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Motivating Example

Situation: A new drug is developed.

Two typical questions might be:

1. What is the minimally effective dose?
2. Should the drug be taken daily or weekly?

We use a dose finding study to answer these questions.

Idea: Describe the dose response curve of the daily dosage for instance by

f (d , θ(1)) = θ
(1)
1 +

θ
(1)
2 d

θ
(1)
3 + d

Describe the dose response curve of the weekly dosage for instance by

f (d , θ(2)) = θ
(2)
1 +

θ
(2)
2 d

θ
(2)
3 + d
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Figure: Two Emax curves.

K. Schorning Optimal designs for dose response curves with common parameters 5 / 28



Motivating Example

f (d , θ(1)) = θ
(1)
1 +

θ
(1)
2 d

θ
(1)
3 + d

f (d , θ(2)) = θ
(2)
1 +

θ
(2)
2 d

θ
(2)
3 + d

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

dose

re
sp

on
se

0.2 +
0.6x

0.2 + x

0.2 +
0.7x

0.4 + x

Figure: Two Emax curves where the placebo effect is the same.

K. Schorning Optimal designs for dose response curves with common parameters 5 / 28



Motivating Example

f (d , θ(1)) = θ
(1)
1 +

θ
(1)
2 d

θ
(1)
3 + d

f (d , θ(2)) = θ
(2)
1 +

θ
(2)
2 d

θ
(2)
3 + d

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

dose

re
sp

on
se

0.2 +
0.7x

0.2 + x

0.2 +
0.7x

0.5 + x

Figure: Two Emax curves where the placebo effect and the Emax effect is the same.

K. Schorning Optimal designs for dose response curves with common parameters 5 / 28



Model formulation

2 dose response curves (from 2 samples)

Yij` = f (d
(i)
j , θ1, θ

(i)
2 ) + εij`

i = 1, 2
j = 1, . . . , ki
` = 1, . . . , nij

θ1 ∈ Rp same parameter in each group

θ
(i)
2 ∈ Rq different parameter in each group

d
(i)
j ∈ Xi = [0, d

(i)
max]

ni =
∑ki

j=1 nij for i = 1, 2 and N = n1 + n2

εij` ∼ N (0, σ2i ) independent

Complete parameter in the two models

θ = (θ1, θ
(1)
2 , θ

(2)
2 ) ∈ Rp+2q
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Example: Two Emax models

What does this notation look like for the Emax models?

K. Schorning Optimal designs for dose response curves with common parameters 7 / 28



Example: Two Emax models

θ1 +
ϑ
(i)
1 d

ϑ
(i)
2 +d

Common Placebo

f (d , θ1, θ
(i)
2 )

θ = (θ1, ϑ
(1)
1 , ϑ

(1)
2 , ϑ

(2)
1 , ϑ

(2)
2 )T ∈ R5
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Task

Find optimal designs for estimating the parameter

θ = (θ1, θ
(1)
2 , θ

(2)
2 ) ∈ Rp+2q

most precisely!
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Maximum Likelihood Estimator (MLE)

The designs for two samples (of sizes n1 and n2)

ξN1 =

(
d
(1)
1 · · · d

(1)
k1

n11
n1

· · · n1k1
n1

)
, ξN2 =

(
d
(2)
1 · · · d

(2)
k2

n21
n2

· · · n2k2
n2

)
, λN =

(
1 2
n1
N

n2
N

)

Further assumption:

lim
N→∞

ni

N
= λi ∈ (0, 1) and lim

ni→∞

nij

ni
= ξij ∈ (0, 1)

Then the MLE θ̂ = (θ̂1, θ̂
(1)
2 , θ̂

(2)
2 ) satisfies as N →∞

√
N(θ̂ − θ)

D−→ N (0,M−1(ξ, θ)),

where ξ = (ξ1, ξ2, λ).
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The structure of the information matrix

The information matrix of the design ξ = (ξ1, ξ2, λ)

M(ξ, θ) = λ1M(1)(ξ1, θ) + λ2M(2)(ξ2, θ) ∈ R(p+2q)×(p+2q)

where the matrices M(i)(ξi , θ) are defined by

M(i)(ξi , θ) =

∫
Xi

hi (d)hT
i (d)dξi (d)

and hT
i (d) is the gradient of f (d , θ1, θ

(i)
2 ) w.r.t. θ

hT
1 (d) =

1

σ1

(
∂
∂θ1

f (d , θ1, θ
(1)
2 ), ∂

∂θ
(1)
2

f (d , θ1, θ
(1)
2 ), 0Tq

)
hT
2 (d) =

1

σ2

(
∂
∂θ1

f (d , θ1, θ
(2)
2 ), 0Tq ,

∂

∂θ
(2)
2

f (d , θ1, θ
(2)
2 )
)
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The Emax cases

1 The same placebo effect: θ = (θ1, ϑ
(1)
1 , ϑ

(1)
2 , ϑ

(2)
1 , ϑ

(2)
2 )T

hT
1 (d) =

1

σ1

(
1, d

ϑ
(1)
2 +d

,− ϑ
(1)
1 d

(ϑ
(1)
2 +d)2

, 0, 0
)

hT
2 (d) =

1

σ2

(
1, d

ϑ
(2)
2 +d

, 0, 0,− ϑ
(2)
1 d

(ϑ
(2)
2 +d)2

)

2 The same placebo effect θ1 and the Emax value:

θ = (ϑ1, ϑ2, θ
(1)
2 , θ

(2)
2 )T

hT
1 (d) =

1

σ1

(
1, d

θ
(1)
2 +d

,− ϑ2d

(θ
(1)
2 +d)2

, 0
)

hT
2 (d) =

1

σ2

(
1, d

θ
(2)
2 +d

, 0,− ϑ2d

(θ
(2)
2 +d)2

)
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Now: Locally D-optimal designs for dose response curves with common
parameters, i.e.

ξ∗ = arg max
ξ

det(M(ξ, θ))

Upcoming questions:

Can we derive upper bounds for the number of support points of the
(D)-optimal design?

Can we somehow use the knowledge we have about the D-optimal
designs in the separate models for the model with common
parameters?

Remark:
We will restrict ourselves to the two Emax models. The results are also
available for a wider class of models.
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Once again: the Emax cases

θ1 +
ϑ
(i)
1 d

ϑ
(i)
2 +d

Common Placebo Common Placebo and Emax

ϑ1 + ϑ2d

θ
(i)
2 +d

f (d , θ1, θ
(i)
2 )

θ = (θ1, ϑ
(1)
1 , ϑ

(1)
2 , ϑ

(2)
1 , ϑ

(2)
2 )T ∈ R5 θ = (ϑ1, ϑ2, θ

(1), θ(2))T ∈ R4
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Upper bound for the Emax model

Theorem

Let (w.l.o.g.) r =
σ2
1

σ2
2
≤ 1. If the regression model is given by one of the

cases of the Emax model, then there exists a design ξ+ = (ξ+1 , ξ
+
2 , λ

+)
with at most 2× 2 + 1 = 5 support points such that for all designs
ξ = (ξ1, ξ2, λ) (with more than 5 support points) it holds

M(ξ+, θ) ≥L M(ξ, θ).

ξ+ can be chosen such that

|supp(ξ+1 )| = 3 with 0, d
(1)
max ∈ supp(ξ+1 )

|supp(ξ+2 )| = 2 with d
(2)
max ∈ supp(ξ+2 ).
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The Emax cases: The same placebo effect

θ1 +
ϑ
(i)
1 d

ϑ
(i)
2 +d
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ϑ1 + ϑ2d

θ
(i)
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1 , ϑ
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D-optimal design for models with the same placebo

Theorem

Let (w.l.o.g.) r =
σ2
1

σ2
2
≤ 1. The locally D-optimal design for the Emax

model with common placebo effect is of the form ξ∗ = (ξ∗1 , ξ
∗
2 , λ
∗), where

ξ∗1 =

(
0 x∗,(1) d

(1)
max

1
3

1
3

1
3

)
, ξ∗2 =

(
x∗,(2) d

(2)
max

1
2

1
2

)
, λ∗ =

(
1 2
3
5

2
5

)

and the point x∗,(i) is given by

x∗,(i) =
ϑ
(i)
2 d

(i)
max

d
(i)
max + 2ϑ

(i)
2

(i = 1, 2).
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The Emax cases: The same placebo and Emax
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f (d , θ1, θ
(i)
2 )

Common Placebo and Emax

ϑ1 + ϑ2d

θ
(i)
2 +d

θ = (ϑ1, ϑ2, θ
(1)
2 , θ

(2)
2 )T
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Locally D-optimal design for models with the same placebo
and the same Emax

For that case the calculation is more difficult.

We first calculate the saturated D-optimal design, i.e.

1 we fix the number of support points of the design ξ to 4
2 we calculate the saturated D-optimal design under that constraint
3 we check under which circumstances the saturated D-optimal design is

also the D-optimal design
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Locally D-optimal design for models with the same placebo
and the same Emax

Theorem

Let r =
σ2
1

σ2
2
≤ 1, θ̄

(i)
2 =

θ
(i)
2

d
(i)
max

, i = 1, 2 and 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1. The locally

D-optimal design ξ∗ = (ξ∗1 , ξ
∗
2 , λ
∗) for the Emax model with the same

placebo and Emax parameter in the class of all saturated designs is given by

ξ∗1 =

(
0 x∗,(1) d

(1)
max

1
3

1
3

1
3

)
, ξ∗2 =

(
θ
(2)
2

1

)
, λ∗ =

(
1 2
3
4

1
4

)
. (1)

Moreover, x∗,(1) is defined by x∗,(1) =
θ
(1)
2 d

(1)
max

d
(1)
max+2θ

(1)
2

.
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Locally D-optimal design for models with the same placebo
and the same Emax

Theorem

Let r =
σ2
1

σ2
2
≤ 1. Let θ̄

(i)
2 =

θ
(i)
2

d
(i)
max

, i = 1, 2 and assume 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1.

The design ξ∗ defined in (1) is locally D-optimal if the condition

θ̄
(2)
2 ≥

r
(
6θ̄

(1)
2 (θ̄

(1)
2 + 1)(2θ̄

(1)
2 + 1)2

)
−
(
1− r

)
(6 + 2r θ̄

(1)
2 (1 + 2θ̄

(1)
2 ))

(2)

is satisfied.
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D-optimal design for models with the same placebo and
the same Emax

Figure: The domain where the saturated D-optimal design is also D-optimal for
r = 1

10 (left panel), for r = 1
2 (middle panel) and r = 1 (right panel).
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The Emax case: Explicite parameter values I

We now consider three possible values for the Emax parameter:

θA = (0.2, 0.7, 0.2, 0.5)T , θB = (0.2, 0.7, 0.2, 0.3)T , θC = (0.2, 0.7, 0.2, 0.25)T

Moreover, we consider X1 = X2 = [0, 1] and we set

1. r = 1
10 , 2. r = 1

2 , 3. r = 1.

Parameter
Saturated locally D-optimal designs

ξ∗1 ξ∗2 λ∗

θA
0.00 0.14 1.00 0.50 1 2
33.3̄ 33.3̄ 33.3̄ 100.0 75.0 25.0

θB
0.00 0.14 1.00 0.30 1 2
33.3̄ 33.3̄ 33.3̄ 100.0 75.0 25.0

θC
0.00 0.14 1.00 0.25 1 2
33.3̄ 33.3̄ 33.3̄ 100.0 75.0 25.0
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The Emax case: Explicite parameter values II

θA = (0.2, 0.7, 0.2, 0.5)T , θB = (0.2, 0.7, 0.2, 0.3)T , θC = (0.2, 0.7, 0.2, 0.25)T .

For r = 1
10 and r = 1

2 inequality (2) holds:
The saturated D-optimal designs are also D-optimal among all designs.

For the case r = 1 we get:

Parameter
Locally D-optimal designs for r = 1
ξ∗D1 ξ∗D2 λ∗D

θA
0.00 0.14 1.00 0.50 1 2
33.3̄ 33.3̄ 33.3̄ 100.0 75.0 25.0

θB
0.00 0.15 1.00 0.26 1.00 1 2
35.2 33.9 30.9 76.5 23.5 71.0 29.0

θC
0.00 0.15 1.00 0.21 1.00 1 2
36.9 34.7 28.4 68.6 31.4 67.7 32.3
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The efficiencies

The efficiencies for the saturated D-optimal designs are:

Parameter
Efficiency

r = 1
10 r = 1

2 r = 1

θA = (0.2, 0.7, 0.2, 0.5)T 100 % 100 % 100%

θB = (0.2, 0.7, 0.2, 0.3)T 100 % 100 % 86 %

θC = (0.2, 0.7, 0.2, 0.25)T 100 % 100 % 83 %

Conclusion:

The saturated D-optimal designs are not always the D-optimal ones,
but nevertheless quite efficient.

K. Schorning Optimal designs for dose response curves with common parameters 26 / 28



The efficiencies

The efficiencies for the saturated D-optimal designs are:

Parameter
Efficiency

r = 1
10 r = 1

2 r = 1

θA = (0.2, 0.7, 0.2, 0.5)T 100 % 100 % 100%

θB = (0.2, 0.7, 0.2, 0.3)T 100 % 100 % 86 %

θC = (0.2, 0.7, 0.2, 0.25)T 100 % 100 % 83 %

Conclusion:

The saturated D-optimal designs are not always the D-optimal ones,
but nevertheless quite efficient.

K. Schorning Optimal designs for dose response curves with common parameters 26 / 28



Further results and outlook

We also derived results for:
I M ≥ 2 groups (i.e. twice daily, daily, weekly, monthly, ...).
I models of the form

f (d , θ1, θ
(i)
2 ) = θ1 + ϑ

(i)
21 f0(d , ϑ

(i)
21 )

I the loglinear and the exponential model.

We applied our results to a dose finding study where we also
calculated robust designs.

We are currently working on the analytical determination of bayesian
designs.
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A rough idea of the proof

The functions contained in the information matrices for the separate
models are a Chebychev system

⇒ the number of support points of the design (in the separate model) can
be bounded

The information matrix of our model is a convex combination of the
information matrices in the separated model

⇒ the number of support points of the design in our model can be
bounded

For instance the bound for the Emax model (separate) is 3 with the
additional information to measure in 0 and dmax.

Prove: All weights for the support point 0 can be put to the design of
the group whose variance is smaller.
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