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Randomized decisions

A well known fact in statistical decision theory and game theory:

Under minimax expected loss, random decisions beat deterministic ones.

Experimental design can be viewed as a game played by the Statistician against
nature (Wu, 1981; Berger, 1985).

Therefore a random design strategy should often be beneficial.

Despite this, consideration of minimax efficient random design strategies is
relatively unusual.
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Game theory

Consider a two-person zero-sum game.

Player I takes action θ ∈ Θ and Player II takes action ξ ∈ Ξ.

Player II experiences a loss L(θ, ξ), to be minimized.

A random strategy for Player II is a probability measure π on Ξ. Deterministic
actions are a special case (point mass distribution).

Strategy π1 is preferred to π2 (π1 � π2) iff

Eπ1 L(θ, ξ) < Eπ2 L(θ, ξ) .
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However, Player I’s choice of θ is unknown to Player II.

To account for uncertainty about θ, the standard choice is to play (if it exists) a
minimax strategy, π∗, such that

max
θ∈Θ

Eπ∗ L(θ, ξ) = inf
π

max
θ∈Θ

Eπ L(θ, ξ) .

If both action spaces Θ and Ξ are finite (and not too large), minimax random
strategies can be computed easily by solving a related linear programming problem.
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Example: paper-rock-scissors, Θ = Ξ = {P,R,S}, with loss matrix L(θ, ξ) below

ξ
P R S

P 0 1 −1
θ R −1 0 1

S 1 −1 0

Let δ be any deterministic strategy and π = U({P,R,S}), then

Eπ L(θ, ξ) =
1

3
× (−1) +

1

3
× 0 +

1

3
× 1 = 0 , ∀θ ∈ Θ .

Hence maxθ Eπ L(θ, ξ) = 0 and maxθ Eδ L(θ, ξ) = 1.

Thus π is preferable to any deterministic design. Indeed π is optimal.
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Frequentist decision-theoretic experimental design

In optimal (exact) design, attention is usually restricted to a deterministic choice
of design, ξ = (x1, . . . , xn) ∈ Ξ = X n, a set of n points in design space X .

We prefer a design with the lowest possible value of the risk

R(θ, ξ) = Ey|ξ,θ L(θ, ξ, y)

However the risk often depends on a vector θ ∈ Θ of fixed unknowns (e.g. model
parameters in a nonlinear model).

Hence, it is unknown which designs have minimum risk.

[Design selection can be viewed as a game with loss L(θ, ξ) = R(θ, ξ).
Player I: Nature, chooses θ; Player II: the Statistician, chooses ξ.]
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Minimax design

There is thus a need to account for uncertainty about θ when choosing ξ.

Many frequentists are reluctant to use prior distributions. In this case, typically a
deterministic minimax design is sought, i.e. a ξ∗ ∈ Ξ that minimizes
maxθ∈Θ R(θ, ξ).

Random designs

Considerations from game theory and statistical decision theory would suggest
that we also allow a random design, i.e. a probability measure π on Ξ.

Interpretation: choose the realized design ξ at random by sampling from π.

(A deterministic design corresponds to a point mass distribution.)
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Expected loss for random designs

If L is truly the loss function, utility theory implies that the performance of π is to
be measured via

R(θ, π) = Ey,ξ|θ L(θ, ξ, y) .

This makes intuitive sense:

For a deterministic design we considered the repeated sampling distribution
for L over hypothetical replications of the entire experiment.

For a random design we do the same, but now for a different hypothetical
replication, a different ξ will be sampled from π.

A minimax random design π∗ satisfies

max
θ

R(θ, π∗) = inf
π

max
θ

R(θ, π) .
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Example: Fisherian randomization

Consider a linear model contaminated by fixed unknown additive unit effects,
u = (u1, . . . , un)T ∈ U ,

yi = fT(xi )β + ui + εi , εi ∼ N(0, σ2) .

It was shown in many cases that the minimax random design strategy is Fisherian
randomization of a standard design.

π minimizes maxu∈U R(u, π).

Assumptions about the structure of the experimental units,
e.g. exchangeability/blocks, described by a permutation group G .

Different loss functions considered, e.g. A, L-optimality.

[Wu, 1981; Li, 1983; Hooper, 1989; Bhaumik and Mathew, 1995].
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Fisherian randomization ‘is one of the greatest contributions of R. A. Fisher to
science and statistics’ (Wu, 1981).

It seems to us a weakness of standard optimal design theory that Fisherian
randomization does not arise as a necessary mathematical consequence.

The preceding slide shows that it does arise directly from random designs and the
minimax principle.

This seems to be a big hint that minimax random designs are worth considering
more widely.
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Design for point prediction

Suppose we have a normal theory linear model,

yi = fT(xi )β + εi , εi ∼ N(0, σ2) ,

with design points x1, . . . , xn ∈ X ⊆ [−1, 1]q.

Suppose the goal is prediction at an unknown point x, with squared error loss

L(θ, ξ, y) = [fT(x)β − fT(x)β̂]2 ,

depending on θ = (β, x).

Above, β̂ = (FT
ξ Fξ)−1FT

ξ y is the least squares estimator, Fξ is the model matrix.
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Given a design ξ and σ2, the risk is

R(x, ξ) = σ2fT(x)(FT
ξ Fξ)−1f(x) .

Thus the minimax deterministic design minimizes

Φ(ξ) = max
x∈X

fT(x)(FT
ξ Fξ)−1f(x) ,

i.e. it is the classic G -optimal design.

However, this may be beaten by a minimax random design π∗, which minimizes

Φ(π) = max
x∈X

fT(x) Eπ{(FT
ξ Fξ)−1}f(x) .
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Example: quadratic model, 2 factors, X = {−1, 0, 1}2, n = 6.

There are 76 possible non-singular designs up to permutations of run order.

The minimax deterministic design has maximum expected loss 2.75σ2.

Using linear programming, an optimal random design can be obtained; it has
maximum expected loss 1.55σ2.

The efficiency of the deterministic design is just 56%.
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Model-robust design

Variance-based optimality criteria

Classic D,A,E -optimality etc. all assume that a particular parametric model is
correct.

Bias

Box & Draper (1959) - polynomials of uncertain degree, found if model incorrect
better off choosing the design to minimize bias, ignoring variance.

Their investigation focussed only on polynomials.

More sophisticated treatments of model-robust design exist (e.g. Wiens, 2015).
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Suppose that x ∈ X , with X ⊆ [−1, 1]q, the design space. We assume

y ∼ N[µ(x), σ2] ,

and λ(X ) > 0, where λ is Lebesgue measure.

Standard linear model approach

Find an optimal design assuming that there exists a true parameter vector, βtrue,
such that

µ(x) = fT(x)βtrue .

Above, f : X → Rp a vector of regressor functions, e.g. f(x) = (1, x , x2)T.

Not very robust.
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Model-robust approach (e.g. Wiens, 2015)

Assume explicitly that the linear regression function is an approximation to µ, i.e.

µ(x) = fT(x)βba + ψ(x) ,

where βba minimizes the L2-norm of the approximation error, i.e.

βba ∈ arg minβ

∫
X

[µ(x)− fT(x)β]2dλ(x) .

In this case, the discrepancy ψ is orthogonal to the regressors

〈ψ, f〉 =

∫
X
ψ(x)f(x)dλ(x) = 0q .

[cf. L2-calibration of computer models (Tuo and Wu, 2015; Plumlee, 2016).]
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Discrepancy classes

An approximately linear model is specified as

µ(x) = fT(x)βba + ψ(x) , βba ∈ B, ψ ∈ H ,

where H is a set containing all discrepancy functions considered possible.

The choice for H that has received the most attention is

H =

{
ψ : 〈ψ, f〉 = 0,

∫
ψ(x)2dλ(x) ≤ τ 2

}
.

(cf. Huber, 1981; Dette and Wiens, 2009; Wiens, 2015).

[Alternatives: Box and Draper (1959), ψ a polynomial; Li and Notz (1980), |ψ| ≤ τ∞;
Yue and Hickernell (1999), ψ belongs to a smoothness class.]
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Loss function

We suppose that the loss is the integrated squared prediction error (ISPE)

L(θ, ξ, y) =

∫
X

[µ(x)− fT(x)β̂]2dλ(x) ,

with θ = (ψ,βba) and β̂ = (FT
ξ Fξ)−1FT

ξ y the usual least squares estimator.

Assumption: predictions are made from the fitted linear model, ignoring
discrepancy.

Alternatively, one could attempt to model ψ nonparametrically (e.g. Plumlee,
2016).

For small τ 2, our ’shrinkage’ approach may be more efficient in terms of
expected ISPE.
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For a random design π, given σ2 the risk satisfies

R(θ, π) = R(ψ, π) .

A minimax design is found by minimizing

sup
ψ∈H

R(ψ, π) .

A fundamental problem

For any finite and deterministic design, supψ∈H R(ψ, ξ) =∞. (Wiens, 1992)

Thus, minimax MISPE cannot be used to select a finite deterministic design.

Several authors have considered infinitely supported deterministic designs (defined
via a pdf). We argue that it is more coherent to use a finite but random design.
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Random translation designs

Definition

A random design π = πRT({ci , }ni=1, T ) is a random translation design if there
exists

ci ∈ X , i = 1, . . . , n,

a closed convex measurable set T ⊆ Rq,

such that:

(i) the design can be written as ξ = ξ(t) = (x1, . . . , xn) with

xi = ci + t , t ∼ U(T ) , E[t] = 0q ,

(ii) the sets ci + T are distinct, disjoint subsets of X
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Theorem
For a random translation design,

sup
ψ∈H

R(ψ, π) = σ2 Eπ tr(AM−1
ξ )︸ ︷︷ ︸

variance

+ τ 2 +
τ 2

λ(T )
·max
t∈T

λmax(Kξ(t))︸ ︷︷ ︸
bias2

.

Mξ =
n∑

i=1

f(xi )f
T(xi ) , Fξ = [f(x1) . . . f(xn)]T ,

A =

∫
X
f(x)fT(x)dλ(x) , Kξ = FξM

−1
ξ AM−1

ξ FT
ξ .

λ(T ) denotes Lebesgue measure of T .
λmax(K ) denotes the maximal eigenvalue of matrix K .
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A random hypercube translation design (RHTD), π = πRHT({ci}ni=1, δ), has

T = [−δ/2, δ/2]q ,

with δ ≥ 0 controlling the degree of randomness.

Given ci and δ we may compute the maximum risk via

1 Monte Carlo/quadrature evaluation of Eπ tr(AM−1
ξ )

2 Numerical search for t∗ ∈ [−δ/2, δ/2]q maximizing λmax(Kξ(t))

- t∗ determines the ‘most bias-sensitive’ potential design realization
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Extension

The design points x1, . . . , xn can be replicated r1, . . . , rn times respectively.

The expression in the theorem needs revising in this case.

What if a common translation is not used?

E.g. if the design points are sampled from independent uniform distributions.

In this case the expression in the Theorem is an upper bound.

However, the upper bound is not sharp.

Thus in this case the maximum risk for the random design becomes unknown.
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Example

Approximately quadratic model. Assume n = 3, q = 1, X = [−1, 1],
fT(x) = (1, x , x2).

What is the optimal value of δ?

Depends on τ 2

σ2 (wlog σ2 = 1)

We plot the ’profiled’ minimax risk as a function of δ,

R̃∗(δ) = min
ci

sup
ψ∈H

R{ψ;πRHT({ci}3
i=1, δ)} .

For each δ, a co-ordinate algorithm is used to find the optimal ci .
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How much variance efficiency do we need to sacrifice to guard against model
discrepancy?

V -optimality
The deterministic design ξ∗V is V -optimal for the approximate model if it
minimizes

R(0, ξ) = σ2 tr(AM−1
ξ ) ,

computed using the assumption ψ ≡ 0 (i.e. the approximate model is correct).

The V -efficiency of a design realization ξ is

V -eff(ξ) =
R(0, ξ∗V )

R(0, ξ)
.

For a random design, the V -efficiency is a random variable.
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τ 2 δ∗ (c∗)T V -efficiency of ξ (%)

0.001 0.05 (-0.975, 0.000, 0.975) 99.1 – 99.3
0.005 0.11 (-0.945, 0.000, 0.945) 97.2 – 98.0
0.01 0.13 (-0.935, 0.000, 0.935) 96.4 – 97.5
0.05 0.23 (-0.885, 0.000, 0.885) 89.8 – 94.0
0.1 0.27 (-0.865, 0.000, 0.865) 86.0 – 92.2
0.2 0.31 (-0.845, 0.000, 0.845) 81.6 – 90.1
0.5 0.33 (-0.835, 0.000, 0.835) 79.1 – 88.9

Table: Approximately optimal random translation designers for several values of τ 2 in
Example 1.
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Example 2

Two factors, approximately first-order model. Assume n = 4, q = 2, X = [−1, 1]2,
f T(x) = (1, x1, x2).

Range of values for τ 2

σ2 tried.

Simulated annealing algorithm used to performed constrained optimization of
c1, . . . , cn, δ simultaneously.

The constraints arise due to condition (ii) of the definition of random translation
designs, i.e. the sets ci + T must be disjoint subsets of X .
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Constraints

x1

x2 δ = 0.925 - can not move centres very much

x1

x2 δ = 0.225 - centres can be moved easily
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Example 2 - results
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Concluding remarks

Random designs appear to have untapped potential to improve minimax
efficiency in many problems.

For model-robust design, random translation designs have several attractive
properties:

They yield finitely-supported designs with finite and computable IMSEP.

We recover classic variance optimal designs as τ 2 → 0.

Related and future work

Random designs for a wider range of design problems.

More powerful optimization algorithms needed.
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