Minimax efficient random designs with application to model-robust design for prediction

Tim Waite

timothy.waite@manchester.ac.uk School of Mathematics University of Manchester, UK

Joint work with Dave Woods

S3RI, University of Southampton, UK

Supported by the UK Engineering and Physical Sciences Research Council

8 Aug 2017, Banff, AB, Canada

Outline

Randomized decisions and experimental design

Random designs for prediction - correct model

• Extension of G-optimality

Model-robust random designs for prediction

- Theoretical results tractable classes
- Algorithms for optimization
- Examples: illustration of bias-variance tradeoff

A well known fact in statistical decision theory and game theory:

• Under minimax expected loss, random decisions beat deterministic ones.

Experimental design can be viewed as a game played by the Statistician against nature (Wu, 1981; Berger, 1985).

Therefore a random design strategy should often be beneficial.

Despite this, consideration of minimax efficient random design strategies is relatively unusual.

Consider a two-person zero-sum game.

Player I takes action $\theta \in \Theta$ and Player II takes action $\xi \in \Xi$.

Player II experiences a loss $L(\theta, \xi)$, to be minimized.

A random strategy for Player II is a probability measure π on Ξ . Deterministic actions are a special case (point mass distribution).

Strategy π_1 is preferred to π_2 ($\pi_1 \succ \pi_2$) iff

$$\mathsf{E}_{\pi_1} L(\theta,\xi) < \mathsf{E}_{\pi_2} L(\theta,\xi) \,.$$

However, Player I's choice of θ is unknown to Player II.

To account for uncertainty about θ , the standard choice is to play (if it exists) a minimax strategy, π^* , such that

$$\max_{\theta \in \Theta} \mathsf{E}_{\pi^*} \ \mathsf{L}(\theta, \xi) = \inf_{\pi} \max_{\theta \in \Theta} \mathsf{E}_{\pi} \ \mathsf{L}(\theta, \xi) \,.$$

If both action spaces Θ and Ξ are finite (and not too large), minimax random strategies can be computed easily by solving a related linear programming problem.

Example: paper-rock-scissors, $\Theta = \Xi = \{P, R, S\}$, with loss matrix $L(\theta, \xi)$ below

Let δ be any deterministic strategy and $\pi = U(\{P, R, S\})$, then

$$\mathsf{E}_{\pi} L(heta,\xi) = rac{1}{3} imes (-1) + rac{1}{3} imes 0 + rac{1}{3} imes 1 = 0 \,, \quad orall heta \in \Theta \,.$$

Hence $\max_{\theta} \mathsf{E}_{\pi} L(\theta, \xi) = 0$ and $\max_{\theta} \mathsf{E}_{\delta} L(\theta, \xi) = 1$.

Thus π is preferable to any deterministic design. Indeed π is optimal.

Frequentist decision-theoretic experimental design

In optimal (exact) design, attention is usually restricted to a deterministic choice of design, $\boldsymbol{\xi} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Xi = \mathcal{X}^n$, a set of *n* points in design space \mathcal{X} .

We prefer a design with the lowest possible value of the risk

$$R(\theta, \boldsymbol{\xi}) = \mathsf{E}_{\mathbf{y}|\boldsymbol{\xi}, \theta} L(\theta, \boldsymbol{\xi}, \mathbf{y})$$

However the risk often depends on a vector $\theta \in \Theta$ of fixed unknowns (e.g. model parameters in a nonlinear model).

Hence, it is unknown which designs have minimum risk.

[Design selection can be viewed as a game with loss $L(\theta, \xi) = R(\theta, \xi)$. Player I: Nature, chooses θ ; Player II: the Statistician, chooses ξ .]

Minimax design

There is thus a need to account for uncertainty about θ when choosing ξ .

Many frequentists are reluctant to use prior distributions. In this case, typically a deterministic minimax design is sought, i.e. a $\xi^* \in \Xi$ that minimizes $\max_{\theta \in \Theta} R(\theta, \xi)$.

Random designs

Considerations from game theory and statistical decision theory would suggest that we also allow a random design, i.e. a probability measure π on Ξ .

Interpretation: choose the realized design $\boldsymbol{\xi}$ at random by sampling from π .

(A deterministic design corresponds to a point mass distribution.)

Expected loss for random designs

If L is truly the loss function, utility theory implies that the performance of π is to be measured via

$$R(\theta,\pi) = \mathsf{E}_{\mathbf{y},\boldsymbol{\xi}|\boldsymbol{\theta}} L(\boldsymbol{\theta},\boldsymbol{\xi},\mathbf{y}).$$

This makes intuitive sense:

- For a deterministic design we considered the repeated sampling distribution for *L* over hypothetical replications of the entire experiment.
- For a random design we do the same, but now for a different hypothetical replication, a different $\boldsymbol{\xi}$ will be sampled from π .

A minimax random design π^* satisfies

$$\max_{\boldsymbol{\theta}} R(\boldsymbol{\theta}, \pi^*) = \inf_{\pi} \max_{\boldsymbol{\theta}} R(\boldsymbol{\theta}, \pi).$$

Example: Fisherian randomization

Consider a linear model contaminated by fixed unknown additive unit effects, $\mathbf{u} = (u_1, \dots, u_n)^T \in \mathcal{U}$,

$$y_i = \mathbf{f}^{\mathrm{T}}(\mathbf{x}_i)\boldsymbol{\beta} + u_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2).$$

It was shown in many cases that the minimax random design strategy is Fisherian randomization of a standard design.

- π minimizes max_{u \in U} $R(\mathbf{u}, \pi)$.
- Assumptions about the structure of the experimental units, e.g. exchangeability/blocks, described by a permutation group *G*.
- Different loss functions considered, e.g. A, L-optimality.

[Wu, 1981; Li, 1983; Hooper, 1989; Bhaumik and Mathew, 1995].

Fisherian randomization 'is one of the greatest contributions of R. A. Fisher to science and statistics' (Wu, 1981).

It seems to us a weakness of standard optimal design theory that Fisherian randomization does not arise as a necessary mathematical consequence.

The preceding slide shows that it does arise directly from random designs and the minimax principle.

This seems to be a big hint that minimax random designs are worth considering more widely.

Design for point prediction

Suppose we have a normal theory linear model,

$$y_i = \mathbf{f}^{\mathrm{T}}(\mathbf{x}_i)\boldsymbol{\beta} + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

with design points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathcal{X} \subseteq [-1, 1]^q$.

Suppose the goal is prediction at an unknown point \mathbf{x} , with squared error loss

$$L(\boldsymbol{\theta}, \boldsymbol{\xi}, \mathbf{y}) = [\mathbf{f}^{\mathrm{T}}(\mathbf{x})\boldsymbol{\beta} - \mathbf{f}^{\mathrm{T}}(\mathbf{x})\hat{\boldsymbol{\beta}}]^{2},$$

depending on $\theta = (\beta, \mathbf{x})$.

Above, $\hat{\beta} = (\mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} \mathbf{F}_{\boldsymbol{\xi}})^{-1} \mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} \mathbf{y}$ is the least squares estimator, $\mathbf{F}_{\boldsymbol{\xi}}$ is the model matrix.

Given a design $\boldsymbol{\xi}$ and σ^2 , the risk is

$$R(\mathbf{x},\boldsymbol{\xi}) = \sigma^2 \mathbf{f}^{\mathrm{T}}(\mathbf{x}) (\mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} \mathbf{F}_{\boldsymbol{\xi}})^{-1} \mathbf{f}(\mathbf{x}) \,.$$

Thus the minimax deterministic design minimizes

$$\Phi(\boldsymbol{\xi}) = \max_{\mathbf{x} \in \mathcal{X}} \mathbf{f}^{\mathrm{T}}(\mathbf{x}) (\mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} \mathbf{F}_{\boldsymbol{\xi}})^{-1} \mathbf{f}(\mathbf{x}),$$

i.e. it is the classic *G*-optimal design.

However, this may be beaten by a minimax random design π^* , which minimizes

$$\Phi(\pi) = \max_{\mathbf{x} \in \mathcal{X}} \mathbf{f}^{\mathrm{T}}(\mathbf{x}) \mathsf{E}_{\pi}\{(\mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} \mathbf{F}_{\boldsymbol{\xi}})^{-1}\} \mathbf{f}(\mathbf{x}).$$

Example: quadratic model, 2 factors, $\mathcal{X} = \{-1, 0, 1\}^2$, n = 6.

There are 76 possible non-singular designs up to permutations of run order.

The minimax deterministic design has maximum expected loss $2.75\sigma^2$.

Using linear programming, an optimal random design can be obtained; it has maximum expected loss $1.55\sigma^2$.

The efficiency of the deterministic design is just 56%.

Variance-based optimality criteria

Classic D, A, E-optimality etc. all assume that a particular parametric model is correct.

Bias

Box & Draper (1959) - polynomials of uncertain degree, found if model incorrect better off choosing the design to minimize bias, ignoring variance.

Their investigation focussed only on polynomials.

More sophisticated treatments of model-robust design exist (e.g. Wiens, 2015).

Suppose that $\mathbf{x} \in \mathcal{X}$, with $\mathcal{X} \subseteq [-1,1]^q$, the design space. We assume

$$\mathbf{y} \sim \mathcal{N}[\mu(\mathbf{x}), \sigma^2],$$

and $\lambda(\mathcal{X}) > 0$, where λ is Lebesgue measure.

Standard linear model approach

Find an optimal design assuming that there exists a true parameter vector, $\beta_{\rm true,}$ such that

$$\mu(\mathbf{x}) = \mathbf{f}^{\mathrm{T}}(\mathbf{x}) oldsymbol{eta}_{\mathsf{true}}$$
 .

Above, $\mathbf{f}: \mathcal{X} \to \mathbb{R}^p$ a vector of regressor functions, e.g. $\mathbf{f}(x) = (1, x, x^2)^{\mathrm{T}}$.

Not very robust.

Model-robust approach (e.g. Wiens, 2015)

Assume explicitly that the linear regression function is an approximation to μ , i.e.

$$\mu(\mathbf{x}) = \mathbf{f}^{\mathrm{T}}(\mathbf{x})\boldsymbol{\beta}_{\mathsf{ba}} + \psi(\mathbf{x}),$$

where β_{ba} minimizes the L_2 -norm of the approximation error, i.e.

$$eta_{\mathsf{ba}} \in \mathop{\mathrm{arg\,min}}_{oldsymbol{eta}} \int_{\mathcal{X}} [\mu(\mathbf{x}) - \mathbf{f}^{\mathrm{T}}(\mathbf{x})oldsymbol{eta}]^2 d\lambda(\mathbf{x}) \, .$$

In this case, the discrepancy ψ is orthogonal to the regressors

$$\langle \psi, \mathbf{f}
angle = \int_{\mathcal{X}} \psi(\mathbf{x}) \mathbf{f}(\mathbf{x}) d\lambda(\mathbf{x}) = \mathbf{0}_q$$

[cf. L2-calibration of computer models (Tuo and Wu, 2015; Plumlee, 2016).]

Discrepancy classes

An approximately linear model is specified as

$$\mu(\mathbf{x}) = \mathbf{f}^{\mathrm{T}}(\mathbf{x}) \boldsymbol{\beta}_{\mathsf{ba}} + \psi(\mathbf{x}), \quad \boldsymbol{\beta}_{\mathsf{ba}} \in B, \ \psi \in \mathcal{H},$$

where ${\cal H}$ is a set containing all discrepancy functions considered possible.

The choice for $\mathcal H$ that has received the most attention is

$$\mathcal{H} = \left\{ \psi: \langle \psi, \mathbf{f}
angle = \mathbf{0}, \int \psi(\mathbf{x})^2 d\lambda(\mathbf{x}) \leq au^2
ight\} \, .$$

(cf. Huber, 1981; Dette and Wiens, 2009; Wiens, 2015).

[Alternatives: Box and Draper (1959), ψ a polynomial; Li and Notz (1980), $|\psi| \leq \tau_{\infty}$; Yue and Hickernell (1999), ψ belongs to a smoothness class.]

Loss function

We suppose that the loss is the integrated squared prediction error (ISPE)

$$\mathcal{L}(\boldsymbol{ heta},\boldsymbol{\xi},\mathbf{y}) = \int_{\mathcal{X}} [\mu(\mathbf{x}) - \mathbf{f}^{\mathrm{T}}(\mathbf{x})\hat{\boldsymbol{eta}}]^2 d\lambda(\mathbf{x}),$$

with $\theta = (\psi, \beta_{ba})$ and $\hat{\beta} = (\mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} \mathbf{F}_{\boldsymbol{\xi}})^{-1} \mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} \mathbf{y}$ the usual least squares estimator.

- Assumption: predictions are made from the fitted linear model, ignoring discrepancy.
- Alternatively, one could attempt to model ψ nonparametrically (e.g. Plumlee, 2016).
- For small τ^2 , our 'shrinkage' approach may be more efficient in terms of expected ISPE.

For a random design $\pi,$ given σ^2 the risk satisfies

$$R(\theta,\pi) = R(\psi,\pi).$$

A minimax design is found by minimizing

 $\sup_{\psi\in\mathcal{H}}R(\psi,\pi).$

A fundamental problem

For any finite and deterministic design, $\sup_{\psi \in \mathcal{H}} R(\psi, \xi) = \infty$. (Wiens, 1992)

Thus, minimax MISPE cannot be used to select a finite deterministic design.

Several authors have considered infinitely supported deterministic designs (defined via a pdf). We argue that it is more coherent to use a finite but random design.

Random translation designs

Definition

A random design $\pi = \pi^{\mathsf{RT}}({\mathbf{c}_i, }_{i=1}^n, \mathcal{T})$ is a random translation design if there exists

- $\mathbf{c}_i \in \mathcal{X}, i = 1, \dots, n$,
- a closed convex measurable set $\mathcal{T} \subseteq \mathbb{R}^q$,

such that:

(i) the design can be written as $\boldsymbol{\xi} = \boldsymbol{\xi}(\mathbf{t}) = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ with

$$\mathbf{x}_i = \mathbf{c}_i + \mathbf{t}, \quad \mathbf{t} \sim U(\mathcal{T}), \quad \mathsf{E}[\mathbf{t}] = \mathbf{0}_q,$$

(ii) the sets $\mathbf{c}_i + \mathcal{T}$ are distinct, disjoint subsets of \mathcal{X}

Theorem

For a random translation design,

$$\sup_{\psi \in \mathcal{H}} R(\psi, \pi) = \underbrace{\sigma^2 \operatorname{E}_{\pi} \operatorname{tr}(\operatorname{AM}_{\xi}^{-1})}_{\text{variance}} + \underbrace{\tau^2 + \frac{\tau^2}{\lambda(\mathcal{T})} \cdot \max_{\mathbf{t} \in \mathcal{T}} \lambda_{\max}(\mathbf{K}_{\xi(\mathbf{t})})}_{\text{bias}^2}.$$

$$\begin{split} \mathbf{M}_{\boldsymbol{\xi}} &= \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}_{i}) \mathbf{f}^{\mathrm{T}}(\mathbf{x}_{i}) , \qquad \mathbf{F}_{\boldsymbol{\xi}} = [\mathbf{f}(\mathbf{x}_{1}) \dots \mathbf{f}(\mathbf{x}_{n})]^{\mathrm{T}} , \\ \mathbf{A} &= \int_{\mathcal{X}} \mathbf{f}(\mathbf{x}) \mathbf{f}^{\mathrm{T}}(\mathbf{x}) d\lambda(\mathbf{x}) , \quad \mathbf{K}_{\boldsymbol{\xi}} = \mathbf{F}_{\boldsymbol{\xi}} \mathbf{M}_{\boldsymbol{\xi}}^{-1} \mathbf{A} \mathbf{M}_{\boldsymbol{\xi}}^{-1} \mathbf{F}_{\boldsymbol{\xi}}^{\mathrm{T}} . \end{split}$$

 $\lambda(\mathcal{T})$ denotes Lebesgue measure of \mathcal{T} . $\lambda_{\max}(K)$ denotes the maximal eigenvalue of matrix K. A random hypercube translation design (RHTD), $\pi = \pi^{\text{RHT}}(\{\mathbf{c}_i\}_{i=1}^n, \delta)$, has

$$\mathcal{T} = [-\delta/2, \delta/2]^q \,,$$

with $\delta \geq 0$ controlling the degree of randomness.

Given \mathbf{c}_i and δ we may compute the maximum risk via

- Monte Carlo/quadrature evaluation of $E_{\pi} \operatorname{tr}(AM_{\xi}^{-1})$
- **2** Numerical search for $\mathbf{t}^* \in [-\delta/2, \delta/2]^q$ maximizing $\lambda_{\max}(\mathbf{K}_{\boldsymbol{\xi}(\mathbf{t})})$
 - \boldsymbol{t}^* determines the 'most bias-sensitive' potential design realization

Extension

- The design points $\mathbf{x}_1, \ldots, \mathbf{x}_n$ can be replicated r_1, \ldots, r_n times respectively.
- The expression in the theorem needs revising in this case.

What if a common translation is not used?

- E.g. if the design points are sampled from independent uniform distributions.
- In this case the expression in the Theorem is an upper bound.
- However, the upper bound is not sharp.
- Thus in this case the maximum risk for the random design becomes unknown.

Example

Approximately quadratic model. Assume n = 3, q = 1, $\mathcal{X} = [-1, 1]$, $\mathbf{f}^{\mathrm{T}}(x) = (1, x, x^2)$.

What is the optimal value of δ ?

• Depends on $\frac{\tau^2}{\sigma^2}$ (wlog $\sigma^2 = 1$)

• We plot the 'profiled' minimax risk as a function of δ ,

$$\tilde{R}^*(\delta) = \min_{c_i} \sup_{\psi \in \mathcal{H}} R\{\psi; \pi^{\mathsf{RHT}}(\{c_i\}_{i=1}^3, \delta)\}.$$

• For each δ , a co-ordinate algorithm is used to find the optimal c_i .

How much variance efficiency do we need to sacrifice to guard against model discrepancy?

V-optimality

The deterministic design ξ_V^* is V-optimal for the approximate model if it minimizes

$$R(0,\boldsymbol{\xi}) = \sigma^2 \operatorname{tr}(\mathbf{A}\mathbf{M}_{\boldsymbol{\xi}}^{-1}),$$

computed using the assumption $\psi \equiv 0$ (i.e. the approximate model is correct).

The V-efficiency of a design realization $\boldsymbol{\xi}$ is

$$V$$
-eff $(\boldsymbol{\xi}) = rac{R(0, \boldsymbol{\xi}_V^*)}{R(0, \boldsymbol{\xi})}$.

For a random design, the V-efficiency is a random variable.

$ au^2$	δ^*	$(\mathbf{c}^*)^{\mathrm{T}}$	V-efficiency of $\boldsymbol{\xi}$ (%)
0.001	0.05	(-0.975, 0.000, 0.975)	99.1 - 99.3
0.005	0.11	(-0.945, 0.000, 0.945)	97.2 - 98.0
0.01	0.13	(-0.935, 0.000, 0.935)	96.4 - 97.5
0.05	0.23	(-0.885, 0.000, 0.885)	89.8 - 94.0
0.1	0.27	(-0.865, 0.000, 0.865)	86.0 - 92.2
0.2	0.31	(-0.845, 0.000, 0.845)	81.6 - 90.1
0.5	0.33	(-0.835, 0.000, 0.835)	79.1 - 88.9

Table: Approximately optimal random translation designers for several values of τ^2 in Example 1.

Two factors, approximately first-order model. Assume n = 4, q = 2, $\mathcal{X} = [-1, 1]^2$, $f^{\mathrm{T}}(\mathbf{x}) = (1, x_1, x_2)$.

Range of values for $\frac{\tau^2}{\sigma^2}$ tried.

Simulated annealing algorithm used to performed constrained optimization of c_1, \ldots, c_n, δ simultaneously.

The constraints arise due to condition (ii) of the definition of random translation designs, i.e. the sets $\mathbf{c}_i + \mathcal{T}$ must be disjoint subsets of \mathcal{X} .

Constraints

Example 2 - results

Concluding remarks

- Random designs appear to have untapped potential to improve minimax efficiency in many problems.
- For model-robust design, random translation designs have several attractive properties:
 - They yield finitely-supported designs with finite and computable IMSEP.
 - We recover classic variance optimal designs as $au^2
 ightarrow 0$.

Related and future work

- Random designs for a wider range of design problems.
- More powerful optimization algorithms needed.

References

- Box, G. and Draper, N. (1959), JASA, 54, 622–654
- Bhaumik, D. and Mathew, T. (1995), Sankhya B, 57, 122-127
- Berger, J. (1985) Statistical Decision Theory and Bayesian Analysis, Springer
- Dette, H. and Wiens, D. (2009), Stat. Sinica, 19, 83-102
- Hooper, P. (1989), Ann. Stat., 17, 1315–1324
- Huber, P. (1981) Robust statistics, Wiley
- Li, K. (1983) Ann. Stat., 11, 225-239
- Li, K. and Notz, W. (1982), JSPI, 6, 135–151
- Plumlee, M. (2016), JASA, to appear
- Tuo, R. and Wu, C.-F. (2015), Ann. Stat., 43, 2331-2352
- Wiens, D. (2015), Handbook of Design and Analysis of Experiments, CRC. Chapter 20.
- Wu, C.-F. (1981), Ann. Stat., 9, 1168–1177
- Yue, R.-X. and Hickernell, F. (1999), Stat. Sinica, 9, 1053-1069