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Outline

Randomized decisions and experimental design

Random designs for prediction - correct model
@ Extension of G-optimality

Model-robust random designs for prediction

@ Theoretical results - tractable classes
@ Algorithms for optimization

@ Examples: illustration of bias-variance tradeoff
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Randomized decisions

A well known fact in statistical decision theory and game theory:

@ Under minimax expected loss, random decisions beat deterministic ones.

Experimental design can be viewed as a game played by the Statistician against
nature (Wu, 1981; Berger, 1985).

Therefore a random design strategy should often be beneficial.

Despite this, consideration of minimax efficient random design strategies is
relatively unusual.
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Game theory

Consider a two-person zero-sum game.
Player | takes action # € © and Player Il takes action £ € =.
Player Il experiences a loss L(6,£), to be minimized.

A random strategy for Player Il is a probability measure © on =. Deterministic
actions are a special case (point mass distribution).

Strategy m is preferred to mp (w1 = mp) iff

Ex, L(0,€) < Ex, L(6,€) .
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However, Player I's choice of 6 is unknown to Player II.

To account for uncertainty about 6, the standard choice is to play (if it exists) a
minimax strategy, 7, such that

max E. L(6,¢) = |r71rf max E:rL(6,8).

If both action spaces © and = are finite (and not too large), minimax random
strategies can be computed easily by solving a related linear programming problem.
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Example: paper-rock-scissors, © = = = {P, R, S}, with loss matrix L(6, &) below

£
P R S
P 0 1 -1
6 R -1 0 1
S 1 -1 0

Let § be any deterministic strategy and # = U({P, R, S}), then

1 1 1

Hence maxy E, L(0,£) = 0 and maxg Es L(6,&) = 1.

Thus 7 is preferable to any deterministic design. Indeed 7 is optimal.
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Frequentist decision-theoretic experimental design

In optimal (exact) design, attention is usually restricted to a deterministic choice
of design, &€ = (x1,...,%,) € = = X", a set of n points in design space X.

We prefer a design with the lowest possible value of the risk
R(aa é) = Ey\ﬁ,g L(97 57 y)

However the risk often depends on a vector 8 € © of fixed unknowns (e.g. model
parameters in a nonlinear model).

Hence, it is unknown which designs have minimum risk.

[Design selection can be viewed as a game with loss L(8,&) = R(6, &).
Player |: Nature, chooses 8; Player II: the Statistician, chooses £.]
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Minimax design
There is thus a need to account for uncertainty about @ when choosing &.

Many frequentists are reluctant to use prior distributions. In this case, typically a
deterministic minimax design is sought, i.e. a £€* € = that minimizes
maxgece R(6, &)

Random designs

Considerations from game theory and statistical decision theory would suggest
that we also allow a random design, i.e. a probability measure m on =.

Interpretation: choose the realized design £ at random by sampling from 7.

(A deterministic design corresponds to a point mass distribution.)
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Expected loss for random designs

If L is truly the loss function, utility theory implies that the performance of 7 is to

be measured via
R(0,7) = Ey 0 L(0,8,y).

This makes intuitive sense:

@ For a deterministic design we considered the repeated sampling distribution
for L over hypothetical replications of the entire experiment.

@ For a random design we do the same, but now for a different hypothetical
replication, a different &€ will be sampled from 7.

A minimax random design 7* satisfies

max R(0,7*) = inf max R(0,7).

s
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Example: Fisherian randomization

Consider a linear model contaminated by fixed unknown additive unit effects,
u=(uy,...,u,)t e,

yi:fT(X;),@+Ui+€;, GiNN(O,Uz).
It was shown in many cases that the minimax random design strategy is Fisherian
randomization of a standard design.
@ 7 minimizes max,ey R(u, 7).

@ Assumptions about the structure of the experimental units,
e.g. exchangeability /blocks, described by a permutation group G.

o Different loss functions considered, e.g. A, L-optimality.

[Wu, 1981; Li, 1983; Hooper, 1989; Bhaumik and Mathew, 1995].
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Fisherian randomization ‘is one of the greatest contributions of R. A. Fisher to
science and statistics’ (Wu, 1981).

It seems to us a weakness of standard optimal design theory that Fisherian
randomization does not arise as a necessary mathematical consequence.

The preceding slide shows that it does arise directly from random designs and the
minimax principle.

This seems to be a big hint that minimax random designs are worth considering
more widely.

Tim Waite (U. Manchester) Minimax efficient random designs Banff - 8 Aug 2017 11 / 36



Design for point prediction

Suppose we have a normal theory linear model,
vi=f'(x)B+e, e~ N(0,0°%),
with design points x1,...,x, € X C[-1,1]9.
Suppose the goal is prediction at an unknown point x, with squared error loss
L(6,&,y) = [f'(x)8 - F (x)8)°,
depending on 6 = (3, x).

Above, B = (FgFg)_ngy is the least squares estimator, F¢ is the model matrix.
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Given a design £ and o2, the risk is

R(x, &) = szT(x)(FgFg)_lf(x) .

Thus the minimax deterministic design minimizes

0(€) = max (})(FEFe) (x),

X

i.e. it is the classic G-optimal design.
However, this may be beaten by a minimax random design 7*, which minimizes

®(m) = max f7(x) E-{(F{Fe) "} (x).

XEX
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Example: quadratic model, 2 factors, X = {—1,0,1}?, n=6.
There are 76 possible non-singular designs up to permutations of run order.
The minimax deterministic design has maximum expected loss 2.7502.

Using linear programming, an optimal random design can be obtained; it has
maximum expected loss 1.5502.

The efficiency of the deterministic design is just 56%.
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Model-robust design

Variance-based optimality criteria

Classic D, A, E-optimality etc. all assume that a particular parametric model is
correct.

Bias

Box & Draper (1959) - polynomials of uncertain degree, found if model incorrect
better off choosing the design to minimize bias, ignoring variance.

Their investigation focussed only on polynomials.

More sophisticated treatments of model-robust design exist (e.g. Wiens, 2015).
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Suppose that x € X', with X C [-1,1]9, the design space. We assume
y ~ N[u(x), 0%,

and A(X) > 0, where X is Lebesgue measure.

Standard linear model approach

Find an optimal design assuming that there exists a true parameter vector, Birye,
such that

M(X) = fT(X)Btrue .

Above, f : X — RP a vector of regressor functions, e.g. f(x) = (1,x,x?)T.

Not very robust.
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Model-robust approach (e.g. Wiens, 2015)

Assume explicitly that the linear regression function is an approximation to p, i.e.
p(x) = £ (x)Ba + ¥(x) ,

where Bp, minimizes the Ly-norm of the approximation error, i.e.

Bon € argming [ [1(x) ~ ()8 AX).

In this case, the discrepancy v is orthogonal to the regressors
0.0) = | RN = 0.

[cf. Ly-calibration of computer models (Tuo and Wu, 2015; Plumlee, 2016).]
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Discrepancy classes

An approximately linear model is specified as

/,L(X) = fT(X)/Bba + ¢(X)’ Bba S B, w € H,

where H is a set containing all discrepancy functions considered possible.

The choice for H that has received the most attention is
M= {w ) =0, [ 0P < 72} |
(cf. Huber, 1981; Dette and Wiens, 2009; Wiens, 2015).

[Alternatives: Box and Draper (1959), ) a polynomial; Li and Notz (1980), || < Too;
Yue and Hickernell (1999), v belongs to a smoothness class.]
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Loss function

We suppose that the loss is the integrated squared prediction error (ISPE)
L6.6.3) = [ [10) = T (BPAN).
with 6 = (¢, Bpa) and B = (FEFE)’lFEy the usual least squares estimator.

@ Assumption: predictions are made from the fitted linear model, ignoring
discrepancy.

@ Alternatively, one could attempt to model 1) nonparametrically (e.g. Plumlee,
2016).

@ For small 72, our 'shrinkage’ approach may be more efficient in terms of
expected ISPE.
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For a random design 7, given o2 the risk satisfies
R(0,7) = R(¢, ).
A minimax design is found by minimizing

sup R(¢, ).
PYeEH

A fundamental problem
For any finite and deterministic design, sup,cq R(¢,§) = co. (Wiens, 1992)
Thus, minimax MISPE cannot be used to select a finite deterministic design.

Several authors have considered infinitely supported deterministic designs (defined
via a pdf). We argue that it is more coherent to use a finite but random design.
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Random translation designs

Definition

A random design m = 7R"({c;, }7_,, T) is a random translation design if there
exists

ec,eX,i=1,...,n,
@ a closed convex measurable set 7 C RS9,

such that:
(i) the design can be written as & = £(t) = (xq,...,X,) with
Xi=¢C;+t, tNU(T), E[t]:Oq,

(i) the sets ¢; + T are distinct, disjoint subsets of X
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For a random translation design,

2
sup R(1, ) = 02 E, tr(AMZY) + 72 + —— . max Amax(Kegn) -
weg{ (77[} ’/T) o I’( ¢ ) T /\(T) rtnE'7>'< ( E(t))
variance bias?

M, = Zf(x,-)fT(x,-), Fe = [f(x1). CF(x)]T,
A= /Xf(x)fT(x)d)\(x), Ke = FeM'AM'F;

A(T) denotes Lebesgue measure of 7.
Amax(K) denotes the maximal eigenvalue of matrix K.
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A random hypercube translation design (RHTD), 7 = 7RHT({c;}7_,,6), has
T =1[-0/2,6/2]%,
with § > 0 controlling the degree of randomness.
Given c; and 6 we may compute the maximum risk via
@ Monte Carlo/quadrature evaluation of E, tr(AMgl)

@ Numerical search for t* € [~d/2,5/2]7 maximizing Amax(Ke(t))

- t* determines the ‘most bias-sensitive’ potential design realization
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Extension
@ The design points X, ..., X, can be replicated ry, ..., r, times respectively.

@ The expression in the theorem needs revising in this case.

What if a common translation is not used?
o E.g. if the design points are sampled from independent uniform distributions.
@ In this case the expression in the Theorem is an upper bound.

@ However, the upper bound is not sharp.

@ Thus in this case the maximum risk for the random design becomes unknown.
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Example

Approximately quadratic model. Assume n=3, g=1, X = [-1,1],
fT(x) = (1, x, x?).

What is the optimal value of §7

e Depends on ;—2 (wlog 02 = 1)

@ We plot the 'profiled” minimax risk as a function of ¢,
R*(6) = min sup R{y; 7T ({c;}}.,0)} -
G yeH

@ For each 6, a co-ordinate algorithm is used to find the optimal ¢;.
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How much variance efficiency do we need to sacrifice to guard against model
discrepancy?

V-optimality
The deterministic design &}, is V-optimal for the approximate model if it
minimizes
2 -1
R(0,&) =0 tr(AMS ),
computed using the assumption ¢ = 0 (i.e. the approximate model is correct).

The V-efficiency of a design realization £ is

V-eff(€) = RR(?(;%).

For a random design, the V-efficiency is a random variable.
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2 5* (c*)Tt V-efficiency of £ (%)
0.001 0.05 (-0.975, 0.000, 0.975) 99.1 -99.3
0.005 0.11 (-0.945, 0.000, 0.945) 97.2-98.0
0.01 0.13 (-0.935, 0.000, 0.935) 96.4 - 97.5
0.05 0.23 (-0.885, 0.000, 0.885) 89.8 - 94.0

0.1 0.27 (-0.865, 0.000, 0.865) 86.0 — 92.2

0.2 0.31 (-0.845, 0.000, 0.845) 81.6 — 90.1

0.5 0.33 (-0.835, 0.000, 0.835) 79.1 - 88.9

Table: Approximately optimal random translation designers for several values of 72 in

Example 1.
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Example 2

Two factors, approximately first-order model. Assume n=4, g =2, X =[-1, 1]2,
fT(x) = (1,%,%).

2
Range of values for % tried.

a2
Simulated annealing algorithm used to performed constrained optimization of
Ci,...,Cn, 0 simultaneously.

The constraints arise due to condition (ii) of the definition of random translation
designs, i.e. the sets ¢; + 7 must be disjoint subsets of X.
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Constraints

X2 0 = 0.925 - can not move centres very much

X2 0 = 0.225 - centres can be moved easily

X1
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Example 2 - results
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Concluding remarks

@ Random designs appear to have untapped potential to improve minimax
efficiency in many problems.

@ For model-robust design, random translation designs have several attractive
properties:
o They yield finitely-supported designs with finite and computable IMSEP.

o We recover classic variance optimal designs as 72 — 0.

Related and future work

@ Random designs for a wider range of design problems.

@ More powerful optimization algorithms needed.
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