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Automated experimentation

Automation allows more (economically, time) efficient experimentation, 24/7
lab operation, reduction in user errors, and wider use of better designed
experiments

Automation requires principled and computationally efficient algorithms

▸ Generation of (one-point-at-a-time) sequential designs

▸ Robust modelling of sequentially collected data making minimal
assumptions

▸ Identification of possible outliers

We address these issues through

▸ Gaussian process regression and Bayesian updating

▸ Decision-theoretic sequential design for optimisation

▸ (Re-) weighting of observations to reflect our belief in their reliability
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Bayesian optimisation

Assume the aim is to maximise an unknown, and expensive, function g(x) with
respect to q controllable variables x = (x1, . . . , xq)T ∈ X ⊂ Rq

[Here, expensive will mean an experiment is required to obtain a (noisy)
evaluation of g(x) at any x]

Bayesian optimisation

▸ places a prior distribution on g(x) (i.e. a statistical model)

▸ collects (noisy) function evaluations (data) at points chosen sequentially
via an acquisition function

▸ updates the prior to a posterior distribution and infers the maximum of
g(x)

Uncertainty in the posterior leads to an exploration/exploitation trade-off

In the statistics literature, Expected Improvement (EI) using Gaussian
processes is the most popular acquisition function

Mockus (1989), Jones et al, (1998), Brochu et al., 2010
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Gaussian process regression

Bayesian Gaussian process models: nonparametric modelling of a black box
function g(x)

Assume we can observe y = g(x) + ε, for ε ∼ N(0, σ2
ε)

Gaussian process prior: g(x) ∼ GP{µ(x), κ(x,x′)}

g(x1), . . . , g(xn) ∼ MVN(Fβ, σ2
gK)

F = model matrix for mean trend

K = correlation matrix with ijth entry kλ(xi,xj)

Correlation function kλ(x,x′) often assumed stationary and separable in x,
with parameter λ

Conditional on the hyperparameters, the posterior for g(x) is also a
Gaussian process; unconditional posterior inference requires numerical methods

Rasmussen & Williams (2006)
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Decision-theoretic approach 1

Classic EI is for the case of non-noisy observations, σ2
ε = 0.

Most extensions to EI for noisy data are heuristic generalisations that do not
take account of parameter updating or inference for the maximum

Huang et al. (2006), Gramacy & Polson (2011)

Problem 1. Estimation: Given data y1∶n = (y1, . . . , yn)T, find a point
estimate x⋆n ∈Mn ⊆ X for the optimum

We assume the utility of a point x is

u(x, g) = g(x) ,

with corresponding Bayes decision

x⋆n = argmaxx∈Mn
Eg {g(x) ∣ y1∶n}
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Decision-theoretic approach 2

Now suppose one additional observation, yn+1, will be taken and the posterior
mean E{g(x)∣y1∶(n+1)} used to locate x⋆n+1 ∈Mn+1

Problem 2. Design: the optimal choice of xn+1, the next design point,
maximises

U(xn+1) = Eg,yn+1 {u(x⋆n+1, g) ∣ y1∶n}

= Eyn+1 [ max
x∈Mn+1

Eg {g(x) ∣ y1∶(n+1)} ∣ y1∶n]

For interpretation and presentation, we usually use the Expected Gain in
Utility (EGU)

U(xn+1) −Eg {g(x⋆n) ∣ y1∶n}

see also Osbourne et al. (2010)
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Two simple results

1. Expected improvement is a special case of EGU . . .

. . . if the responses are deterministic, y = g(x), Mn = {x1, . . . ,xn}, and the
GP hyperparameters are known

Here, x⋆n = argmaxi=1....,ng(xi) and hence

U(xn+1) = Eg {max (g(xn+1), g(x⋆n)) ∣ y1∶n}
= g(x⋆n) +Eg {max (g(xn+1) − g(x⋆n),0) ∣ y1∶n}
= g(x⋆n) + EI(xn+1)

2. The EGU is non-negative . . .

. . . if Mn = {x1, . . . ,xn}. Then,

U(xn+1) ≥ Eg {g(x⋆n) ∣ y1∶n}
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Updating the GP and approximating EGU

Updating is via Sequential Monte Carlo with Nθ particle/weight pairs (θj ,wj),
where θ holds values of the hyperparameters and 0 < wj ≤ 1, ∑

j

wj = 1

▸ Reweight, resample and move steps after observation of yn+1
▸ Iterated batch importance sampling (IBIS)

Chopin (2002), Gramacy & Polson (2011), Drovandi et al. (2013)

Approximation of EGU presents two main challenges:

1. for given yn+1, we must approximate the posterior for θ;

2. the expectation must be taken with respect to the predictive distribution
of yn+1

9



Approximating EGU 1

Let u(xn+1; yn+1) = max
x∈Mn+1

Eg {g(x) ∣ y1∶(n+1)}

Then we need to approximate

U(xn+1) = ∫
R
u(xn+1; yn+1)π(yn+1 ∣ y1∶n)dyn+1

1. Particle approximation for the predictive distribution:

π̂(yn+1 ∣ y1∶n) =∑
j

wjπ(yn+1 ∣ y1∶n,θj)

2. Quadrature approximation for the integral w.r.t. yn+1:

Û(xn+1) =∑
k

vkπ̂(y(k)n+1 ∣ y1∶n)u(xn+1; y(k)n+1) ,

with, vk, y(k)n+1 are integration weights and abscissae
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Approximating EGU 2

To estimate future maximised expected utility u(xn+1; yn+1):

1. Given yn+1, calculate an approximate posterior density for θ via simple
reweighting, i.e. using (θj , w̃j) with

w̃j ∝ wjπ(yn+1 ∣ y1∶n,θj)

2. Use these weights to approximate the future posterior expectation
Eg {g(x) ∣ y1∶(n+1)}, giving

û(xn+1; yn+1) = max
x∈Mn+1

⎧⎪⎪⎨⎪⎪⎩
∑
j

w̃j Eg [g(x) ∣ y1∶(n+1),θj]
⎫⎪⎪⎬⎪⎪⎭
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Example 1

Real piece of chemistry run in Southampton Chemistry with online statistical
modelling performed at Manchester

Hardware: 4-channel (A–D) Vapourtec flow reactor

Measurement via HPLC/UV

LabView 

Control 

Initial Reaction 

Continue 
Until 

Optimised 

Figure 1: Predicted Response Surface, x1 

(temperature), x4 (ratio B:A) 

 
Figure 2: Effects of the four variables studies 

 

Development of Closed Loop Optimization (CLO) for Flow Chemistry 
I. Broadwell & R. J. Whitby, 1University of Southampton, Highfield, Southampton, SO17 1BJ  

Collaborators: D. Woods1, T. Waite1, X. Tang1, P. Gromski2, A. Nordon2 , C.  Houben3 & A. Lapkin3.  
2University of Strathclyde, 3University of Cambridge 

Vapourtec’s Flow Commander SDK 1.2 

upgrade adds external sampling and 

triggering to a user selectable COM port. 

This can be used to trigger a Vici 

automated switching valve or turn on a 

Kloehn syringe pump. Triggering can be 

set to the “start”, “middle” or “end” of the 

dispersion curve. 

Vapourtec’s Flow Commander SDK 1.4 

upgrade adds: (1) test panel functionality 

for remote control; (2) residence time 

correction factor for adjustment of the 

dispersion model to match the actual 

times when fractions are coming off the 

column. The model previously assumed a 

constant column temperature of 25 ºC for 

all reaction up to 250 ºC. The thermal 

expansion of reaction mix solvent is now 

better addressed.    

Vapourtec flow reactor (FR) 

- Set of 4 independent Kloehn reagent pumps (2xR2). 

- Up to 4 reactor columns (-70 to 250C, 0.02 to 9.99 ml/min 

per channel). 

- Gilson GX 271 liquid handler system for sample collection. 

- Flow sampling controlled via Flow Commander software. 

 
 

 

 

The CLO cycle The Advantages of CLO system 

• Automatically explore the yield/conversion surface of your target 

reaction using a multivariate approach. 

• Utilize powerful statistical algorithms to spot hard to find trends. 

• Reduces the labour needed to achieve the same results through a highly 

automated intelligent feedback system. 

• Rapidly change substrate using the built in flexibility of the Vapourtec 

flow reactor system. 

• Control the system and share data with colleagues over the LAN/WAN 

using code developed in house. 

Hardware Platform 

Rheodyne MRA (mass rate attenuator) 

- Variable dilutions 100-100,000x . 

- Solvent make up flow used to generate a 

continuous stream of diluted sample for Microsaic 

mass spectrometer. 

- Batch sampling for HPLC is made with the Valco 

7040 switching valve. 

Valco 7040 switching valve with HPLC sample loop 

- Variable loop size from 1-100uL using standard PEEK 

tubing.   

- Valve controller is user programmable to trigger from 

the Vapourtec or HPLC via relay contact closure with 

valve latching time from 50 ms to 65 s. 

- Internal sample injectors with 60, 100, 200 or 500nl 

vol can be used in the future to eliminate the MRA 

from the system. 

Agilent 1100 HPLC stack 

- Variable wavelength detector and 

binary pump controlled from 

Chemstation. 

- Data reports are saved in plain text 

format to the shared network drive. A 

post run macro in Chemstation 

automatically save raw data. 

Closed Loop Optimisation Symposium GSK, April 2015 

Flow Commander 

 starts flow reactor 

Reaction mixture  

diluted by MRA 

Valco ASV triggered 

Mid-run for sample collection 

Sample injected  

On to HPLC and run 

HPLC data analysis &  

Text file report creation 

Report data analysed 

By statistical algorithm 

Generate new  

Reaction conditions 

Pass parameters to LV 

Via single line text file 

Software Platform 
OptiChem our in house LabView control 

software performs a number of tasks: 

• Monitors flow reactor running state 

• Forwards all new reactions on to FC if 

the reactor is available, else adds them 

to a queue for later execution. 

• Generates a log file of all the 

commands sent to the flow reactor. 

• Communicates with the statistics 

program passing values between them 

across the university network. 

• Allows remote control of the FR  
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Initial Reaction 

Continue 
Until 

Optimised 
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Flow Commander 

 starts flow reactor 

Reaction mixture  

diluted by MRA 

Valco ASV triggered 

Mid-run for sample collection 

Sample injected  

On to HPLC and run 

HPLC data analysis &  

Text file report creation 

Report data analysed 

By statistical algorithm 

Generate new  

Reaction conditions 

Pass parameters to LV 

Via single line text file 

Software Platform 
OptiChem our in house LabView control 

software performs a number of tasks: 

• Monitors flow reactor running state 

• Forwards all new reactions on to FC if 

the reactor is available, else adds them 

to a queue for later execution. 

• Generates a log file of all the 

commands sent to the flow reactor. 

• Communicates with the statistics 

program passing values between them 

across the university network. 

• Allows remote control of the FR  

Average time for 1 run is 2 hours; practical upper bound of 30-40 runs
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Variables under study

▸ Conc A - 0.3–1 mol dm−3

▸ Ratio B - 1–5 eq

▸ Residence time - 5–30 min

▸ Temperature - 30–180○ C

Ratio D = 0.1 held fixed, Ratio C determined by Conc A

Response: product yield

Some combinations of Conc-Ratio are not physically feasible (as they would
imply infeasibly low or negative flow rates)

Initial design: 12 run design - 9 space-filling points (maximum-projection) +
three centre points

Joseph et al. (2015)

Stopping rule: U(xn+1) −Eg{g(x⋆n) ∣ y1∶n} ≤ 0.1
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Predicting forward using the sequential model
23 automated runs, with 11 chosen via EGU
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Progress of the algorithm
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Design points
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Predicting backwards from the final model
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Robustifying the model

Outliers and unusual observations are a fact of life, and are not uncommon in
chemistry experiments

Although we may wish to stop the system and investigate outlying observations
manually, it is also useful to have automatic methods

To facilitate automatic outlier detection and removal, we extend the model
such that

yi ∣ g, σ2
ε , ri ∼ N (g(xi), σ2

ε/ri) , i = 1, . . . , n

With ri ∼ Gamma(ar/2, br/2), the response yi has a non-standardised
t-distribution conditional on g and σ2

ε

We can use SMC and EGU with this model

cf Neal (1997)
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SMC for the t-response model

The parameters now consist of (θ,r1∶n), and the dimension increases whenever
we observe another data point. Thus IBIS is not applicable

Algorithm on observing yn+1,

1. Resample particles (θj ,r1∶n,j) with resampling weights proportional to
π(yn+1∣θj ,r1∶n,j ,y1∶n), approximated using Gauss-Laguerre quadrature

2. Propagate each of the resampled particles, by generating a value rn+1
from π(rn+1 ∣ θ,r1∶n,y1∶(n+1)), via a Gibbs sampler

3. Move the particles using an MCMC kernel with invariant distribution
π(θ,r1∶(n+1) ∣ y1∶(n+1))
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Example 2 - EGU, t-response model
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Example 2 - EI, normal-response model
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Example 2 - EI, normal-response model
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EGU and EI
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Estimated maximum and its location
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Mean posterior estimates from EGU algorithm
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Conclusions and future work

Conclusions

▸ Decision-theoretic design for (noisy) optimisation, with EI as a special case

▸ Robust modelling via combination of Gaussian process priors and weighted
error variance

▸ Real examples via a completely automated system

Future work

▸ Batch sequential and non-myopic design

▸ More complex chemistry/faster data collection

▸ R package and chemistry software
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