1− α)

▶ Propose a new criterion of optimal experimental design so
that the width of confidence band is minimal.
That is, the design minimizes ∥M− 1

2 f(x)∥ and Vol1(Γ)

▶ The design that minimizes maxx∈X ∥M− 1
2 f(x)∥ is known to

be the D-optimal design (Kiefer-Wolfowitz’s equivalence
theorem).

▶ We propose the optimal design that minimizes Vol1(Γ).
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Problem is not convex!

▶ From now on, consider a polynomial regression (cf. Dette, et
al., 1999)

f(x) = (1, x, . . . , xn−1)⊤

▶ For example, length(M) := Vol1(M) for

M = (1− α)
1

8

(
3 0 1
0 1 0
1 0 3

)
+ α

1

72

(
15 + 4

√
3 0 1

0 1 0

1 0 7− 4
√
3

)
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length(M )

▶ The problem is not convex.

8 / 26



2. Polynomial regression and Möbius group action
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Volume criterion — New optimal design criterion (contd)

▶ The length of the curve Γ is

length(M) := Vol1(Γ) =

∫
X

∥∥∥∥∥ d

dx

(
M− 1

2 f(x)

∥M− 1
2 f(x)∥

)∥∥∥∥∥ dx
=

∫
X

√
f⊤M−1f · g⊤M−1g − (fM−1g)2

f⊤M−1f
dx

where f(x) = (1, . . . , xn−1)⊤, g(x) = d
dxf(x)

▶ Problem: Minimize
length(M)

subject to M ∈ M, where

M =

{
M =

∫
X
f(x)f(x)⊤dP (x) | P : positive measure

}
(moment cone)

▶ Note: Instead of {xi}1≤i≤N , we use the design measure P .
▶ length(M) is homogeneous in M , M can be a cone.
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Volume optimal design (polynomial regression)

▶ The moment cone M is equivalent to the set of positive
definite Hankel matrices (Karlin and Studden, 1966)

M ∈ M =




m0 m1 mn−1

m1 . .
.

. .
.

m2n−3

mn−1 m2n−3 m2n−2


n×n

≻ 0


▶ Objective function length(M) is an elliptic integral
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Möbius group action

▶ Let R = R ∪ {±∞}. The map φ : R → R:

x 7→ φ(x) = φ(x; a, b, c, d) =
ax+ b

cx+ d
(ad− bc ̸= 0)

the (real) Möbius transform
▶ f(x) = (1, x, . . . , xn−1)⊤

Define a matrix A = A(a, b, c, d) by

f(φ(x)) = Af(x)
1

(cx+ d)n−1

e.g., when n = 3, 1
ax+b
cx+d

(ax+b
cx+d)

2


︸ ︷︷ ︸

f(φ(x))

=

d2 2cd c2

bd bc+ ad ac
b2 2ab a2


︸ ︷︷ ︸

A

 1
x
x2


︸ ︷︷ ︸
f(x)

1

(cx+ d)2

▶ A = {A | ad− bc ̸= 0} forms a group (a representation of
GL(2))
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Möbius group action (contd)

Lemma 1
If M is Hankel, then AMA⊤ (A ∈ A) is Hankel. That is, the
group A acts onto M.

▶ We can define a equivalence relation:

M1 ∼ M2 ⇔ M2 = AM1A
⊤, ∃A ∈ A

(M1 and M2 are on the same orbit)

Theorem 1
The group A remains the length length(M) invariant, i.e.,

length(M1) = length(M2) if M1 ∼ M2

▶ We can reduce the dimension of the optimization problem.
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3. Optimization over the cross-section space
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Orbital decomposition

▶ From now on, we restricted our attention to the case n = 3.

Theorem 2
The moment cone M (= set of positive definite Hankel matrices)
has an orbital decomposition

M =
⊔

v∈(0, 1
3
]

{M | M ∼ Mv}

where

Mv =

1 0 v
0 v 0
v 0 1

 ∈ M
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Orbital decomposition (contd)

Proof of Theorem 2.
We can show that for any M ∈ M,

M
(i)∼

u1 1 1
1 1 1
1 1 w1

 (ii)∼

u2 0 v2
0 v2 0
v2 0 w2

 (iii)∼

 1 0 v3
0 v3 0
v3 0 1

 = Mv3

(i) and (iii) are easy.
For (ii), we need to find A = A(a, b, c, d) such that

A

u1 1 1
1 1 1
1 1 w1

A⊤ =

u2 0 v2
0 v2 0
v2 0 w2


by solving algebraic equations with checking resultants so that
ad− bc ̸= 0. (algebraic statistics here?)
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Optimization on the cross-section space

▶ The volume (length) of Γ at Mv is

length(Mv) =

∫ ∞

−∞
s(x; v)dx

where

s(x; v) =

√
1−v2

v

√
1 + 6vx2 + x4

1 + ( 1v − 3v)x2 + x4

(still elliptic integral...)

Theorem 3
Over v ∈ (0, 1/3], the minimum of length(Mv) is attained if and
only if v = 1/3, i.e.,

M = M1/3 =

1 0 1
3

0 1
3 0

1
3 0 1


The minimum is 2π

√
2
3 .
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Optimization on the cross-section space (contd)

Proof of Theorem 3.
Using 1/

√
1 + z ≥ 1− z/2, construct a lower bound:

s(x; v) ≥ s(x; v) =

√
1−v2

v (1 + 6vx2 + x4)

(1 + ( 1v − 3v)x2 + x4)(1 + x2)

(
1+

(1− 3v)x2

(1 + x2)2

)
(equality iff v = 1/3)
s(x; v) is a rational function and the integral can be evaluated by
residues.
Fortunately,

min
v∈(0,1/3]

∫ ∞

−∞
s(x; v)dx attains at v = 1/3

and ∫ ∞

−∞
s(x; v)dx =

∫ ∞

−∞
s(x; v)dx at v = 1/3
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Optimization on the cross-section space (contd)
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v

Objective function and its (integrable) lower bound

length(Mv) =

∫ ∞

−∞
s(x; v)dx ≥

∫ ∞

−∞
s(x; v)dx
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4. Summary and open problems
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Optimal design in the polynomial regression (n = 3)

Theorem 4 (polynomial regression)

M is volume-mimimum optimal design iff

M = AM1/3A
⊤, ∃A ∈ A, M1/3 =

1 0 1
3

0 1
3 0

1
3 0 1


Concretely

M = k

 1 r q2

3 + r2

r q2

3 + r2 r(q2 + r2)
q2

3 + r2 r(q2 + r2) (q2 + r2)2

 , q ̸= 0, k > 0

Proof.
A ∈ A has a decomposition

A(a, b, c, d) = k A(q, r, 0, 1)︸ ︷︷ ︸
affine

A(±s,∓t, t, s)︸ ︷︷ ︸
O(2) (isotropy group)

,

{
s = cos θ
t = sin θ
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Optimal design in the polynomial regression (n = 3) (contd)

Remark 1
It is known that

M1/3 =

1 0 1
3

0 1
3 0

1
3 0 1


is the D-optimal information matrix.{

Whole designs
}

(4-dim)

⊋
{
Minimum-volume optimal designs

}
(2-dim)

⊋
{
D-optimal design

}
(0-dim)

The D-optimal design is a universal optimal design that optimizes
both D-criterion and volume criterion
(hence, minimizes the width of simultaneous confidence bands).
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Optimization in the polynomial regression (n = 3) (contd)

Remark 2
The minimum-volume design M ∈ M is attained iff the curve

Γ+ =
{
M− 1

2 f(x)/∥M− 1
2 f(x)∥ | x ∈ X

}
forms a circle.
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Future topic: Multivariate extension

▶ x = (xi)
⊤
1≤i≤p

f(x) = (1, (xi)1≤i≤p, (xixj)1≤i≤j≤p, . . . , (xi1 · · ·xid)1≤i1≤···≤id)
⊤

∈ R[x](
p+d
d )

▶ Möbius transform Rp → Rp

φ(x;A, b, c, d) =
Ax+ b

c⊤x+ d
, A ∈ Rp×p, b, c ∈ Rp×1, d ∈ R

▶ “Volume preserving property” holds:

Vol(M) = Vol(AMA⊤), A ∈ A, M ∈ M

▶ Moment cone:

M =

{∫
X⊂R(

p+d
d )

f(x)f(x)⊤dP (x) | P : positive measure

}
= ?
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Summary

▶ We proposed a new optimal design criterion — volume
criterion.

▶ For the polynomial regression problems, the Möbius group acts
on the moment cone M, and keeps our problem invariant.

▶ When n = 3, by the optimization over cross-section space, we
found the Möbius group orbit passing through the D-optimal
design are minimum-volume optimal.
(We conjecture that this is true for arbitrary n.)
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