Optimal designs for dose response curves with common parameters

(with Chrystel Feller, Björn Bornkamp, Georgina Bermann (Novartis), Holger Dette)

Kirsten Schorning

Universität Ulm & Ruhr-Universität Bochum

August 9, 2017

Banff International Research Station

Latest Advances in the Theory and Applications of Design and Analysis of Experiments

1 Motivating example and model formulation

2 Upper bounds for the number of support points for optimal designs

3 D-optimal designs

1 Motivating example and model formulation

2 Upper bounds for the number of support points for optimal designs

3 D-optimal designs

• Situation: A new drug is developed.

- Situation: A new drug is developed.
- Two typical questions might be:
 - 1. What is the minimally effective dose?

- Situation: A new drug is developed.
- Two typical questions might be:
 - 1. What is the minimally effective dose?
 - 2. Should the drug be taken daily or weekly?

- Situation: A new drug is developed.
- Two typical questions might be:
 - 1. What is the minimally effective dose?
 - 2. Should the drug be taken daily or weekly?
- We use a dose finding study to answer these questions.

- Situation: A new drug is developed.
- Two typical questions might be:
 - 1. What is the minimally effective dose?
 - 2. Should the drug be taken daily or weekly?
- We use a dose finding study to answer these questions.

Idea: Describe the dose response curve of the daily dosage for instance by

$$f(d, \theta^{(1)}) = \theta_1^{(1)} + rac{ heta_2^{(1)}d}{ heta_3^{(1)} + d}$$

Describe the dose response curve of the weekly dosage for instance by

$$f(d, \theta^{(2)}) = \theta_1^{(2)} + \frac{\theta_2^{(2)}d}{\theta_3^{(2)} + d}$$

Figure: Two Emax curves where the placebo effect is the same.

Figure: Two Emax curves where the placebo effect and the Emax effect is the same.

Model formulation

• 2 dose response curves (from 2 samples)

$$Y_{ij\ell} = f(d_j^{(i)}, \theta_1, \theta_2^{(i)}) + \varepsilon_{ij\ell} \quad \begin{array}{l} i = 1, 2 \\ j = 1, \dots, k_i \\ \ell = 1, \dots, n_{ij} \end{array}$$

Model formulation

• 2 dose response curves (from 2 samples)

$$Y_{ij\ell} = f(d_j^{(i)}, \theta_1, \theta_2^{(i)}) + \varepsilon_{ij\ell} \quad j = 1, \dots, k_i$$
$$\ell = 1, \dots, n_{ij}$$

- θ₁ ∈ ℝ^p same parameter in each group
 θ₂⁽ⁱ⁾ ∈ ℝ^q different parameter in each group
 d_j⁽ⁱ⁾ ∈ X_i = [0, d_{max}⁽ⁱ⁾]
- $n_i = \sum_{j=1}^{k_i} n_{ij}$ for i = 1, 2 and $N = n_1 + n_2$
- $\varepsilon_{ij\ell} \sim \mathcal{N}(0, \sigma_i^2)$ independent

Model formulation

• 2 dose response curves (from 2 samples)

$$Y_{ij\ell} = f(d_j^{(i)}, \theta_1, \theta_2^{(i)}) + \varepsilon_{ij\ell} \quad \begin{array}{l} j = 1, 2 \\ j = 1, \dots, k_i \\ \ell = 1, \dots, n_{ij} \end{array}$$

• $\theta_1 \in \mathbb{R}^p$ same parameter in each group • $\theta_2^{(i)} \in \mathbb{R}^q$ different parameter in each group • $d_j^{(i)} \in \mathcal{X}_i = [0, d_{\max}^{(i)}]$ • $n_i = \sum_{j=1}^{k_i} n_{ij}$ for i = 1, 2 and $N = n_1 + n_2$ • $\varepsilon_{ii\ell} \sim \mathcal{N}(0, \sigma_i^2)$ independent

Complete parameter in the two models

$$\theta = (\theta_1, \theta_2^{(1)}, \theta_2^{(2)}) \in \mathbb{R}^{p+2q}$$

What does this notation look like for the Emax models?

Example: Two Emax models

Example: Two Emax models

Find optimal designs for estimating the parameter $\theta = (\theta_1, \theta_2^{(1)}, \theta_2^{(2)}) \in \mathbb{R}^{p+2q}$

most precisely!

Maximum Likelihood Estimator (MLE)

The designs for **two** samples (of sizes n_1 and n_2)

$$\xi_1^{N} = \begin{pmatrix} d_1^{(1)} & \cdots & d_{k_1}^{(1)} \\ \frac{n_{11}}{n_1} & \cdots & \frac{n_{1k_1}}{n_1} \end{pmatrix}, \ \xi_2^{N} = \begin{pmatrix} d_1^{(2)} & \cdots & d_{k_2}^{(2)} \\ \frac{n_{21}}{n_2} & \cdots & \frac{n_{2k_2}}{n_2} \end{pmatrix}, \ \lambda^N = \begin{pmatrix} 1 & 2 \\ \frac{n_1}{N} & \frac{n_2}{N} \end{pmatrix}$$

Maximum Likelihood Estimator (MLE)

The designs for **two** samples (of sizes n_1 and n_2)

$$\xi_1^{N} = \begin{pmatrix} d_1^{(1)} & \cdots & d_{k_1}^{(1)} \\ \frac{n_{11}}{n_1} & \cdots & \frac{n_{1k_1}}{n_1} \end{pmatrix}, \ \xi_2^{N} = \begin{pmatrix} d_1^{(2)} & \cdots & d_{k_2}^{(2)} \\ \frac{n_{21}}{n_2} & \cdots & \frac{n_{2k_2}}{n_2} \end{pmatrix}, \ \lambda^N = \begin{pmatrix} 1 & 2 \\ \frac{n_1}{N} & \frac{n_2}{N} \end{pmatrix}$$

Further assumption:

$$\lim_{N\to\infty}\frac{n_i}{N}=\lambda_i\in(0,1)\qquad\text{and}\qquad\lim_{n_i\to\infty}\frac{n_{ij}}{n_i}=\xi_{ij}\in(0,1)$$

Then the MLE $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2^{(1)}, \hat{\theta}_2^{(2)})$ satisfies as $N \to \infty$

$$\sqrt{N}(\hat{\theta} - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, M^{-1}(\xi, \theta)),$$

where $\xi = (\xi_1, \xi_2, \lambda)$.

The structure of the information matrix

The information matrix of the design $\xi = (\xi_1, \xi_2, \lambda)$

 $M(\xi,\theta) = \lambda_1 M^{(1)}(\xi_1,\theta) + \lambda_2 M^{(2)}(\xi_2,\theta) \in \mathbb{R}^{(p+2q)\times(p+2q)}$

The structure of the information matrix

The information matrix of the design $\xi = (\xi_1, \xi_2, \lambda)$

 $M(\xi,\theta) = \lambda_1 M^{(1)}(\xi_1,\theta) + \lambda_2 M^{(2)}(\xi_2,\theta) \in \mathbb{R}^{(p+2q) \times (p+2q)}$

where the matrices $M^{(i)}(\xi_i, \theta)$ are defined by

$$M^{(i)}(\xi_i, heta) = \int_{\mathcal{X}_i} h_i(d) h_i^{\mathsf{T}}(d) d\xi_i(d)$$

and $h_i^T(d)$ is the gradient of $f(d, \theta_1, \theta_2^{(i)})$ w.r.t. θ

$$h_1^{\mathsf{T}}(d) = \frac{1}{\sigma_1} \left(\frac{\partial}{\partial \theta_1} f(d, \theta_1, \theta_2^{(1)}), \frac{\partial}{\partial \theta_2^{(1)}} f(d, \theta_1, \theta_2^{(1)}), \mathbf{0}_q^{\mathsf{T}} \right)$$
$$h_2^{\mathsf{T}}(d) = \frac{1}{\sigma_2} \left(\frac{\partial}{\partial \theta_1} f(d, \theta_1, \theta_2^{(2)}), \mathbf{0}_q^{\mathsf{T}}, \frac{\partial}{\partial \theta_2^{(2)}} f(d, \theta_1, \theta_2^{(2)}) \right)$$

The Emax cases

• The same placebo effect: $\theta = (\theta_1, \vartheta_1^{(1)}, \vartheta_2^{(1)}, \vartheta_1^{(2)}, \vartheta_2^{(2)})^T$ $h_1^T(d) = \frac{1}{\sigma_1} \left(1, \frac{d}{\vartheta_2^{(1)} + d}, -\frac{\vartheta_1^{(1)}d}{(\vartheta_2^{(1)} + d)^2}, 0, 0 \right)$ $h_2^T(d) = \frac{1}{\sigma_2} \left(1, \frac{d}{\vartheta_2^{(2)} + d}, 0, 0, -\frac{\vartheta_1^{(2)}d}{(\vartheta_2^{(2)} + d)^2} \right)$

The Emax cases

• The same placebo effect:
$$\theta = (\theta_1, \vartheta_1^{(1)}, \vartheta_2^{(1)}, \vartheta_1^{(2)}, \vartheta_2^{(2)})^T$$

 $h_1^T(d) = \frac{1}{\sigma_1} \left(1, \frac{d}{\vartheta_2^{(1)} + d}, -\frac{\vartheta_1^{(1)}d}{(\vartheta_2^{(1)} + d)^2}, 0, 0 \right)$
 $h_2^T(d) = \frac{1}{\sigma_2} \left(1, \frac{d}{\vartheta_2^{(2)} + d}, 0, 0, -\frac{\vartheta_1^{(2)}d}{(\vartheta_2^{(2)} + d)^2} \right)$

The same placebo effect θ_1 and the E_{\max} value: $\theta = (\vartheta_1, \vartheta_2, \theta_2^{(1)}, \theta_2^{(2)})^T$ $h_1^T(d) = \frac{1}{\sigma_1} \left(1, \frac{d}{\theta_2^{(1)} + d}, -\frac{\vartheta_2 d}{(\theta_2^{(1)} + d)^2}, 0 \right)$ $h_2^T(d) = \frac{1}{\sigma_2} \left(1, \frac{d}{\theta_2^{(2)} + d}, 0, -\frac{\vartheta_2 d}{(\theta_2^{(2)} + d)^2} \right)$

ulm university universität

$$\xi^* = rg\max_{\xi} \det(M(\xi, heta))$$

$$\xi^* = \arg \max_{\xi} \det(M(\xi, \theta))$$

Upcoming questions:

• Can we derive upper bounds for the number of support points of the (D)-optimal design?

$$\xi^* = \arg \max_{\xi} \det(M(\xi, \theta))$$

Upcoming questions:

- Can we derive upper bounds for the number of support points of the (D)-optimal design?
- Can we somehow use the knowledge we have about the *D*-optimal designs in the separate models for the model with common parameters?

$$\xi^* = \arg \max_{\xi} \det(M(\xi, \theta))$$

Upcoming questions:

- Can we derive upper bounds for the number of support points of the (D)-optimal design?
- Can we somehow use the knowledge we have about the *D*-optimal designs in the separate models for the model with common parameters?

Remark:

We will restrict ourselves to the two Emax models. The results are also available for a wider class of models.

Once again: the Emax cases

Motivating example and model formulation

2 Upper bounds for the number of support points for optimal designs

3 D-optimal designs

Theorem

Let (w.l.o.g.) $r = \frac{\sigma_1^2}{\sigma_2^2} \le 1$. If the regression model is given by one of the cases of the Emax model, then there exists a design $\xi^+ = (\xi_1^+, \xi_2^+, \lambda^+)$ with at most $2 \times 2 + 1 = 5$ support points such that for all designs $\xi = (\xi_1, \xi_2, \lambda)$ (with more than 5 support points) it holds

$$M(\xi^+, \theta) \geq_L M(\xi, \theta).$$

 ξ^+ can be chosen such that

$$|supp(\xi_1^+)| = 3$$
 with 0, $d_{\max}^{(1)} \in supp(\xi_1^+)$
 $|supp(\xi_2^+)| = 2$ with $d_{\max}^{(2)} \in supp(\xi_2^+)$.

Theorem

Let (w.l.o.g.) $r = \frac{\sigma_1^2}{\sigma_2^2} \le 1$. If the regression model is given by one of the cases of the Emax model, then there exists a design $\xi^+ = (\xi_1^+, \xi_2^+, \lambda^+)$ with at most $2 \times 2 + 1 = 5$ support points such that for all designs $\xi = (\xi_1, \xi_2, \lambda)$ (with more than 5 support points) it holds

$$M(\xi^+, \theta) \geq_L M(\xi, \theta).$$

 ξ^+ can be chosen such that

$$|supp(\xi_1^+)| = 3$$
 with 0, $d_{\max}^{(1)} \in supp(\xi_1^+)$
 $|supp(\xi_2^+)| = 2$ with $d_{\max}^{(2)} \in supp(\xi_2^+)$.

Theorem

Let (w.l.o.g.) $r = \frac{\sigma_1^2}{\sigma_2^2} \le 1$. If the regression model is given by one of the cases of the Emax model, then there exists a design $\xi^+ = (\xi_1^+, \xi_2^+, \lambda^+)$ with at most $2 \times 2 + 1 = 5$ support points such that for all designs $\xi = (\xi_1, \xi_2, \lambda)$ (with more than 5 support points) it holds

$$M(\xi^+, heta) \geq_L M(\xi, heta).$$

 ξ^+ can be chosen such that

$$|supp(\xi_1^+)| = 3$$
 with $0, d_{max}^{(1)} \in supp(\xi_1^+)$
 $|supp(\xi_2^+)| = 2$ with $d_{max}^{(2)} \in supp(\xi_2^+).$

Motivating example and model formulation

2 Upper bounds for the number of support points for optimal designs

3 D-optimal designs

The Emax cases: The same placebo effect

The Emax cases: The same placebo effect

D-optimal design for models with the same placebo

Theorem

Let (w.l.o.g.) $r = \frac{\sigma_1^2}{\sigma_2^2} \le 1$. The locally D-optimal design for the Emax model with common placebo effect is of the form $\xi^* = (\xi_1^*, \xi_2^*, \lambda^*)$, where

$$\xi_1^* = \begin{pmatrix} 0 & x^{*,(1)} & d_{\max}^{(1)} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, \quad \xi_2^* = \begin{pmatrix} x^{*,(2)} & d_{\max}^{(2)} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad \lambda^* = \begin{pmatrix} 1 & 2 \\ \frac{3}{5} & \frac{2}{5} \end{pmatrix}$$

and the point $x^{*,(i)}$ is given by

$$x^{*,(i)} = rac{artheta_2^{(i)} d_{\max}^{(i)}}{d_{\max}^{(i)} + 2artheta_2^{(i)}} \quad (i = 1, 2).$$

The Emax cases: The same placebo and Emax

- For that case the calculation is more difficult.
- We first calculate the saturated *D*-optimal design, i.e.

- For that case the calculation is more difficult.
- We first calculate the saturated *D*-optimal design, i.e.
 we fix the number of support points of the design ξ to 4

- For that case the calculation is more difficult.
- We first calculate the saturated *D*-optimal design, i.e.
 - (1) we fix the number of support points of the design ξ to 4
 - 2 we calculate the saturated D-optimal design under that constraint

- For that case the calculation is more difficult.
- We first calculate the saturated *D*-optimal design, i.e.
 - **(**) we fix the number of support points of the design ξ to 4
 - 2 we calculate the saturated D-optimal design under that constraint
 - We check under which circumstances the saturated *D*-optimal design is also the *D*-optimal design

Theorem

Let $r = \frac{\sigma_1^2}{\sigma_2^2} \leq 1$, $\bar{\theta}_2^{(i)} = \frac{\theta_2^{(i)}}{d_{\max}^{(i)}}$, i = 1, 2 and $0 < \bar{\theta}_2^{(1)} < \bar{\theta}_2^{(2)} < 1$. The locally D-optimal design $\xi^* = (\xi_1^*, \xi_2^*, \lambda^*)$ for the Emax model with the same placebo and E_{\max} parameter in the class of all saturated designs is given by

$$\xi_1^* = \begin{pmatrix} 0 & x^{*,(1)} & d_{\max}^{(1)} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, \quad \xi_2^* = \begin{pmatrix} \theta_2^{(2)} \\ 1 \end{pmatrix}, \quad \lambda^* = \begin{pmatrix} 1 & 2 \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}.$$
(1)

Moreover, $x^{*,(1)}$ is defined by $x^{*,(1)} = \frac{\theta_2^{(1)} d_{\max}^{(1)}}{d_{\max}^{(1)} + 2\theta_2^{(1)}}$.

Theorem

Let
$$r = \frac{\sigma_1^2}{\sigma_2^2} \le 1$$
. Let $\bar{\theta}_2^{(i)} = \frac{\theta_2^{(i)}}{d_{\max}^{(i)}}$, $i = 1, 2$ and assume $0 < \bar{\theta}_2^{(1)} < \bar{\theta}_2^{(2)} < 1$.
The design ξ^* defined in (1) is locally D-optimal if the condition
 $\bar{\theta}_2^{(2)} \ge \frac{r(6\bar{\theta}_2^{(1)}(\bar{\theta}_2^{(1)} + 1)(2\bar{\theta}_2^{(1)} + 1)^2) - (1 - r)}{(6 + 2r\bar{\theta}_2^{(1)}(1 + 2\bar{\theta}_2^{(1)}))}$
(2)

is satisfied.

Figure: The domain where the saturated D-optimal design is also D-optimal for $r = \frac{1}{10}$ (left panel), for $r = \frac{1}{2}$ (middle panel) and r = 1 (right panel).

The Emax case: Explicite parameter values I

We now consider three possible values for the Emax parameter:

 $\theta_A = (0.2, 0.7, 0.2, 0.5)^T, \ \theta_B = (0.2, 0.7, 0.2, 0.3)^T, \ \theta_C = (0.2, 0.7, 0.2, 0.25)^T$

Moreover, we consider $\mathcal{X}_1 = \mathcal{X}_2 = [0,1]$ and we set

1.
$$r = \frac{1}{10}$$
, 2. $r = \frac{1}{2}$, 3. $r = 1$.

The Emax case: Explicite parameter values I

We now consider three possible values for the Emax parameter:

 $\theta_A = (0.2, 0.7, 0.2, 0.5)^T, \ \theta_B = (0.2, 0.7, 0.2, 0.3)^T, \ \theta_C = (0.2, 0.7, 0.2, 0.25)^T$

Moreover, we consider $\mathcal{X}_1=\mathcal{X}_2=[0,1]$ and we set

1. $r = \frac{1}{10}$,	2. $r = \frac{1}{2}$,	3. <i>r</i> = 1.
-------------------------	------------------------	------------------

Parameter	Saturated locally <i>D</i> -optimal designs					signs
i aranneter	ξ_1^*			ξ_2^*	λ^*	
θ_A	0.00	0.14	1.00	0.50	1	2
	33.3	33.3	33.3	100.0	75.0	25.0
θ_B	0.00	0.14	1.00	0.30	1	2
	33.3	33.3	33.3	100.0	75.0	25.0
θ _C	0.00	0.14	1.00	0.25	1	2
	33.3	33.3	33.3	100.0	75.0	25.0

The Emax case: Explicite parameter values II

 $\theta_A = (0.2, 0.7, 0.2, 0.5)^T, \ \theta_B = (0.2, 0.7, 0.2, 0.3)^T, \ \theta_C = (0.2, 0.7, 0.2, 0.25)^T.$

For $r = \frac{1}{10}$ and $r = \frac{1}{2}$ inequality (2) holds: The saturated *D*-optimal designs are also *D*-optimal among all designs.

The Emax case: Explicite parameter values II

 $\theta_A = (0.2, 0.7, 0.2, 0.5)^T, \ \theta_B = (0.2, 0.7, 0.2, 0.3)^T, \ \theta_C = (0.2, 0.7, 0.2, 0.25)^T.$

For $r = \frac{1}{10}$ and $r = \frac{1}{2}$ inequality (2) holds: The saturated *D*-optimal designs are also *D*-optimal among all designs. For the case r = 1 we get:

Paramotor	Locally <i>D</i> -optimal designs for $r = 1$						
Farameter	ξ_1^{*D}			ξ_2^{*D}		λ^{*D}	
θ_A	0.00	0.14	1.00	0.50		1	2
	33.3	33.3	33.3	100.0		75.0	25.0
ρ	0.00	0.15	1.00	0.26	1.00	1	2
ØΒ	35.2	33.9	30.9	76.5	23.5	71.0	29.0
A	0.00	0.15	1.00	0.21	1.00	1	2
06	36.9	34.7	28.4	68.6	31.4	67.7	32.3

The efficiencies for the saturated *D*-optimal designs are:

Parameter	Efficiency			
i arameter	$r = \frac{1}{10}$	$r = \frac{1}{2}$	r = 1	
$\theta_{A} = (0.2, 0.7, 0.2, 0.5)^{T}$	100 %	100 %	100%	
$\theta_B = (0.2, 0.7, 0.2, 0.3)^T$	100 %	100 %	86 %	
$\theta_{C} = (0.2, 0.7, 0.2, 0.25)^{T}$	100 %	100 %	83 %	

The efficiencies for the saturated *D*-optimal designs are:

Paramotor	Efficiency			
i alametei	$r = \frac{1}{10}$	$r = \frac{1}{2}$	r = 1	
$\theta_{A} = (0.2, 0.7, 0.2, 0.5)^{T}$	100 %	100 %	100%	
$\theta_B = (0.2, 0.7, 0.2, 0.3)^T$	100 %	100 %	86 %	
$\theta_{C} = (0.2, 0.7, 0.2, 0.25)^{T}$	100 %	100 %	83 %	

Conclusion:

• The saturated *D*-optimal designs are not always the *D*-optimal ones, but nevertheless quite efficient.

Further results and outlook

- We also derived results for:
 - $M \ge 2$ groups (i.e. twice daily, daily, weekly, monthly, ...).
 - models of the form

$$f(d, \theta_1, \theta_2^{(i)}) = \theta_1 + \vartheta_{21}^{(i)} f_0(d, \vartheta_{21}^{(i)})$$

the loglinear and the exponential model.

Further results and outlook

- We also derived results for:
 - $M \ge 2$ groups (i.e. twice daily, daily, weekly, monthly, ...).
 - models of the form

$$f(d, \theta_1, \theta_2^{(i)}) = \theta_1 + \vartheta_{21}^{(i)} f_0(d, \vartheta_{21}^{(i)})$$

- the loglinear and the exponential model.
- We applied our results to a dose finding study where we also calculated robust designs.

- We also derived results for:
 - $M \ge 2$ groups (i.e. twice daily, daily, weekly, monthly, ...).
 - models of the form

$$f(d, \theta_1, \theta_2^{(i)}) = \theta_1 + \vartheta_{21}^{(i)} f_0(d, \vartheta_{21}^{(i)})$$

- the loglinear and the exponential model.
- We applied our results to a dose finding study where we also calculated robust designs.
- We are currently working on the analytical determination of bayesian designs.

Thank you very much!

References:

Feller, C., Schorning, K., Dette, H., Bermann, G. und Bornkamp, B.(2017+): Optimal designs for dose response curves with common parameters. To appear in: *Annals of Statistics*.

- The functions contained in the information matrices for the separate models are a Chebychev system
 - $\Rightarrow\,$ the number of support points of the design (in the separate model) can be bounded

- The functions contained in the information matrices for the separate models are a Chebychev system
 - $\Rightarrow\,$ the number of support points of the design (in the separate model) can be bounded
- The information matrix of our model is a convex combination of the information matrices in the separated model
 - $\Rightarrow\,$ the number of support points of the design in our model can be bounded

- The functions contained in the information matrices for the separate models are a Chebychev system
 - $\Rightarrow\,$ the number of support points of the design (in the separate model) can be bounded
- The information matrix of our model is a convex combination of the information matrices in the separated model
 - $\Rightarrow\,$ the number of support points of the design in our model can be bounded
- For instance the bound for the Emax model (separate) is 3 with the additional information to measure in 0 and d_{max} .

- The functions contained in the information matrices for the separate models are a Chebychev system
 - $\Rightarrow\,$ the number of support points of the design (in the separate model) can be bounded
- The information matrix of our model is a convex combination of the information matrices in the separated model
 - $\Rightarrow\,$ the number of support points of the design in our model can be bounded
- For instance the bound for the Emax model (separate) is 3 with the additional information to measure in 0 and d_{max} .
- Prove: All weights for the support point 0 can be put to the design of the group whose variance is smaller.

