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Setup
discrimination between a pair of non-linear regression models

yi = η0(θ0, xi ) + εi , i = 1, ...,n,
yi = η1(θ1, xi ) + εi , i = 1, ...,n,

with a finite design space X and a design D = (x1, ..., xn) on X,
independent, zero-mean and normal errors with the same variance
σ2 ∈ (0,∞) for all observations and both models.

Thus we’ll be mainly talking about exact designs today.

But let us also introduce ξ as a probability measure on X derived from D as

ξ(x) = n−1#{i ∈ {1, ...,n} : xi = x}.
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Brief review of discrimination designs

Early ad-hoc approaches (Hunter & Reiner, 1965, Box & Hill, 1967) are
reviewed in Hill (1978).
Big step: T-optimality by Atkinson & Fedorov (1975):

T (ξ) = inf
θ1

∫
X

(η0(x)− η1(θ1, x))2 dξ(x),

where η0 is assumed to be true and fixed (asymmetry!)
For nested models T-optimal designs maximize the power of the LR-test
against local alternatives.

For nested linear models differing by one parameter T - and Ds-optimality
(Stigler, 1971) coincide.

Dette & Titoff (2009) conceive T-optimality as a general nonlinear
approximation problem and reveal further connections between T - and
Ds-optimality in the partially nonlinear case.

Extension to nonnormal errors using KL-distance by López-Fidalgo et al.
(2007).
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Nonnested models

We cannot constrain one of the models such that the parameter spaces
coincide (Cox, 1961).

An asymmetric design criterion is thus not appropriate.

A natural decision rule is then whether likelihood ratio

L(θ̂0)/L(θ̂1) >< 1 (π1/π0 for Bayesians).

We will for this talk assume m := m0=m1, but for m0 6= m1 Cox (2013)
recommends L(θ̂0)/L(θ̂1)(em1/em0 )n/ñ instead, which corresponds to the
BIC.
In the normal model the probability of a correct decision is then

P

[
min
θ0∈Θ0

n∑
i=1

(η0(θ0, xi )− yi ))2 ≤ min
θ1∈Θ1

n∑
i=1

(η1(θ1, xi )− yi ))2

]
.
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“Symmetric” discrimination criteria

“weighted” T -optimality (Atkinson, 2008): maximize

Eff 1−κ
T0

EffκT1

Ds-optimality in an encompassing model (Atkinson, 1972):

η2(η0(θ0, x), η1(θ1, x), λ)

An algorithmic construction switching between assuming true η0 and η1
(Vajjah & Dufful, 2012).

Bayesian approaches, eg. Felsenstein (1992), Nowak & Guthke (2016).

Sequental design: Buzzi-Ferraris & Forzatti (1983), M.& Ponce de Leon
(1996), Schwaab et al. (2006).
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A motivating example
Let η0(θ0, x) = θ0x and η1(θ1, x) = eθ1x . Two observations y1, y2 at fixed
design points x1 = −1 and x2 = 1. Then θ̂0 = y2−y1

2 and θ̂1 is the solution of
2e−θ

(
y1 − e−θ

)
− 2eθ

(
y2 − eθ

)
= 0, which for −2 ≤ y1 ≤ 2 is the root of the

polynomial θ4 − θ3y2 + θy1 − 1.
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Figure: left panel: contour plot of log L(θ̂0)− log L(θ̂1), solid line corresponds to 0; right
panel: corresponding contour plot for the model η1 linearized at θ1 = 1.
Radoslav Harman1,2 and Werner G. Müller1 A design criterion for symmetric model discrimination 7th August 2017 7 / 33



Nominal confidence sets
Traditional “localized” approach to the design of non-linear models (Chernoff
1953) requires a pair of “nominal parameter values”:

θ̃0 ∈ Θ0, θ̃1 ∈ Θ1.

We extend this notion to “nominal confidence sets”

Θ̃0 ⊆ Θ0, Θ̃1 ⊆ Θ1,

such that θ̃0 ∈ Θ̃0 and θ̃1 ∈ Θ̃1.

We assume: if Model k is the correct one, Θ̃k contains the true value θ̄k with a
high degree of certainty (for both k = 0,1).

Nominal confidence sets allow us to
1 modify the decision rule: maximize the likelihood functions over Θ̃0, Θ̃1;
2 use a “restricted” linear approximation of Models 0 and 1.
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Linearisation over nominal confidence sets
Let D = (x1, ..., xn) ∈ Dn (the set of permissible n-point exact designs on X).
Let us perform the following linearisation of Models k = 0,1 in θ̃k :

(yi )
n
i=1 ≈ Fk (D)θk + ak (D) + ε,

where Fk (D) in an n ×m matrix given by

Fk (D) =
(
∇ηk (θ̃k , x1), . . . ,∇ηk (θ̃k , xn)

)T
,

ak (D) is an n-dimensional vector

ak (D) = (ηk (θ̃k , xi ))n
i=1 − Fk (D)θ̃k ,

θk ∈ Θ̃k , and ε = (ε1, . . . , εn)T ∼ Nn(0n, σ
2In).

Note: here we do not subtract ak (D) from the vector of observations, which is
usual if we linearise a single non-linear regression model. (However, if ηk
corresponds to the standard linear model then ak (D) = 0 for any D.)
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The delta criterion and exact delta-optimal designs
Consider the following criterion on the set of all exact designs D ∈ Dn:

δ(D) = inf
θ0∈Θ̃0,θ1∈Θ̃1

δ(D|θ0, θ1), where

δ(D|θ0, θ1) = ‖F0(D)θ0 + a0(D)− {F1(D)θ1 + a1(D)}‖2
.

The criterion δ can be viewed as an approximation of the square of the
nearest distance of the mean-value surfaces of the models, in the
neighbourhoods of the vectors (η0(θ̃0, xi ))n

i=1 and (η1(θ̃1, xi ))n
i=1.

Value of δ(D) is always well defined, and if Θ̃0, Θ̃1 are both compact (or if
Θ̃0 = Θ̃1 = Rm), the infimum is attained.

The design D∗ ∈ Dn maximizing δ(D) will be called δ-optimal:

D∗ ∈ argmaxD∈Dn
δ(D).

Note that D∗ depends on n, θ̃0, θ̃1, as well as on Θ̃0 and Θ̃1.
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The delta criterion and exact delta-optimal designs

𝜂1(Θ1, 𝑥1)
𝜂1(Θ1, 𝑥2)𝜂0(Θ0, 𝑥1)

𝜂0(Θ0, 𝑥2)

𝑚 = 1, 𝑛 = 2

𝜂1( ෨𝜃1, 𝑥1)

𝜂1( ෨𝜃1, 𝑥2)

𝜂0( ෨𝜃0, 𝑥1)

𝜂0( ෨𝜃0, 𝑥2)

𝛿 𝑥1, 𝑥2

Figure: Illustrative graph for the definition of δ(D) for a one-parametric model
(Θ0,Θ1 ⊂ R) and a two-point design (D = (x1, x2)). The line segments correspond to
the sets {F0(D)θ0 + a0(D) : θ0 ∈ Θ̃0} and {F1(D)θ1 + a1(D) : θ1 ∈ Θ̃1} for some
nominal confidence sets Θ̃0 ⊆ Θ0 and Θ̃1 ⊆ Θ1.
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Alternative expression of the delta criterion
Let D = (x1, ..., xn) ∈ Dn, let ξ be a probability measure on X derived from D.
For θ̃ = (θ̃T

0 , θ̃
T
1 )T , k ∈ {0,1} and x ∈ X let

∆η(θ̃, x) = η0(θ̃0, x)− η1(θ̃1, x),

∇η(θ̃, x) =

(
∇ηT

0 (θ̃0, x)
... −∇ηT

1 (θ̃1, x)

)T

.

For any θ0 ∈ Θ0, θ1 ∈ Θ1 and θ = (θT
0 , θ

T
1 )T :

n−1δ(D|θ0, θ1) = (θ − θ̃)T M(ξ, θ̃)(θ − θ̃) + 2bT (ξ, θ̃)(θ − θ̃) + c(ξ, θ̃),

where
M(ξ, θ̃) =

∫
X

∇η(θ̃, x)∇ηT (θ̃, x)dξ(x),

b(ξ, θ̃) =

∫
X

∆η(θ̃, x)∇η(θ̃, x)dξ(x),

c(ξ, θ̃) =

∫
X

[∆η(θ̃, x)]2dξ(x).
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The linearised response difference model
The matrix M(ξ, θ̃) is the normalized information matrix for the linear model

zi = ∇ηT (θ̃, xi )θ + εi

= ∇ηT
0 (θ̃0, xi )θ0 −∇ηT

1 (θ̃1, xi )θ1 + εi ; i = 1, ...,n,

with parameter θ = (θT
0 , θ

T
1 )T ; we will call it a “response difference model”.

It is simple to show that computing
δ(D) = inf

θ0∈Θ̃0,θ1∈Θ̃1

δ(D|θ0, θ1)

is equivalent to computing the “restricted” LSE of θ within Θ̃ = Θ̃0 × Θ̃1 in the
response difference model with (artificial) observations

z̃i = ∆η(θ̃, xi )−∇ηT (θ̃, xi )(θ̃T
0 , θ̃

T
1 )T , i = 1, . . . ,n.

Hence, if Θ̃0, Θ̃1 are convex and compact, the computation of δ(D) can be
performed by solvers for constrained quadratic programming, or even by
specific methods for restricted LSE such as in Stark and Park (1995).
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Delta criterion as a function of measures on X

The “alternative” expression of δ allows us to extend it to the space Ξ of all
finitely supported measures ξ on X, in particular to approximate designs
(probability measures) on X:

δa(ξ) = inf
θ0∈Θ̃0,θ1∈Θ̃1

δa(ξ|θ0, θ1), where

δa(ξ|θ0, θ1) = (θ − θ̃)T M(ξ, θ̃)(θ − θ̃) + 2bT (ξ, θ̃)(θ − θ̃) + c(ξ, θ̃).

Note that δ(·|θ0, θ1) is linear on Ξ. Therefore, δ(·), as an infimum of a system
of non-negative linear functions, is concave on Ξ.
Therefore, it is possible to work out a minimax-type “equivalence theorem” for
δ-optimal approximate designs, and use specific convex optimization methods
to find a δ-optimal approximate design numerically (e.g., Pázman and
Pronzato 2014, Burclová and Pázman 2016).

Also, δa is positively homogeneous on Ξ, i.e., δa(cξ) = cδa(ξ) for all ξ ∈ Ξ and
c ≥ 0. This means that a natural definition of relative δ-efficiency of designs
ξ, ζ ∈ Ξ is effdelta(ξ|ζ) = δa(ξ)/δa(ζ).
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Illustrative example
Consider the two models from the previous example, both with m = 1
parameter and mean value functions

η0(θ0, x) = θ0x , η1(θ1, x) = eθ1x ,

where x ∈ X = {1.00,1.01,1.02, . . . ,2.00}. Let

θ̃0 = e−1, θ̃1 = 1.

We used an adaptation of the KL exchange heuristic to compute δ-optimal
designs by selecting

Θ̃0 = [e−1 − r ,e−1 + r ], Θ̃1 = [1− r ,1 + r ]

for r = 0.01,0.1,0.2, . . . ,1.0. The size is n = 6 trials.

Note: If the Θ̃’s are very narrow, the δ-optimal design is concentrated in the
design point x = 2 maximizing the difference between η0(θ̃0, x) and η1(θ̃1, x).
For large values of r , the δ-optimal design has a 3-point support.

Radoslav Harman1,2 and Werner G. Müller1 A design criterion for symmetric model discrimination 7th August 2017 15 / 33



Illustrative example
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Figure: δ-optimal exact designs of size n = 6 for different r ’s in Illustrative Example.
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An application in enzyme kinetics
Taken from Bogacka et al. (2011) and used in Atkinson (2012) to illustrate
model discrimination designs. Two types of enzyme kinetic reactions, where
the velocity y is modeled by competitive and noncompetitive inhibition:

y =
θ01x1

θ02

(
1 + x2

θ03

)
+ x1

,

and respectively

y =
θ11x1

(θ12 + x1)
(

1 + x2
θ13

) .
estimate st.err. estimate st.err.

θ01 7.298 0.114 θ11 8.696 0.222
θ02 4.386 0.233 θ12 8.066 0.488
θ03 2.582 0.145 θ13 12.057 0.671

Table: Parameter estimates and corresponding standard errors from data on
Dextrometorphan-Sertraline provided by B.Bogacka.
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An encompassing model
Atkinson (2012) combines those models into

y =
θ21x1

θ22

(
1 + x2

θ23

)
+ x1

(
1 + (1−λ)x2

θ23

) ,
with nominal values θ̃21 = 10, θ̃22 = 4.36, θ̃23 = 2.58, and λ̃ = 0.8.

estimate st.err.
θ21 7.425 0.130
θ22 4.681 0.272
θ23 3.058 0.281
λ 0.964 0.019

Table: Parameter estimates and standard errors for the encompassing model.
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Anthony’s designs

Figure: Four designs from Atkinson (2012); suitably rounded exact designs referred to
as A1-A4 from top to bottom.
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Confirmatory experiment n = 6, r = [0.01,0.16]
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Confirmatory experiment n = 6, r = [0.17,0.23]
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Confirmatory experiment n = 6, r = [0.24,0.49]
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Confirmatory experiment n = 6, r = [0.50,4.56]
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Confirmatory experiment n = 6, r = [4.57,9.89]
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Confirmatory experiment n = 6, r = [9.90,11.94]
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Confirmatory experiment n = 6, r = [11.95,14.84]
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Confirmatory experiment n = 6, r = [14.85,16.90]
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Confirmatory experiment n = 6, r = [16.91,17.30]
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Confirmatory experiment n = 6, r = [17.31,18.63]
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Confirmatory experiment n = 6, r = [18.64,20.00]
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The simulation

We generated 5000 sets of observations with n = 6 from each of the two
models at the nominal values given in Atkinson (2012) and the error
st.dev. estimated from the data σ̂ = 0.1526, and recorded the total
correct discrimination (hit) rates from the LR-rule.

Hit rates for A1-A4 ranged from 95.2 to 99.4%.

Worst hit rate for a δ-design was 99.6%.

Blowing up the simulation error to 3σ̂ yielded a range for the A-designs
from 71.6 to 80.5%, whereas the δ-designs ranged from 83.3 to 94.9 %.

Note that by using nominal values close to the estimates from n = 120 the hit
rates for both approaches are somewhat inflated. Perturbing the true values
seems to lead to even more favourable results for δ-designs.
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A second full experiment n = 120

σ = 0.1526× 5 10 20 30 40 50 100
A1 97.31 86.65 72.82 66.89 64.01 60.20 55.15
A2 99.97 96.97 81.88 72.84 67.58 63.73 54.66
A3 99.98 97.07 81.89 73.62 67.07 63.80 55.24
A4 99.95 96.34 82.95 73.47 67.74 64.90 54.05
δ(r = 0.01) 100.00 98.65 87.02 77.22 70.79 67.13 58.86
δ(r = 0.25) 100.00 98.31 84.72 75.41 69.87 66.11 57.66
δ(r = 1.00) 100.00 97.08 82.82 73.16 69.21 64.97 57.91

Table: Total hit rates for N = 5000 for each model.
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Thank you for your attention!
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