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Regression with correlated errors

Linear regression model:

y(x) = θ1f1(x) + . . .+ θmfm(x) + ε(x)

= θT f (x) + ε(x) ,

where x ∈ X ⊂ Rd ,
f (x) = (f1(x), . . . , fm(x))T ,
θ = (θ1, . . . , θm)T ,
E [ε(x)] = 0,
K (x, x′) = E[ε(x)ε(x′)].
Here K (x, x′) is a covariance kernel (a positive definite function).
For stationary processes, K (x, x′) = ρ(x− x′).



Standard Estimators

For observations at {x1, . . . , xN}:

WLSE : θ̂WLSE = (XTWX)−1XTWY,

Var(θ̂WLSE ) = (XTW X)−1XTW ΣW X(XTW X)−1,

where X = (fi (xj))i=1,...,m
j=1,...,N and Σ = (K (xi , xj))i ,j=1,...,N .

OLSE : θ̂OLSE = (XTX)−1XTY,

BLUE : θ̂BLUE = (XTΣ−1X)−1XTΣ−1Y,

SLSE : θ̂SLSE = (XTS X)−1XTS Y.

Here S is an N×N diagonal matrix with entries +1 and −1 on the
diagonal; note that if S 6= IN then SLSE is not a standard OLSE.



Continuous version

General estimator:

θ̂ζ =

∫
y(x)ζ(dx) ,

where ζ(dx) is a signed vector-measure.

θ̂OLSE =

∫
y(x)M−1(ξ)f (x)ξ(dx),

where

M(ξ)=

∫
f (x)f T (x)ξ(dx),

and ξ(dx) is a design (probability measure for OLSE; a signed
measure for SLSE). The covariance matrix of θ̂OLSE is

Var(θ̂OLSE ) = M(ξ)−1
[∫ ∫

K (x, z)f(x)fT (z)ξ(dx)ξ(dz)

]
M(ξ)−1 .
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BLUE

Let ν be a vector-measure such that∫
K (x, x′)ν(dx′) = f (x)

and the matrix
∫
ν(dt)f T (t) is non-degenerate. Then

ζ(dx) = Dν(dx) with D =

[∫
ν(dx)f T (x)

]−1
determines the BLUE

θ̂BLUE =

∫
y(x)ζ(dx) ;

Var(θ̂BLUE ) = D.



BLUE, an example (Markovian noise)

X = [a, b]. K (t, s) = u(t)v(s) for t ≤ s and K (t, s) = v(t)u(s)
for t > s, where u(·) and v(·) are positive functions such that
q(t) = u(t)/v(t) is monotonically increasing. Define the signed
vector-measure

ν(dt) = zAδA(dt) + zBδB(dt) + z(t)dt

with

zA =
1

v2(A)q′(A)

[ f (A)u′(A)

u(A)
− f ′(A)

]
,

z(t) = − 1

v(t)

[h′(t)

q′(t)

]′
, zB =

h′(B)

v(B)q′(B)
,

where h(t) = f (t)/v(t). Assume that the matrix
C =

∫
f (t)ζT (dt) is non-degenerate. Then the estimate θ̂ζ with

ζ(dt) = C−1ν(dt) is a BLUE with covariance matrix C−1.



BLUE, an example (triangular kernel)

K (t, s) = max(1− λ|t − s|, 0) , λ ≤ 1, t, s ∈ [0, 1] .

Exact optimal designs for this covariance kernel (with λ = 1) have
been considered in WM & Pazman (2003); WM & VF (2007).

ν(dt) =

[
− f ′(0)

2λ
+ fλ

]
δ0(dt) +

[
f ′(1)

2λ
+ fλ

]
δ1(dt)− f ′′(t)

2λ
dt ,

where fλ = (f (0) + f (1))/(4− 2λ). The estimator θ̂ζ with
ζ(dt) = C−1ν(dt) with C =

∫
f (t)ζT (dt) is the BLUE.



BLUE for processes with trajectories in C 1[A,B]:
Gradient-enhanced estimation

Assume that the error process is exactly once continuously
differentiable (in the mean-square sense). General estimator:

θ̂ζ0,ζ1 =

∫
y(t)ζ0(dt) +

∫
y ′(t)ζ1(dt),

where ζ0(dt) and ζ1(dt) are signed vector-measures.
Assume ν0 and ν1 are vector-measures such that∫

K (t, s)ν0(dt) +

∫
∂K (t, s)

∂t
ν1(dt) = f (s), ∀s ∈ [A,B]

C =

∫
f (t)νT0 (dt) +

∫
f ′(t)νT1 (dt)

is a non-degenerate matrix. Then the estimator θ̂ζ0,ζ1 with
ζi = C−1νi (i = 0, 1) is a BLUE with covariance matrix C−1.



BLUE, integrated error processes

K (t, s) =

∫ t

a

∫ s

a
K0(u, v)dudv .

where 0 ≤ a ≤ A; t, s ∈ [A,B]. This is a more general class of
kernels than that considered in S-Y.
Two examples:

K (t, s) =

∫ t

a

∫ s

a
min(t ′, s ′)dt ′ds ′

=
max(t, s)(min(t, s)2 − a2)

2
−a2(min(t, s)− a)

2
−min(t, s)3 − a3

6
,

K (t, s) =

∫ t

0

∫ s

0
max{0, 1− λ|t ′ − s ′|}dt ′ds ′

= ts − λmin(t, s)
(

3 max(t, s)2 − 3ts + 2 min(t, s)2
)
/6.



CAR(2) and AR(2) noise
t ∈ [A,B], ε(t) is a continuous autoregressive (CAR) process of
order 2. Formally, it is a solution of the linear stochastic
differential equation

dε(1)(t) = a1ε
(1)(t) + a2ε(t) + σ20dW (t),

where W (t) is a standard Wiener process.
There are three different forms of the autocorrelation function ρ(t)
of CAR(2) processes:

ρ1(t) =
λ2

λ2 − λ1
e−λ1|t| − λ1

λ2 − λ1
e−λ2|t| , (λ1 6= λ2, λ1 > 0, λ2 > 0)

ρ2(t) = e−λ|t|
{

cos(q|t|) +
λ

q
sin(q|t|)

}
, λ > 0, q > 0,

ρ3(t) = e−λ|t|(1 + λ|t|) , λ > 0,

The kernel associated with ρ3 is widely known as Matérn kernel
with parameter 3/2.
Discretised CAR(2) process is not AR(2); it is ARMA(2; 1).



BLUE for processes with exactly q derivatives

Let X ⊆ [A,B], K (·, ·) ∈ Cq([A,B]× [A,B]) and
f (·) ∈ Cq([A,B]) for some q ≥ 0. Suppose that the process y(t)
along with its q derivatives can be observed at all t ∈ X ,

Y =
(
y (0)(t), . . . , y (q)(t)

)T
. Let ν0, . . . , νq be signed

vector-measures such that the matrix

C =

q∑
i=0

∫
νi (dt)

(
f (i)
)T

(t)

is non-degenerate. Define ζ = (ζ0, . . . , ζq), ζi (dt) = C−1ζi (dt) for
i = 0, . . . , q. The estimator θ̂ζ =

∫
ζ(dt)Y (t) is the BLUE if and

only if

q∑
i=0

∫
K (i)(t, s)νi (dt) = f (s)

for all s. The covariance matrix of θ̂ζ is Var(θ̂ζ) = C−1.



Non-uniqueness of the BLUE measures

If X = [A,B] and f has sufficient number of derivatives, then for a
given set of signed vector-measures G = (G0,G1, . . . ,Gq) on X we
can always find another set of measures H = (H0,H1, . . . ,Hq) such
that the signed vector-measures H1, . . . ,Hq have no continuous
parts but the expectations and covariance matrices of the
estimators θ̂G and θ̂H coincide.



Discretization of the continuous BLUE

Assume X = [A,B] and m = 1. No derivatives.
BLUE is

θ̂BLUE =

∫
y(x)ζ(dx)

where
ζ(dx) = cAδA(dx) + cBδB(dx) + φ(x)dx ,

D = Var(θ̂BLUE ) =

[∫
ν(dx)f (x)

]−1
with

∫
K (x, x′)ν(dx′) = f (x), ζ(dx) = Dν(dx).

Most natural discretization is: take A, B and the quantiles of the
density const|φ(x)|.
S-Y advice: take A, B and the quantiles of the density
const|φ(x)|2/3.
Similar with derivatives where we really have to use the derivatives
(only at A and B).



The density of the optimal design

f (t) = 1 + 0.5 sin(2πt), t ∈ [1, 2], K (t, t ′) = u(t)v(t ′) with
u(t) = t2 and v(t) = t.
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Variances of the N-point designs

f (t) = 1 + 0.5 sin(2πt), t ∈ [1, 2], covariance kernel with u(t) = t2

and v(t) = t.
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Figure: The variance of BLUE for the proposed (N +2)-point designs
(grey circles), the (N +2)-point designs from [S-Y, 1966] (crosses) and
the BLUE with corresponding optimal (N + 2)-point designs (line);
N = 2, . . . , 20.



OLSE versus BLUE

OLSE vs BLUE:
Bloomfield P., and Watson G. S., ”The inefficiency of least
squares.” Biometrika 62 (1975): 121-128.
Knott, M.. ”On the minimum efficiency of least squares.”
Biometrika (1975): 129-132.

OLSE versus BLUE, plan:

I One-parameter case

I SLSE vs BLUE (almost the same)
I Location-scale model (convex, easy)
I General f : non-convex problem but still often solvable

I Multi-parameter case: emulation of the BLUE



OLSE, m = 1

Model: y(x) = θf (x) + ε(x), m = 1.
The variance of the OLSE is the design optimality criterion:

D(ξ) =

[∫
f 2(x)ξ(dx)

]−2∫ ∫
K (x, z)f (x)f (z)ξ(dx)ξ(dz)

as the design optimality functional. ξ(dx) is a design (probability
measure for OLSE, a signed measure with total mass 1 for SLSE).

In general, this functional is not convex.



Location-scale model: f (x) = 1

The design optimality functional becomes

D(ξ) =

∫
X

∫
X

K (x, z)ξ(dx)ξ(dz) .

This functional is convex:

D((1− α)ξ + αξ0) < (1− α)D(ξ) + αD(ξ0)

If K is strictly positive definite, then D is strictly convex.
Optimality condition: ξ∗ is optimal if and only if

min
x∈X

φ(x, ξ∗) ≥ D(ξ∗), φ(x, ξ) =

∫
K (x, z)ξ(dz).

In potential theory, 1/D(ξ∗) is called (Wiener) capacity of the set
X .



Some examples, f (x) = 1, X = [−1, 1]
I ρ(t) = e−λ|t|: ξ∗ is a mixture of the continuous uniform

measure and a two-point discrete measure supported on
{−1, 1}:

p∗(x) = ω∗
(

1

2
δ1(x) +

1

2
δ−1(x)

)
+ (1− ω∗)1

2
1[−1,1](x),

where ω∗ = 1/(1 + λ), b(·, ξ∗) = D(ξ∗) = 1/(1 + λ).
I triangular correlation function ρ(t) = max{0, 1− λ|t|}:

discrete design
I ρ(t) = 1/|t|α, 0 < α < 1: optimal design has Beta-density

p∗(x) =
2−α

B(1+α2 , 1+α2 )
(1 + x)

α−1
2 (1− x)

α−1
2 .

I ρ(t) = − ln(t2) (functional is not convex): optimal design has
the arcsine density

p∗(x) =
1

π
√

1− x2
.



Optimal design for SLSE in one-parameter models

Assume the design space is finite: X = {x1, . . . , xN}. In this case,
the optimal design for the SLSE can be found explicitly.
A generic approximate design on this design space is an arbitrary
discrete signed measure ξ = {x1, . . . , xN ; w1, . . . ,wN}, where
wi = sipi , si ∈ {−1, 1}, pi ≥ 0 (i = 1, . . . ,N) and

∑N
i=1 pi = 1.

The variance of the SLSE:

D =
N∑
i=1

N∑
j=1

K (xi , xj)wiwj f (xi )f (xj)
/( N∑

i=1

wi f
2(xi )

)2
.

Optimal weights:

w∗i = eTi Σ−1f/f (xi ); i = 1, . . . ,N,

where f = (f (x1), . . . , f (xN))T , ei = (0, 0, . . . , 0, 1, 0, . . . , 0)T .
The resulting weighted SLSE coincides with BLUE (except that
repetition of observations does not make sense)



SLSE: an explicit formula for optimal weights

Assume K (xi , xj) = uivj for i ≤ j and denote fk = f (xk),
qk = uk/vk . Then If fi 6= 0 (i = 1, . . . ,N), then the optimal
weights can be represented explicitly as follows:

w∗
1 =

c

f1
(σ̃11f1 + σ̃12f2) =

c u2

f1v1v2(q2 − q1)

( f1
u1
− f2

u2

)
,

w∗
N =

c

fN
(σ̃N,N fN + σ̃N−1,N fN−1) =

c

fNvN(qN − qN−1)

( fN
vN
− fN−1

vN−1

)
,

w∗
i =

c

fi
(σ̃i,i fi + σ̃i−1,i fi−1 + σ̃i,i+1fi+1)

=
c

fivi

( (qi+1 − qi−1)fi
vi (qi+1 − qi )(qi − qi−1)

− fi−1

vi−1(qi − qi−1)
− fi+1

vi+1(qi+1 − qi )

)
,

for i = 2, . . . ,N − 1. Here σ̃ij denotes the element in the position
(i , j) of the matrix Σ−1 = (σ̃ij)i ,j=1,...,N .

Some references: Harman, R. and Stulajter, F. (2011) JSPI, 141(8),

2750–2758. AZ & Kondratovich (1984), AZ (1985).



Optimal designs, one-parameter case, Markovian noise

Assume X = [a, b], K (t, t ′) = u(t)v(t ′), t ≤ t ′. Criterion:

D(ξ) =

∫ ∫
K (s, t)f (s)f (t)dξ(s)dξ(t)

/(∫
f 2(t)dξ(t)

)2
.

Optimal design: masses

Pa =
c

f (a)v2(a)q′(a)

[ f (a)u′(a)

u(a)
− f ′(a)

]
, Pb = c · h′(b)

f (b)v(b)q′(b)

at the points a and b, respectively, and the (signed) density

p(t) = − c

f (t)v(t)

[h′(t)

q′(t)

]′
where h(t) = f (t)/v(t).
Optimality of a design ξ∗ can be verified directly by checking that
D(ξ∗) coincides with the variance of the continuous BLUE.



OLSE/BLUE

General estimator:

θ̂ζ =

∫
y(x)ζ(dx) ,

where ζ(dx) is a signed vector-measure.

θ̂OLSE =

∫
y(x)M−1(ξ)f (x)ξ(dx),

where

M(ξ)=

∫
f (x)f T (x)ξ(dx),

and ξ(dx) is a design (probability measure for OLSE; a signed
measure for SLSE).
If m = 1 then any signed measure ζ(dx) can be represented in the
form M−1(ξ)f (x)ξ(dx) and so optimal continuous SLSE is equal
to continuous BLUE. Discretization is another issue.



OLSE/BLUE, m > 1
General estimator:

θ̂ζ =

∫
y(x)ζ(dx) ,

where ζ(dx) is a signed vector-measure.
Continuous Matrix-Weighted estimator (MWLSE)

θ̂MWLSE =

∫
y(x)M−1(ξ)O(x)f (x)ξ(dx),

where O(x) is a matrix weight assigned to a point x and

M(ξ)=

∫
O(x)f (x)f T (x)ξ(dx),

and ξ(dx) is a design.
Any signed vector-measure ζ(dx) can be represented in the form
M−1(ξ)O(x)f (x)ξ(dx) and so optimal continuous MWLSE
coincides with continuous BLUE.
In making a discretization, we only need to keep weights at A and
B; the rest can be achieved by assigning ± and thinning.
All is similar for the gradient-enhanced estimation.



Results of Bickel and Herzberg and extensions

y(t) = θT f (t) + ε(t) with stationary error process and
X = [−T ,T ]. Suppose that for N observations, the correlation
function is given by ρN(t) = ρo(Nt), where
ρo(t) = γρ(t) + (1− γ)δt and ρ(t)→ 0 as t →∞, γ ∈ (0, 1].

Q(t) =
∑∞

j=1 ρ(jt), xiN = a
(

i−1
N−1

)
, i = 1, . . . ,N.

R(a) =

(∫ 1

0
fi (a(u))fj(a(u))Q(a′(u)) du

)m

i ,j=1

B-H: the covariance matrix of the OLSE

lim
N→∞

σ−2NVar(θ̂OLSE ) = W−1(a) + 2γW−1(a)R(a)W−1(a),

where W(a) =
(∫ 1

0 fi (a(u))fj(a(u)) du
)m
i ,j=1

.

Two our generalizations of the B-H results: (a) LRD errors (joint
with N.Leonenko), (b) different rate of expansion of the interval:
ρN(t) = ρo(Nαt) with 0 < α ≤ 1.



Thank you for listening


