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Introduction

Generalized linear mixed models (GLMMs) are often used for
analyzing clustered correlated and repeated measures data.

We explore techniques for design of experiments, where the optimal
choices of predictors’ values can be made in order to produce the
most accurate estimation or prediction through a GLMM.

We also consider the situations when the fitted GLMM is possibly of
an incorrect parametric form.
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Assumed Model and Notation

Conditional on u, elements of response vector y = (y1, . . . , yN)t are
assumed independent and follow a distribution in exponential family:

fyi |u(y |u,β, φ) = exp

{
yθi − b(θi )

a(φ)
+ c(y , φ)

}
for some functions a, b and c .

Canonical parameter θi = xtiβ + zti u.

xti is ith row of the design matrix X for fixed effects and zti is ith row
of the design matrix Z for random effects.

Further assume u follows a distribution:

u ∼ fu(u|α)

depending on parameters α.
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Likelihood Function

Likelihood function can be expressed as

L(β, φ,α|y) =

∫ N∏
i=1

fyi |u(yi |u,β, φ)fu(u|α)du.

For simplicity, consider φ = 1, as used in binary and Poisson
regression.
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Maximum Likelihood (ML) Estimation

ML estimating equations for β and α take the form:

E

{
∂ log fy |u(y|u,β)

∂β

∣∣∣∣ y} = 0

E

{
∂ log fu(u|α)

∂α

∣∣∣∣ y} = 0

Expectation is with respect to the conditional distribution of u|y.

ML estimators are obtained using an iterative method.
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Fisher Information

Observed Fisher Information matrix is

Io(β,α) =

[
Io11(β,α) Io12(β,α)
Io21(β,α) Io22(β,α)

]
,

where

Io11(β,α) = −∂
2 log L

∂β∂βt

= −E

{
∂2 log fy |u(y|u,β)

∂β∂βt

∣∣∣∣∣ y
}

−E
{
∂ log fy |u(y|u,β)

∂β

∂ log fy |u(y|u,β)

∂βt

∣∣∣∣ y}
+E

{
∂ log fy |u(y|u,β)

∂β

∣∣∣∣ y}E

{
∂ log fy |u(y|u,β)

∂βt

∣∣∣∣ y}
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Fisher Information

Io22(β,α) = −∂
2 log L

∂α∂αt

= −E
{
∂2 log fu(u|α)

∂α∂αt

∣∣∣∣ y}
−E

{
∂ log fu(u|α)

∂α

∂ log fu(u|α)

∂αt

∣∣∣∣ y}
+E

{
∂ log fu(u|α)

∂α

∣∣∣∣ y}E

{
∂ log fu(u|α)

∂αt

∣∣∣∣ y}
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Fisher Information

Io12(β,α) = Ito21(β,α) = −∂
2 log L

∂β∂αt

= −E
{
∂ log fy |u(y|u,β)

∂β

∂ log fu(u|α)

∂αt

∣∣∣∣ y}
+E

{
∂ log fy |u(y|u,β)

∂β

∣∣∣∣ y}E

{
∂ log fu(u|α)

∂αt

∣∣∣∣ y}
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Fisher Information

For the exponential family,

E

{
∂ log fy |u(y|u,β)

∂β

∣∣∣∣ y} = Xt [y − E{µ(β,u)|y}]

E

{
∂2 log fy |u(y|u,β)

∂β∂βt

∣∣∣∣∣ y
}

= −E{XtW(β,u)X|y}

W(β,u) = diag{var(yi |u)}.
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Fisher Information

Expected Fisher Information matrix has components

E

{
−∂

2 log L

∂β∂βt

}
= E

[
E

{
∂ log fy |u(y|u,β)

∂β

∣∣∣∣ y}E

{
∂ log fy |u(y|u,β)

∂βt

∣∣∣∣ y}]

E

{
−∂

2 log L

∂α∂αt

}
= E

[
E

{
∂ log fu(u|α)

∂α

∣∣∣∣ y}E

{
∂ log fu(u|α)

∂αt

∣∣∣∣ y}]

E

{
−∂

2 log L

∂β∂αt

}
= E

[
E

{
∂ log fy |u(y|u,β)

∂β

∣∣∣∣ y}E

{
∂ log fu(u|α)

∂αt

∣∣∣∣ y}]
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Possible departures

(M1) Misspecified linear predictors

(M2) Overdispersion

(M3) Imprecisions in the assumed link function

(M4) Misspecified distribution for the random effects

(M5) Combined departures
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(M1) Misspecified linear predictors

The covariates included in the systematic component of the model,
the linear predictor, may not reflect the influence of covariates
correctly.

Possibly due to the use of a wrongly specified functional form of the
covariates in the model or an omission of essential covariates.

Impact - biased estimators

For instance, ’substantial bias in the conditionally specified regression
point estimators can result from using a simple random intercepts
model when either the random effects distribution depends on
measured covariates or there are autoregressive random effects’ -
Heagerty and Kurland (2001)
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(M1) Misspecified linear predictors

The unknown model belongs to a class

E (Yi |u) = µ (ηT ,i ) , ηT ,i = xtiβ + zti u + h(x), (1)

where h(x) is a ’small’ contaminant, u∼fu(u|α), and E (u) = 0.

However, fits a GLMM model with µu (ηi |u) = µ (xti β + zti u).

Define the fitted marginal mean response

µ (xi , β) = E (µu (ηi |u)) =

∫
u
µ
(
xti β + zti u

)
fu(u|α)du

Then, true marginal mean response:

E (Yi |xi ) = E (µu (ηT ,i |u)) = µ (xi , β) + d
(1)
i (xi ,β),

where

d
(1)
i (xi ,β) =

∫ [
µ′(xtiβ + zti u)h(x) + o(h(x))

]
fu(u|α)du
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(M1) Misspecified linear predictors

We define “true” β0 through minimization of integrated squared
discrepancy

β0 = arg min

∫
S

[
d (1)(x,β)

]2
dx. (2)

This implies that ∫
S
t(x,β0)d (1)(x,β0)dx = 0,

with t(x, β) = ∂µ(x,β)/∂β. Then, the true marginal mean is given
by

E (Yi |xi )=µi (xi ,β0) + d (1)(xi ,β0).
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(M1) Misspecified linear predictors

Result 1: For a GLMM model with possible (M1) type
misspecification, the maximum likelihood estimate β̂N of the model
parameter vector β0 has the following property:

β̂N − β0 ∼ N
(
M−1

N (β0)b
(1)
N (β0),M−1

N (β0)Q
(1)
N (β0)M−1

N (β0)
)
,

where

MN(β) =
N∑
i=1

E

[
∂

∂β
E {(yi − µu

i (xi ,β,u))xi |yi}
]
,

b
(1)
N (β) =

N∑
i=1

d
(1)
i (xi ,β)xi ,

Q
(1)
N (β) =

N∑
i=1

E [E {(yi − µu
i (xi ,β,u))xi |yi}

E t {(yi − µu
i (xi ,β,u))xi |yi}

]
.
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Relationship among departures (M1)-(M5)

In summary, among (M1)-(M5), the overdispersion problem (M2) and
misspecified random effects distribution problem (M4) mainly
contribute to the variance part of the response, and the resulting
mean responses approximately remain the same or relatively small;

With some approximation, a (M2) problem can be treated as a (M4)
problem.

The link function misspecification problems (M3) can be all cast as
linear predictor misspecification (M1) problems;

A (M5) problem can be viewed as a combination of (M1) and (M4)
problems.
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(M5) Combined departures

Assuming any GLMM with a random intercept, where overdispersion
can be accommodated, any types of departures (M1)-(M4) and any
possible combinations of them can be treated as a general case:

Formally, with (M5), the true but unknown model belongs to a class
of alternative models

E (Yi |u) = µ (ηT ,i ) , ηT ,i = xtiβ + zti u + h(x), (3)

u ∼ f Tu (u|γ) , and E (u) = 0. (4)

Fitting a GLMM with µu (ηi |u) = µ (xti β + zti u) , u∼fu(u|α).
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(M5) Combined departures

We define µ (xi , β,α) = E (µu (ηi |u)) =
∫
u µ (xti β + zti u) fu(u|α)du

as the fitted marginal mean response. Then, the true marginal mean
response:

E (Yi |xi ) =

∫
µ
(
xtiβ + zti u + h(x)

)
f Tu (u|γ) du

= µ (xi , β,α) + d (3)(xi ,β, α),

where

d (3)(xi ,β, α) =

∫
µ(xtiβ + zti u)

[
f Tu (u|γ)− fu(u|α)

]
du

+

∫ [
µ′(xtiβ + zti u)h(x) + o(h(x))

]
f Tu (u|γ) du.
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(M5) Combined departures

In this case, we define ’true’ α0, β0 as

θ0 =

(
β0

α0

)
= arg min

∫
S

[
d (3)(x, β,α)

]2
dx.

This implies ∫
S
t(x,θ0)d (3)(x,α0,β0)dx = 0.

Then, the true marginal mean is given by

E (Yi |xi )=µi (xi ,α0,β0) + d (3)(xi ,α0,β0).
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(M5) Combined departures

Result 3: For a GLMM model with possible (M5) type
misspecification, the maximum likelihood estimate β̂N of the model
parameter vector β0 has the following property:

β̂N − β0 ∼ N
(
M−1

N (β0)b
(3)
N (β0),M−1

N (β0)Q
(3)
N (β0)M−1

N (β0)
)
,

where

MN(β) =
N∑
i=1

E

[
∂

∂β
E {(yi − µu

i (xi ,β,u))xi |yi}
]
, b

(2)
N (β) =

N∑
i=1

d
(3)
i (xi ,β)xi ,

and

Q
(3)
N (β) =

N∑
i=1

ET

[
E {(yi − µu

i (xi ,β,u))xi |yi}E t {(yi − µu
i (xi ,β,u))xi |yi}

]
.
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Relationship among departures (M1)-(M5)

The typical focus of the design for a generalized linear model is
usually the prediction or estimation of mean response structure rather
than variability cross clusters.

Therefore, we will focus on optimal and robust designs for GLMMs in
protection of possible imprecision in assumed linear predictor:
Departure (M1).

The design construction procedure will be the same for all of
(M1)-(M5).

Hereafter we adapt a general notation of d(xi ,β0) for the discrepancy
between E (Yi |xi ) and µ (xi ,β0) instead of using d (1)(xi ,β0) as we
did for (M1).
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Example: Binary model

Suppose that an experimenter fits a logistic regression model by

logit{µu(x , u,β)} = β0 + β1x + u

over the range x ∈ [0, 3]; however, the true model is

logit{µ∗u(u, x ,α)} = α0 + α1x + α2x
2 + u,

where u ∼ N (0, 1).
Figure 1 (left) shows plots of marginal means E[µ∗u(u, x ,α0)] with
α0 = (−2, 1, 0.5)′ and E{µu(x , u,β0)} with β0 = (−2.60, 2.23)′

obtained by minimizing the squared distance

D2(β) =

∫ 3

0
{E(µ∗u(u, x ,α0))− E(µu(x , u,β))}2 dx

between two marginal response functions.
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Example: Poisson model

Consider a Poisson regression model

log{µu(x , u,β)} = β0 + β1x + u

over the range x ∈ [0, 3], whereas the true mean response model is

log{µ∗u(u, x ,α)} = α0 + α1x + α2x
2 + u

Figure 1 (right) shows plots of marginal means E[µ∗u(u, x ,α0)] with
α0 = (−1, 0.2, 0.2)′ and E{µu(x , u,β0)} with β0 = (−1.80, 1.04)′,
the values minimize the overall squared discrepancy.
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Example: Misspecified binary and Poisson models
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Figure: 1. True versus fitted models
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Asymptotics

ML estimator β̂N follows the property:

β̂N − β0 ∼ N
(
M−1

N (β0)bN(β0),M−1
N (β0)QN(β0)M−1

N (β0)
)
,

where

MN(β) =
N∑
i=1

E

[
∂

∂β
E {(yi − µui (xi ,β,u))xi |yi}

]

QN(β) =
N∑
i=1

E
[
E {(yi − µui (xi ,β,u))xi |yi}E′ {(yi − µui (xi ,β,u))xi |yi}

]

bN(β) =
N∑
i=1

di (xi ,β)xi .
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Integrated mean squared error (IMSE)

Define asymptotic IMSE by∫
S

E

[{
µ(x, β̂N)− E(y |x)

}2
]
dx

≈
∫
S

E

{[
(β̂N − β0)′t(x,β0)− d(x,β0)

}2
]
dx

= trace{MSEN(β0)A(β0)}+

∫
S
d2(x,β0)dx,

where A(β) =
∫
S t(x,β)t′(x,β)dx.
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Example: Estimation of discrepancy function d
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Figure: 2. Exact and estimated discrepancies, with the same parameter values as
Figure 1 (left).
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Integrated mean squared error (IMSE)

We consider two design criteria, where design points are obtained by
minimizing
I-optimality criterion:

LI = trace{MSEN(β0)A(β0)}

D-optimality criterion:

LD = [det{MSEN(β0)}]1/p
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Introduction

Usual measures of performance of a design in GLMMs depend on
parameters being estimated.

Commonly used methods: minimax (maximin), Bayesian
(min-average), and sequential

We adopt a sequential approach for choosing a design point that
maximizes a measure of performance evaluated at estimates obtained
from previous observations.

The performance of the proposed design is assessed by simulations.

Optimal sequential designs for nonlinear regression were studied
earlier by Chaudhuri & Mykland (1993) and Sinha & Wiens (2002).

More recently, Bayesian approaches considered: for nonlinear
regression by Dror & Steinberg (2008); for Poisson regression by
Zhang & Ye (2014), and for logistic regression with a random
intercept by Maram & Jafari (2016).
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I-optimal sequential design

1. Find ML estimates γ̂0 = (β̂
t
0, α̂

t
0)t for initial {(yi , xi ); i = 1, . . . ,N0}.

2. Compute
LI = trace{MSEN0(β̂0)A(β̂0)}

3. Choose a new design point x∗N0+1 from

x∗N0+1 = arg min
xN0+1

[
trace{MSEN0+1(β̂0)A(β̂0)}

]
4. Update estimates for augmented data obtained at x∗N0+1. Obtain next

sequential design point based on new set of estimates.

5. Choose N1 design points x∗N0+1, . . . , x
∗
N0+N1

sequentially.
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Simulation Study - Logistic

We study empirical properties using simulations

Data were generated from a “true” binary mixed model:

yij |ui ∼ ind. Bernoulli(pij), i = 1, . . . , k ; j = 1, . . . , n0

logit(pij) = α0 + α1xj + α2x
2
j + ui

ui ∼ ind. N (0, σ2
u).

Parameters were fixed at σ2
u = 1, α0 = −2, α1 = 0.5 and

α2 = (0.5, 1)

Fitted model: logit(p∗ij) = β0 + β1xj + ui

Initial data are based on n0 = 7 design points equally spaced in [0, 3].

Two design points were chosen sequentially using both I-optimal and
D-optimal criteria.
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Simulation Study - Logistic
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Figure: 3. Histogram of sequential points for the binary model. k = 25 clusters,
α2 = 0.5.
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Simulation Study - Logistic
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Figure: 4. Histogram of sequential points for the binary model. k = 50 clusters,
α2 = 0.5.
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Simulation Study - Logistic
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Figure: 5. Histogram of sequential points for the binary model. k = 25 clusters,
α2 = 1.
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Simulation Study - Logistic
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Figure: 6. Histogram of sequential points for the binary model. k = 50 clusters,
α2 = 1.
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Simulation Study - Logistic
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Figure: 7. IMSE for α2 = 0.5. ——-: I-optimal, ——-: D-optimal.
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Simulation Study - Logistic

180 200 220

1.
55

1.
65

1.
75

N

sq
rt

(N
*I

M
S

E
)

360 400 440

1.
85

1.
95

2.
05

N

sq
rt

(N
*I

M
S

E
)

Figure: 8. IMSE for α2 = 1. ——-:I-optimal, ——-: D-optimal.
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Simulation Study - Poisson

Data were generated from a “true” Poisson mixed model:

yij |ui ∼ ind. Poisson(pij), i = 1, . . . , k ; j = 1, . . . , n0

log(pij) = α0 + α1xj + α2x
2
j + ui

ui ∼ ind. N (0, σ2
u).

Parameters were fixed at σ2
u = 0.5, α0 = −1, α1 = 0.2 and

α2 = (0.2, 0.4)

Fitted model: log(p∗ij) = β0 + β1xj + ui

Initial data are based on n0 = 7 design points equally spaced in [0, 3].

Two design points were chosen sequentially using both I-optimal and
D-optimal criteria.
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Simulation Study - Poisson
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Figure: 9. Histogram of sequential points for the Poisson model. k = 25 clusters,
α2 = 0.2.
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Simulation Study - Poisson
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Figure: 10. Histogram of sequential points for the Poisson model. k = 50
clusters, α2 = 0.2.
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Simulation Study - Poisson
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Figure: 11. Histogram of sequential points for the Poisson model. k = 25
clusters, α2 = 0.4.
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Simulation Study - Poisson
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Figure: 12. Histogram of sequential points for the Poisson model. k = 50
clusters, α2 = 0.4.
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Simulation Study - Poisson
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Figure: 13. IMSE for α2 = 0.2. ——-: I-optimal, ——-: D-optimal.
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Simulation Study - Poisson
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Figure: 14. IMSE for α2 = 0.4. ——-:I-optimal, ——-: D-optimal.
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Simulation Study - Poisson - Efficiency comparision

Compare four classes of designs:

1. 2. Our proposed I- and D-optimal sequential designs.

3. Conventionally used ’uniform’ designs: the experimental points are
uniformly distributed throughout the design space. When n = n0 + n1

the locations are equally spaced over [0, 3]; for smaller values of n
they form a subset of these sites. Thus these designs are sequential
but nonadaptive.

4. The classical sequential D-optimal designs without consideration of
model departures: using the same procedure as developed previously.
However, in these designs, the design sequential points are obtained
by maximizing the determinant of the information matrix evaluated at
the estimates attained from the previous step.
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Simulation Study - Poisson - Efficiency comparison
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Figure: 15. Efficiency comparison. IMSEs for α2 = 0.2. Left: k=25. Right: k=50.
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Simulation Study - Poisson - Efficiency comparison
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Figure: 16. Efficiency comparison. IMSEs for α2 = 0.4. Left: k=25. Right: k=50.
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Conclusions

I-optimal design appears to be more efficient than D-optimal design
for all cases under misspecified logistic models and for most cases
under misspecified Poisson models.

Both design criteria require intensive computation.

Some practical approximation methods can be found in Sinha and Xu
(2016) to reduce the computational difficulties.

The efficiencies of both resulting I- and D-optimal sequential designs
are higher than their corresponding classical D-optimal sequential
designs for all cases considered (about 3-20 percents higher in the
example).
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