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Introduction
[ ]

Regression model

Consider a regression model
yi:g(xi;6)+6i7 i:17"'an7 (1)

where

> y is a response variable, x € RP is a vector of independent
(design) variables,

> g(x;; @) can be linear or nonlinear function of 8 € RY,

> the error ¢;'s are i.i.d with mean 0 and variance o?.
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Introduction
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Design problem

Design problem: how do we choose the “optimal” design points
X1, ,Xp from a design space to observe y?

E del: y; = 0 0= T
e.g. Emax model: y; = g + e, = (a, B1, B2)

i

g(x;6)

0 x1 x2 xn
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Design problem

A-optimal design when 6 = (1,1,2) "

g(x;6)
w1=0.401 w2=0.367 w3=0.232
L 2 L g L X
x1=0.451 x2=1.426 x3=5.000
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Introduction
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Design problem

Optimal designs depend on:

> regression model and its assumptions

v

design space

> regression estimator

v

optimality criterion
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Optimality criteria
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Regression estimator (SLSE)

» Ordinary least squares estimator (OLSE): minimizing

Y (i — g(xi;0))*.
» OLSE: BLUE
» Second-order least squares estimator (SLSE) in Wang and

Leblanc (2008) is more efficient than OLSE, when the error
distribution is asymmetric, i.e. E[¢3|x] # 0.
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Optimality criteria
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Regression estimator (SLSE)

The SLSE As1se of v = (87,02)T minimizes
QM) = Zp7(7 ipi(7),

where vector pi(7) = (y; — g(xi; 0),y? — g%(x;;0) — 0?)" and
W; = W(x;) is a 2 x 2 positive semidefinite matrix that may
depend on x;.

Julie Zhou University of Victoria

Optimal designs under SLSE



Optimality criteria
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Regression estimator (SLSE)

Suppose 6g and o2 are the true values of 8 and o2, respectively.
Let 3 = E(c} | %), s = E(c} | %), and t = 2/(03(1a — o2).
Define

Jg(x; 0)
E [8—0 Iezeo] ,

Jg(x; 0) dg(x; 0)
GQ:E[ 96 0T =%

g1

The expectation is taken with respect to the distribution of x, £(x).
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Optimality criteria
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Regression estimator (SLSE)

The asymptotic covariance matrix of 4s;sg is

Cov(Asise) Cov(Bstse) i V(63.5)G3 &1
SLSE) = . 1 . ;
s V(6%.56)81 G, V(5315e)

where

A -1
Cov(Bsise) = (1 - t) o (G2 — tgag )

. (na —0g)(1 - t)
V(O-.%LSE) = —
1- thGz lgl

Julie Zhou University of Victoria

Optimal designs under SLSE



Optimality criteria
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Regression estimator (SLSE)

The asymptotic covariance matrix of the OLSE,
2 (AT a2 N\T
Yorse = (Oorse:001se) s

COV(éOLSII:') 113G5 'g; )
1381 G V(6%.sE)
_ ( 7G," unglgl)_
p3g] Gy fia — 0

Cov(¥JoLsE) = (
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Optimality criteria
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Regression estimator (SLSE)

» We have 0 < t < 1 for any error distribution.

> If the error distribution is symmetric, then 3 =0, t =0, and
the covariance matrices for SLSE and OLSE are the same.

» For asymmetric errors, Cov(¥orse) — Cov(Jsise) = 0 from
Wang and Leblanc (2008), so the SLSE is more efficient than
the OLSE.
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Optimality criteria
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Optimal design criteria

Design criteria based on the SLSE
» A-optimal design criterion:  ming trace(Cov(fs;s))

» D-optimal design criterion:  ming det(Cov(@s;sg))

Gao and Zhou (2014): proposed these criteria

Bose and Mukerjee (2015): more results for binary design points
Yin and Zhou (2016), Gao and Zhou (2017): more results for A-
and D-optimal designs
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Optimality criteria
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Optimal design criteria

On a discrete design space Sy = {ug,up,--- ,up}, let
é_ o u; ur e uy
- W1 W2 PEEEEY WN :
Define f(x; 8) = 0g(x; 0)/00, and write g; and Gy as

N
g1(w) = g1(w; 60) = Y wif(uj; 6p),
i=1

N
Go(w) = Go(w; 60) = > w; F(u;; 60)f " (uj; 6o),
i=1
where weight vector w = (wq, -+, wy) .
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Optimality criteria
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Optimal design criteria

Let A(w) = A(w; 6o) = Go(w) — tg; (w)gy (w),

then A- and D-optimal designs minimize loss functions
dr(w) = tr ((Aw))™") and go(w) = det ((Aw))™")

over w, respectively.

If A(w) is singular, ¢1(w) and ¢2(w) are defined to be +oc.

The A- and D-optimal designs are denoted by £#(x) and £P(x),
respectively.
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Optimality criteria

@00

Properties

Define

_ 1 Vgl (w)
Blw) = ( Vigw)  Go(w) )

The D-optimal design based on the SLSE minimizes 1/ det (B(w)).

It is clear that both —/og (det (B(w))) and — (det (B(w)))l/(q+1)
are convex functions of w.
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Optimality criteria
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Properties

Characterization of the A-optimal design problem:

Theorem

If Go(w) is nonsingular, then
p1(w) = tr ((A(w))™) = tr(C(B(w))~!), whereC =01, is a
(g+1) x (g + 1) matrix.

— Main result to develop effective and efficient algorithms for
finding A-optimal designs under SLSE.
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Optimality criteria
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Properties

Invariance properties of D-optimal designs:
symmetry of D-optimal designs

shift invariance

scale invariance

Invariance properties of A-optimal designs:
symmetry of A-optimal designs
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Numerical algorithms
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CVX program

Since wy =1 — 21\1_—11 wj,
L N—1 T
define w = <W1,W2,"' aWN—la]-_Eizl Wi) :

Let D(W) = diag (wl, Wy, -+, WN_1,1 — Z,N:_ll W;) be a diagonal
matrix.

Thus, the A- and D-optimal design problems become, respectively,

ming 1 (W),
{ subject to: D(wW) > 0, (2)

ming log(p2(W)),
{ subjectgto:2D(\7v) = 0. (3)
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Numerical algorithms
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CVX program

Both ¢1(W) and log(¢2(W)) (or (¢2(W))Y9) are convex functions
of w.

In order to use CVX program for finding D-optimal designs, we
need to use matrix B(w) in ¢o(W),

_ 1 Vg (w)
B(w) = ( Vigw)  Go(w) )
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Numerical algorithms
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CVX program

Matlab code :
cvx_begin
variable w(N);
expression B(q+1,q+1); %target function

minimize (-det_rootn(B))
subject to
sum(w)==1,
w>=0;
cvx_end
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Numerical algorithms
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SeDuMi program

To compute A-optimal designs, we use SeDuMi program in Matlab.

We need to transform the design problem into a semi-definite
programming (SDP) problem:

— objective function: linear

— constraint: linear matrix being positive semi-definite

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization.
Cambridge University Press, New York.
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Numerical algorithms
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SeDuMi program

Let e; be the ith unit vector in Rt i=1,--- ,g+1,

vV = (VQ,--- ,Vq+1)T, and
_( BwW) e F_
B,—( eiT Vi)’ for i=2,---,g+1,
H(W,v) =B @ - - @& Bgt1 & D(W). (4)

Since B(W) and D(W) are linear matrices in W, H(W, v) is a linear
matrix in W and v. Then £#(x) can be solved through

{ minv"v,v 2?2—21 Vi, (5)

subject to: H(w,v) = 0,
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Applications
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Example 1

Example 1: y = 01x1 + boxo + 63x12 + 94x22 + Osx1x0 + €

The design spaces:
So1 =
{(17 0)7 (_17 0)7 (Oa 1)7 (07 _1)7 (17 1)’ (_1’ l)a (17 _1)7 (_17 _1)7 (Oa 0)}7

57 =
{?\2/5’ 0)7 (_\/57 0)7 (07 \/5)7 (07 _\/5)7 (17 1)7 (_17 1)’ (1’ _1)’
(—-1,-1),(0,0)}.
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Example 1

Applications
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Table: A- and D-optimal weights, wi', wg', wg', wP, wP, wf
t wlA W_,f‘ WQA WlD W5D W9D
Design space Sg 1
0 0.131 0.119 0.000 0.071 0.179 0.000
0.3 0.130 0.120 0.000 0.072 0.178 0.000
0.5 0.128 0.122 0.000 0.074 0.176 0.000
0.9 0.118 0.121 0.044 0.088 0.162 0.000
Design space Sg >
0 0.104 0.146 0.000 0.125 0.125 0.000
0.3 0.104 0.146 0.000 0.125 0.125 0.000
0.5 0.104 0.146 0.000 0.125 0.125 0.000
09 0.088 0.125 0.148 0.116 0.116 0.072
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Example 1

(a)
2
i % W§=O.12
w9=0 w1=0.13
X2 4 * *
-1 *
-2
=2 -1 0 1 2
x1
(c)
2
*
1 * *
w9=0 w1=0.125
X2 g * <] *
-1 * *
*
-2
=2 -1 0 1 2
x1
Figure
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(b)

w5=0.121

w9=0.044 w1=0.118
[e] *

*
-1 0 1 2
x1
(d)
*
* *
w9=0.072 w1=0.11§
[e] *
* *
*
-1 0 1 2
x1

: A- and D-Optimal designs for Example 1

Applications
[e]e] o]
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Applications
[e]e]e] ]

Example 1

Optimal design results for Example 1:

(a) A-optimal design on design space Sg 1 for t = 0.3,
(b) A-optimal design on design space Sg 1 for t = 0.9,
(c) D-optimal design on design space Sg» for t = 0.3,
(d) D-optimal design on design space Sg o for t = 0.9.
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Applications
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Example 2. Michaelis-Menten model:
y=ax/(6+x)+¢€ 0<x <4,

Table: A- and D-optimal design points and their weights (in parentheses)
for the Michaelis-Menten model with « =1 and =1

N = 501
t=0 €A 0.504 (0.670) 4.000 (0.330)
€D: 0.664 (0.500) 4.000 (0.500)
t=03 ¢4  0.536 (0.662) 4.000 (0.338)
¢D: 0.664 (0.500) 4.000 (0.500)
t=07 €4 0.632 (0.642) 4.000 (0.358)
€D: 0.000 (0.048) 0.664 (0.476) 4.000 (0.476)
t=09 ¢4 0.000 (0.158) 0.664 (0.536) 4.000 (0.306)
¢D: 0.000 (0.260) 0.664 (0.370) 4.000 (0.370)
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Example 2

Michaelis-Menten model with « =1 and =1

9(x:6)

w1=0.500 w2=0.500

Julie Z

x1=0.664 x2=4.000

D-ontimal desian for t=0

Applications

(o] J

9(x;8)
w1=0.048 w2=0.476 w3=0.476
x1=0.000 Xx2=0.664 x3=4.000

D-ontimal desian for t=0.7
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Applications

Example 3

B2
Example 3. Emax model: y; = ﬁax" 5 T, 0= (a, B1,52) "

1+X;

Table: A-optimal and D-optimal design points and their weights in the
brackets for the Emax model with various values of t

N = 201
t=0 ¢~ 0.451 (0.401) 1.426 (0.367) 5.000 (0.232)
¢D: 0.551 (0.333) 1.476 (0.334) 5.000 (0.333)
t=0.3 | €4 0.451 (0.401) 1.426 (0.367) 5.000 (0.232)
¢D: 0.551 (0.333) 1.476 (0.334) 5.000 (0.333)
t=0.7 | €% 0501 (0.376) 1.476 (0.381) 5.000 (0.243)
¢D: 0.551 (0.333) 1.476 (0.334) 5.000 (0.333)
t=0.9 [ €% 0.001 (0.103) 0.531 (0.328) 1.501 (0.348) 5.000 (0.221)
¢D: 0.001 (0.166) 0.551 (0.278) 1.476 (0.278) 5.000 (0.278)
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Applications

Discussion

Number of support points in optimal designs:
For t = 0, optimal designs under SLSE and OLSE are the same.

For small t, optimal designs under SLSE and OLSE have the same
number of support points from numerical results.

For large t, optimal designs under SLSE usually have one more
support points than those under OLSE from numerical results.

We are trying to prove some theoretical results on the number of
support points.
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Applications

Discussion

CVX and SeDuMi programs in Matlab are very powerful to solve
convex optimization problems with constraints.

Many optimal design problems are convex optimization problems.
We have successfully applied CVX and SeDuMi programs for
finding optimal regression designs for various models and
optimality criteria.

— linear/nonlinear regression models, generalized linear models,
multi-response regression models

- OLSE, SLSE, MLE, WLSE

- A-, As-, ¢, D-, Ds-, |-, L-optimality criteria
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Applications

Discussion

Wong, W.K., Y. Yin and J. Zhou (2017). “Use SeDuMi to find
various optimal designs for regression models”, Statistical Papers,
to appear.

Numerical algorithms for finding minimax designs?

Objective functions are not convex.
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Discussion
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