Optimal designs in regression models with correlated errors

Anatoly Zhigljavsky, Cardiff

Collaborators: Holger Dette and Andrey Pepelyshev

Banff, August 10, 2017

Regression with correlated errors

Linear regression model:

$$
\begin{aligned}
y(\mathbf{x}) & =\theta_{1} f_{1}(\mathbf{x})+\ldots+\theta_{m} f_{m}(\mathbf{x})+\varepsilon(\mathbf{x}) \\
& =\boldsymbol{\theta}^{T} f(\mathbf{x})+\varepsilon(\mathbf{x})
\end{aligned}
$$

where $\mathrm{x} \in \mathcal{X} \subset \mathbb{R}^{d}$,
$f(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)^{T}$,
$\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{T}$,
$E[\varepsilon(\mathbf{x})]=0$,
$K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbb{E}\left[\varepsilon(\mathbf{x}) \varepsilon\left(\mathbf{x}^{\prime}\right)\right]$.
Here $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is a covariance kernel (a positive definite function).
For stationary processes, $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\rho\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$.

Standard Estimators

For observations at $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$:

$$
\text { WLSE : } \quad \widehat{\boldsymbol{\theta}}_{W L S E}=\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{Y}
$$

$$
\operatorname{Var}\left(\widehat{\boldsymbol{\theta}}_{W L S E}\right)=\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \boldsymbol{\Sigma} \mathbf{W} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1}
$$

where $\mathbf{X}=\left(f_{i}\left(\mathbf{x}_{j}\right)\right)_{j=1, \ldots, N}^{i=1, \ldots, m}$ and $\boldsymbol{\Sigma}=\left(K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)_{i, j=1, \ldots, N}$.

$$
\begin{aligned}
\text { OLSE : } & \widehat{\boldsymbol{\theta}}_{\text {OLSE }}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}, \\
\text { BLUE }: & \widehat{\boldsymbol{\theta}}_{\text {BLUE }}=\left(\mathbf{X}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{Y}, \\
\text { SLSE : } & \widehat{\boldsymbol{\theta}}_{\text {SLSE }}=\left(\mathbf{X}^{T} \mathbf{S} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{S} \mathbf{Y} .
\end{aligned}
$$

Here \mathbf{S} is an $N \times N$ diagonal matrix with entries +1 and -1 on the diagonal; note that if $\mathbf{S} \neq \mathbf{I}_{N}$ then SLSE is not a standard OLSE.

Continuous version

General estimator:

$$
\hat{\boldsymbol{\theta}}_{\zeta}=\int y(\mathbf{x}) \zeta(d \mathbf{x})
$$

where $\zeta(d \mathbf{x})$ is a signed vector-measure.

$$
\widehat{\boldsymbol{\theta}}_{O L S E}=\int y(\mathbf{x}) M^{-1}(\xi) f(\mathbf{x}) \xi(d \mathbf{x})
$$

where

$$
M(\xi)=\int f(\mathbf{x}) f^{T}(\mathbf{x}) \xi(d \mathbf{x})
$$

and $\xi(d \mathbf{x})$ is a design (probability measure for OLSE; a signed measure for SLSE). The covariance matrix of $\widehat{\boldsymbol{\theta}}_{\text {OLSE }}$ is
$\operatorname{Var}\left(\widehat{\boldsymbol{\theta}}_{\text {OLSE }}\right)=\mathbf{M}(\xi)^{-1}\left[\iint K(\mathbf{x}, \mathbf{z}) \mathbf{f}(\mathbf{x}) \mathbf{f}^{T}(\mathbf{z}) \xi(d \mathbf{x}) \xi(d \mathbf{z})\right] \mathbf{M}(\xi)^{-1}$.

Plan

- Continuous BLUE
- Characterizations of the BLUE
- Structure of the BLUE, examples
- BLUE with gradient-enhanced observations
- Discretization of the continuous BLUE
- OLSE/SLSE versus BLUE
- One-parameter case
- Multi-parameter case

BLUE

Let ν be a vector-measure such that

$$
\int K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \nu\left(d \mathbf{x}^{\prime}\right)=f(\mathbf{x})
$$

and the matrix $\int \nu(d t) f^{T}(t)$ is non-degenerate. Then

$$
\zeta(d \mathbf{x})=D \nu(d \mathbf{x}) \text { with } D=\left[\int \nu(d \mathbf{x}) f^{T}(\mathbf{x})\right]^{-1}
$$

determines the BLUE

$$
\begin{gathered}
\widehat{\boldsymbol{\theta}}_{B L U E}=\int y(\mathbf{x}) \zeta(d \mathbf{x}) \\
\operatorname{Var}\left(\widehat{\boldsymbol{\theta}}_{B L U E}\right)=D
\end{gathered}
$$

BLUE, an example (Markovian noise)

$\mathcal{X}=[a, b] . K(t, s)=u(t) v(s)$ for $t \leq s$ and $K(t, s)=v(t) u(s)$ for $t>s$, where $u(\cdot)$ and $v(\cdot)$ are positive functions such that $q(t)=u(t) / v(t)$ is monotonically increasing. Define the signed vector-measure

$$
\nu(d t)=z_{A} \delta_{A}(d t)+z_{B} \delta_{B}(d t)+z(t) d t
$$

with

$$
\begin{aligned}
z_{A} & =\frac{1}{v^{2}(A) q^{\prime}(A)}\left[\frac{f(A) u^{\prime}(A)}{u(A)}-f^{\prime}(A)\right] \\
z(t) & =-\frac{1}{v(t)}\left[\frac{h^{\prime}(t)}{q^{\prime}(t)}\right]^{\prime}, \quad z_{B}=\frac{h^{\prime}(B)}{v(B) q^{\prime}(B)}
\end{aligned}
$$

where $h(t)=f(t) / v(t)$. Assume that the matrix $C=\int f(t) \zeta^{T}(d t)$ is non-degenerate. Then the estimate $\hat{\boldsymbol{\theta}}_{\zeta}$ with $\zeta(d t)=C^{-1} \nu(d t)$ is a BLUE with covariance matrix C^{-1}.

BLUE, an example (triangular kernel)

$$
K(t, s)=\max (1-\lambda|t-s|, 0), \lambda \leq 1, \quad t, s \in[0,1] .
$$

Exact optimal designs for this covariance kernel (with $\lambda=1$) have been considered in WM \& Pazman (2003); WM \& VF (2007).

$$
\nu(d t)=\left[-\frac{f^{\prime}(0)}{2 \lambda}+f_{\lambda}\right] \delta_{0}(d t)+\left[\frac{f^{\prime}(1)}{2 \lambda}+f_{\lambda}\right] \delta_{1}(d t)-\frac{f^{\prime \prime}(t)}{2 \lambda} d t
$$

where $f_{\lambda}=(f(0)+f(1)) /(4-2 \lambda)$. The estimator $\hat{\boldsymbol{\theta}}_{\zeta}$ with $\zeta(d t)=C^{-1} \nu(d t)$ with $C=\int f(t) \zeta^{T}(d t)$ is the BLUE.

BLUE for processes with trajectories in $C^{1}[A, B]$:

Gradient-enhanced estimation

Assume that the error process is exactly once continuously differentiable (in the mean-square sense). General estimator:

$$
\hat{\boldsymbol{\theta}}_{\zeta_{0}, \zeta_{1}}=\int y(t) \zeta_{0}(d t)+\int y^{\prime}(t) \zeta_{1}(d t)
$$

where $\zeta_{0}(d t)$ and $\zeta_{1}(d t)$ are signed vector-measures.
Assume ν_{0} and ν_{1} are vector-measures such that

$$
\begin{gathered}
\int K(t, s) \nu_{0}(d t)+\int \frac{\partial K(t, s)}{\partial t} \nu_{1}(d t)=f(s), \quad \forall s \in[A, B] \\
C=\int f(t) \nu_{0}^{T}(d t)+\int f^{\prime}(t) \nu_{1}^{T}(d t)
\end{gathered}
$$

is a non-degenerate matrix. Then the estimator $\hat{\boldsymbol{\theta}}_{\zeta_{0}, \zeta_{1}}$ with $\zeta_{i}=C^{-1} \nu_{i}(i=0,1)$ is a BLUE with covariance matrix C^{-1}.

BLUE, integrated error processes

$$
K(t, s)=\int_{a}^{t} \int_{a}^{s} K_{0}(u, v) d u d v
$$

where $0 \leq a \leq A ; t, s \in[A, B]$. This is a more general class of kernels than that considered in S-Y.
Two examples:

$$
\begin{gathered}
K(t, s)=\int_{a}^{t} \int_{a}^{s} \min \left(t^{\prime}, s^{\prime}\right) d t^{\prime} d s^{\prime} \\
=\frac{\max (t, s)\left(\min (t, s)^{2}-a^{2}\right)}{2}-\frac{a^{2}(\min (t, s)-a)}{2}-\frac{\min (t, s)^{3}-a^{3}}{6} \\
K(t, s)=\int_{0}^{t} \int_{0}^{s} \max \left\{0,1-\lambda\left|t^{\prime}-s^{\prime}\right|\right\} d t^{\prime} d s^{\prime} \\
=t s-\lambda \min (t, s)\left(3 \max (t, s)^{2}-3 t s+2 \min (t, s)^{2}\right) / 6
\end{gathered}
$$

$C A R(2)$ and $A R(2)$ noise

$t \in[A, B], \varepsilon(t)$ is a continuous autoregressive (CAR) process of order 2. Formally, it is a solution of the linear stochastic differential equation

$$
d \varepsilon^{(1)}(t)=a_{1} \varepsilon^{(1)}(t)+a_{2} \varepsilon(t)+\sigma_{0}^{2} d W(t),
$$

where $W(t)$ is a standard Wiener process.
There are three different forms of the autocorrelation function $\rho(t)$ of $\operatorname{CAR}(2)$ processes:

$$
\begin{gathered}
\rho_{1}(t)=\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1}|t|}-\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{2}|t|},\left(\lambda_{1} \neq \lambda_{2}, \lambda_{1}>0, \lambda_{2}>0\right) \\
\rho_{2}(t)=e^{-\lambda|t|}\left\{\cos (q|t|)+\frac{\lambda}{q} \sin (q|t|)\right\}, \quad \lambda>0, q>0, \\
\rho_{3}(t)=e^{-\lambda|t|}(1+\lambda|t|), \lambda>0,
\end{gathered}
$$

The kernel associated with ρ_{3} is widely known as Matérn kernel with parameter $3 / 2$.
Discretised $\operatorname{CAR}(2)$ process is not $\operatorname{AR}(2)$; it is $\operatorname{ARMA}(2 ; 1)$.

BLUE for processes with exactly q derivatives

Let $\mathcal{X} \subseteq[A, B], K(\cdot, \cdot) \in C^{q}([A, B] \times[A, B])$ and $f(\cdot) \in C^{q}([A, B])$ for some $q \geq 0$. Suppose that the process $y(t)$ along with its q derivatives can be observed at all $t \in \mathcal{X}$, $Y=\left(y^{(0)}(t), \ldots, y^{(q)}(t)\right)^{T}$. Let ν_{0}, \ldots, ν_{q} be signed vector-measures such that the matrix

$$
C=\sum_{i=0}^{q} \int \nu_{i}(d t)\left(f^{(i)}\right)^{T}(t)
$$

is non-degenerate. Define $\zeta=\left(\zeta_{0}, \ldots, \zeta_{q}\right), \zeta_{i}(d t)=C^{-1} \zeta_{i}(d t)$ for $i=0, \ldots, q$. The estimator $\hat{\boldsymbol{\theta}}_{\zeta}=\int \zeta(d t) Y(t)$ is the BLUE if and only if

$$
\sum_{i=0}^{q} \int K^{(i)}(t, s) \nu_{i}(d t)=f(s)
$$

for all s. The covariance matrix of $\hat{\boldsymbol{\theta}}_{\zeta}$ is $\operatorname{Var}\left(\hat{\boldsymbol{\theta}}_{\zeta}\right)=C^{-1}$.

Non-uniqueness of the BLUE measures

If $\mathcal{X}=[A, B]$ and f has sufficient number of derivatives, then for a given set of signed vector-measures $G=\left(G_{0}, G_{1}, \ldots, G_{q}\right)$ on \mathcal{X} we can always find another set of measures $H=\left(H_{0}, H_{1}, \ldots, H_{q}\right)$ such that the signed vector-measures H_{1}, \ldots, H_{q} have no continuous parts but the expectations and covariance matrices of the estimators $\hat{\boldsymbol{\theta}}_{G}$ and $\hat{\boldsymbol{\theta}}_{H}$ coincide.

Discretization of the continuous BLUE

Assume $\mathcal{X}=[A, B]$ and $m=1$. No derivatives.
BLUE is

$$
\widehat{\boldsymbol{\theta}}_{B L U E}=\int y(\mathbf{x}) \zeta(d \mathbf{x})
$$

where

$$
\begin{gathered}
\zeta(d \mathbf{x})=c_{A} \delta_{A}(d \mathbf{x})+c_{B} \delta_{B}(d \mathbf{x})+\phi(\mathbf{x}) d \mathbf{x} \\
D=\operatorname{Var}\left(\widehat{\boldsymbol{\theta}}_{B L U E}\right)=\left[\int \nu(d \mathbf{x}) f(\mathbf{x})\right]^{-1}
\end{gathered}
$$

with $\int K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \nu\left(d \mathbf{x}^{\prime}\right)=f(\mathbf{x}), \zeta(d \mathbf{x})=D \nu(d \mathbf{x})$.
Most natural discretization is: take A, B and the quantiles of the density const $|\phi(\mathbf{x})|$.
S-Y advice: take A, B and the quantiles of the density const $|\phi(\mathbf{x})|^{2 / 3}$.
Similar with derivatives where we really have to use the derivatives (only at A and B).

The density of the optimal design

$$
\begin{aligned}
& f(t)=1+0.5 \sin (2 \pi t), t \in[1,2], K\left(t, t^{\prime}\right)=u(t) v\left(t^{\prime}\right) \text { with } \\
& u(t)=t^{2} \text { and } v(t)=t .
\end{aligned}
$$

Variances of the N-point designs

$f(t)=1+0.5 \sin (2 \pi t), t \in[1,2]$, covariance kernel with $u(t)=t^{2}$ and $v(t)=t$.

Figure: The variance of BLUE for the proposed ($N+2$)-point designs (grey circles), the ($N+2$)-point designs from [S-Y, 1966] (crosses) and the BLUE with corresponding optimal ($N+2$)-point designs (line); $N=2, \ldots, 20$.

OLSE versus BLUE

OLSE vs BLUE:
Bloomfield P., and Watson G. S., " The inefficiency of least squares." Biometrika 62 (1975): 121-128.
Knott, M.. "On the minimum efficiency of least squares."
Biometrika (1975): 129-132.

OLSE versus BLUE, plan:

- One-parameter case
- SLSE vs BLUE (almost the same)
- Location-scale model (convex, easy)
- General f : non-convex problem but still often solvable
- Multi-parameter case: emulation of the BLUE

OLSE, $m=1$

Model: $y(\mathbf{x})=\theta f(\mathbf{x})+\varepsilon(\mathbf{x}), m=1$.
The variance of the OLSE is the design optimality criterion:

$$
D(\xi)=\left[\int f^{2}(\mathbf{x}) \xi(d \mathbf{x})\right]^{-2} \iint K(\mathbf{x}, \mathbf{z}) f(\mathbf{x}) f(\mathbf{z}) \xi(d \mathbf{x}) \xi(d \mathbf{z})
$$

as the design optimality functional. $\xi(d \mathbf{x})$ is a design (probability measure for OLSE, a signed measure with total mass 1 for SLSE).

In general, this functional is not convex.

Location-scale model: $f(\mathbf{x})=1$

The design optimality functional becomes

$$
D(\xi)=\int_{\mathcal{X}} \int_{\mathcal{X}} K(\mathbf{x}, \mathbf{z}) \xi(d \mathbf{x}) \xi(d \mathbf{z})
$$

This functional is convex:

$$
D\left((1-\alpha) \xi+\alpha \xi_{0}\right)<(1-\alpha) D(\xi)+\alpha D\left(\xi_{0}\right)
$$

If K is strictly positive definite, then D is strictly convex.
Optimality condition: ξ^{*} is optimal if and only if

$$
\min _{x \in \mathcal{X}} \phi\left(\mathbf{x}, \xi^{*}\right) \geq D\left(\xi^{*}\right), \quad \phi(\mathbf{x}, \xi)=\int K(\mathbf{x}, \mathbf{z}) \xi(d \mathbf{z})
$$

In potential theory, $1 / D\left(\xi^{*}\right)$ is called (Wiener) capacity of the set \mathcal{X}.

Some examples, $f(\mathbf{x})=1, \mathcal{X}=[-1,1]$

- $\rho(t)=e^{-\lambda|t|}: \xi^{*}$ is a mixture of the continuous uniform measure and a two-point discrete measure supported on $\{-1,1\}$:

$$
\begin{aligned}
& p^{*}(x)=\omega^{*}\left(\frac{1}{2} \delta_{1}(x)+\frac{1}{2} \delta_{-1}(x)\right)+\left(1-\omega^{*}\right) \frac{1}{2} \mathbf{1}_{[-1,1]}(x), \\
& \text { where } \omega^{*}=1 /(1+\lambda), b\left(\cdot, \xi^{*}\right)=D\left(\xi^{*}\right)=1 /(1+\lambda)
\end{aligned}
$$

- triangular correlation function $\rho(t)=\max \{0,1-\lambda|t|\}$: discrete design
- $\rho(t)=1 /|t|^{\alpha}, 0<\alpha<1$: optimal design has Beta-density

$$
p^{*}(x)=\frac{2^{-\alpha}}{B\left(\frac{1+\alpha}{2}, \frac{1+\alpha}{2}\right)}(1+x)^{\frac{\alpha-1}{2}}(1-x)^{\frac{\alpha-1}{2}} .
$$

- $\rho(t)=-\ln \left(t^{2}\right)$ (functional is not convex): optimal design has the arcsine density

$$
p^{*}(x)=\frac{1}{\pi \sqrt{1-x^{2}}}
$$

Optimal design for SLSE in one-parameter models

Assume the design space is finite: $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$. In this case, the optimal design for the SLSE can be found explicitly.
A generic approximate design on this design space is an arbitrary discrete signed measure $\xi=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; w_{1}, \ldots, w_{N}\right\}$, where $w_{i}=s_{i} p_{i}, s_{i} \in\{-1,1\}, p_{i} \geq 0(i=1, \ldots, N)$ and $\sum_{i=1}^{N} p_{i}=1$. The variance of the SLSE:

$$
D=\sum_{i=1}^{N} \sum_{j=1}^{N} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) w_{i} w_{j} f\left(\mathbf{x}_{i}\right) f\left(\mathbf{x}_{j}\right) /\left(\sum_{i=1}^{N} w_{i} f^{2}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Optimal weights:

$$
w_{i}^{*}=\mathbf{e}_{i}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{f} / f\left(\mathbf{x}_{i}\right) ; \quad i=1, \ldots, N
$$

where $\mathbf{f}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right)^{T}$, $\mathbf{e}_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)^{T}$. The resulting weighted SLSE coincides with BLUE (except that repetition of observations does not make sense)

SLSE: an explicit formula for optimal weights

Assume $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=u_{i} v_{j}$ for $i \leq j$ and denote $f_{k}=f\left(\mathbf{x}_{k}\right)$, $q_{k}=u_{k} / v_{k}$. Then If $f_{i} \neq 0(i=1, \ldots, N)$, then the optimal weights can be represented explicitly as follows:

$$
\begin{aligned}
w_{1}^{*} & =\frac{c}{f_{1}}\left(\tilde{\sigma}_{11} f_{1}+\tilde{\sigma}_{12} f_{2}\right)=\frac{c u_{2}}{f_{1} v_{1} v_{2}\left(q_{2}-q_{1}\right)}\left(\frac{f_{1}}{u_{1}}-\frac{f_{2}}{u_{2}}\right), \\
w_{N}^{*} & =\frac{c}{f_{N}}\left(\tilde{\sigma}_{N, N} f_{N}+\tilde{\sigma}_{N-1, N} f_{N-1}\right)=\frac{c}{f_{N} v_{N}\left(q_{N}-q_{N-1}\right)}\left(\frac{f_{N}}{v_{N}}-\frac{f_{N-1}}{v_{N-1}}\right), \\
w_{i}^{*} & =\frac{c}{f_{i}}\left(\tilde{\sigma}_{i, i} f_{i}+\tilde{\sigma}_{i-1, i} f_{i-1}+\tilde{\sigma}_{i, i+1} f_{i+1}\right) \\
& =\frac{c}{f_{i} v_{i}}\left(\frac{\left(q_{i+1}-q_{i-1}\right) f_{i}}{v_{i}\left(q_{i+1}-q_{i}\right)\left(q_{i}-q_{i-1}\right)}-\frac{f_{i-1}}{v_{i-1}\left(q_{i}-q_{i-1}\right)}-\frac{f_{i+1}}{v_{i+1}\left(q_{i+1}-q_{i}\right)}\right),
\end{aligned}
$$

for $i=2, \ldots, N-1$. Here $\tilde{\sigma}_{i j}$ denotes the element in the position (i, j) of the matrix $\boldsymbol{\Sigma}^{-1}=\left(\tilde{\sigma}_{i j}\right)_{i, j=1, \ldots, N}$.

Some references: Harman, R. and Stulajter, F. (2011) JSPI, 141(8), 2750-2758. AZ \& Kondratovich (1984), AZ (1985).

Optimal designs, one-parameter case, Markovian noise

Assume $\mathcal{X}=[a, b], K\left(t, t^{\prime}\right)=u(t) v\left(t^{\prime}\right), t \leq t^{\prime}$. Criterion:

$$
D(\xi)=\iint K(s, t) f(s) f(t) d \xi(s) d \xi(t) /\left(\int f^{2}(t) d \xi(t)\right)^{2}
$$

Optimal design: masses
$P_{a}=\frac{c}{f(a) v^{2}(a) q^{\prime}(a)}\left[\frac{f(a) u^{\prime}(a)}{u(a)}-f^{\prime}(a)\right], P_{b}=c \cdot \frac{h^{\prime}(b)}{f(b) v(b) q^{\prime}(b)}$
at the points a and b, respectively, and the (signed) density

$$
p(t)=-\frac{c}{f(t) v(t)}\left[\frac{h^{\prime}(t)}{q^{\prime}(t)}\right]^{\prime}
$$

where $h(t)=f(t) / v(t)$.
Optimality of a design ξ^{*} can be verified directly by checking that $D\left(\xi^{*}\right)$ coincides with the variance of the continuous BLUE.

OLSE/BLUE

General estimator:

$$
\hat{\boldsymbol{\theta}}_{\zeta}=\int y(\mathbf{x}) \zeta(d \mathbf{x})
$$

where $\zeta(d \mathbf{x})$ is a signed vector-measure.

$$
\widehat{\boldsymbol{\theta}}_{O L S E}=\int y(\mathbf{x}) M^{-1}(\xi) f(\mathbf{x}) \xi(d \mathbf{x})
$$

where

$$
M(\xi)=\int f(\mathbf{x}) f^{T}(\mathbf{x}) \xi(d \mathbf{x})
$$

and $\xi(d \mathbf{x})$ is a design (probability measure for OLSE; a signed measure for SLSE).
If $m=1$ then any signed measure $\zeta(d \mathbf{x})$ can be represented in the form $M^{-1}(\xi) f(\mathbf{x}) \xi(d \mathbf{x})$ and so optimal continuous SLSE is equal to continuous BLUE. Discretization is another issue.

OLSE/BLUE, $m>1$

General estimator:

$$
\hat{\boldsymbol{\theta}}_{\zeta}=\int y(\mathbf{x}) \zeta(d \mathbf{x})
$$

where $\zeta(d \mathbf{x})$ is a signed vector-measure.
Continuous Matrix-Weighted estimator (MWLSE)

$$
\widehat{\boldsymbol{\theta}}_{M W L S E}=\int y(\mathbf{x}) M^{-1}(\xi) O(\mathbf{x}) f(\mathbf{x}) \xi(d \mathbf{x})
$$

where $O(\mathbf{x})$ is a matrix weight assigned to a point x and

$$
M(\xi)=\int O(\mathbf{x}) f(\mathbf{x}) f^{T}(\mathbf{x}) \xi(d \mathbf{x})
$$

and $\xi(d \mathbf{x})$ is a design.
Any signed vector-measure $\zeta(d \mathbf{x})$ can be represented in the form $M^{-1}(\xi) O(\mathbf{x}) f(\mathbf{x}) \xi(d \mathbf{x})$ and so optimal continuous MWLSE coincides with continuous BLUE.
In making a discretization, we only need to keep weights at A and B; the rest can be achieved by assigning \pm and thinning. All is similar for the gradient-enhanced estimation.

Results of Bickel and Herzberg and extensions

$y(t)=\theta^{T} f(t)+\varepsilon(t)$ with stationary error process and
$\mathcal{X}=[-T, T]$. Suppose that for N observations, the correlation function is given by $\rho_{N}(t)=\rho_{o}(N t)$, where
$\rho_{o}(t)=\gamma \rho(t)+(1-\gamma) \delta_{t}$ and $\rho(t) \rightarrow 0$ as $t \rightarrow \infty, \gamma \in(0,1]$.
$Q(t)=\sum_{j=1}^{\infty} \rho(j t), \mathbf{x}_{i N}=a\left(\frac{i-1}{N-1}\right), i=1, \ldots, N$.

$$
\mathbf{R}(a)=\left(\int_{0}^{1} f_{i}(a(u)) f_{j}(a(u)) Q\left(a^{\prime}(u)\right) d u\right)_{i, j=1}^{m}
$$

B-H: the covariance matrix of the OLSE

$$
\lim _{N \rightarrow \infty} \sigma^{-2} N \operatorname{Var}\left(\widehat{\boldsymbol{\theta}}_{\text {OLSE }}\right)=\mathbf{W}^{-1}(a)+2 \gamma \mathbf{W}^{-1}(a) \mathbf{R}(a) \mathbf{W}^{-1}(a),
$$

where $\mathbf{W}(a)=\left(\int_{0}^{1} f_{i}(a(u)) f_{j}(a(u)) d u\right)_{i, j=1}^{m}$.
Two our generalizations of the B-H results: (a) LRD errors (joint with N.Leonenko), (b) different rate of expansion of the interval: $\rho_{N}(t)=\rho_{o}\left(N^{\alpha} t\right)$ with $0<\alpha \leq 1$.

Thank you for listening

