Using Hamiltonian Monte-Carlo to design longitudinal count studies accounting for parameter and model uncertainties

France Mentré, Florence Loingeville, Marie-Karelle Riviere, Thu Thuy Nguyen

IAME, UMR 1137 INSERM - University Paris Diderot, Paris, France

BIRS Workshop on Latest Advances in the Theory and Applications of Design and Analysis of Experiments. Banff, Canada, Aug. 6-11, 2017

Integrated DEsign and AnaLysis of small population group trials

Contents

Introduction

2 MC-HMC method for computation of FIM and Application

- Method
- Illustration in design optimization for count data

Extensions of method for Robust designs and Applications

- Robustness w.r.t parameters of a given model
 - Method
 - Count data example
- Robustness w.r.t a set of M candidates models
 - Method
 - Count data example
- Robustness w.r.t model and parameters
 - Method
 - Count data example

MC-HMC method for comp of FIM 000000000

Discussion

Designs in pharmacometrics

- Last decades: several methods/software for **maximum likelihood** estimation of population parameters from longitudinal data using nonlinear mixed effect models (NLMEM)
- Problem beforehand: choice of "population" design
 - To obtain precise estimates / adequate power
 - number of individuals (N) ?
 - number of sampling times/individual (n)?
 - allocation of sampling times?
 - other design variables (doses, etc.)
 - Clinical trial simulation (CTS): time consuming
 - Asymptotic theory: **expected Fisher Information Matrix** ¹(FIM)

¹Mentré et al. *Biometrika*, 1997.

MC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Fisher Information Matrix in NLMEM

- Analytical expression for FIM in NLMEM
 - Current approach in PFIM ² and other design software programs ³: first order linearisation of model around the expectation of random effects (FO)
 - Only for continuous data
 - Performs well but has limitations in case of complex nonlinear models and/or large variability

• FIM for discrete longitudinal data:

- Methods based on approximations ⁴, ⁵
- We propose new approaches for computation of FIM
 - Monte Carlo Adaptive Gaussian Quadrature (MC-AGQ)⁶
 - Monte Carlo Hamiltonian Monte Carlo (MC-HMC)⁷

These approaches:

- Without model linearisation
- Evaluated and compared to CTS and Laplace approx. on 4 longitudinal data types: continuous, binary, count, time to event

²PFIM group, www.pfim.biostat.fr.

⁶ Ueckert and Mentré. Comput Stat Data Anal, 2016.

³Nyberg et al. Br J Clin Pharmacol, 2014.

⁷ Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

⁴Waite and Woods. *Biometrika*, 2015.

⁵Ogungbenro and Aarons. J Pharmacokinet Pharmacodyn, 2011.

Parameter and model uncertainty in designs

• Optimal design depends on knowledge on model and parameters

- Local planification: given the model *m* and parameter values Ψ_m^*
- Widely used criterion: D-optimality

Alternative: Robust designs

- Taking into account uncertainty on parameters
- Across a set of candidate models
- Example in dose-response study proposed ^{8, 9} and implemented in MCP-MOD ¹⁰

⁸Bretz, Pinheiro and Branson. *Biometrics*, 2005.

⁹Pinheiro et al. *Stat Med*, 2014.

¹⁰Bornkamp et al, cran.r-project.org/web/packages/MCPMod/index.html

Contents

Introduction

2 MC-HMC method for computation of FIM and Application

- Method
- Illustration in design optimization for count data

Extensions of method for Robust designs and Applications

- Robustness w.r.t parameters of a given model
 - Method
 - Count data example
- Robustness w.r.t a set of M candidates models
 - Method
 - Count data example
- Robustness w.r.t model and parameters
 - Method
 - Count data example

Contents

- Introduction
- 2 MC-HMC method for computation of FIM and Application
 - Method
 - Illustration in design optimization for count data
- Extensions of method for Robust designs and Applications
 - Robustness w.r.t parameters of a given model
 - Method
 - Count data example
 - Robustness w.r.t a set of M candidates models
 - Method
 - Count data example
 - Robustness w.r.t model and parameters
 - Method
 - Count data example

Discussion

MC-HMC method for comp of FIM •000000000 Methods for Robust designs and Applications

Discussion

NLMEM: Notations

For continuous data: $y_i = f(g(\mu, b_i), \xi_i) + \epsilon_i$ For discrete data: $p(y_i|b_i) = \prod_{j=1}^{n_i} h(y_{ij}, g(\mu, b_i), \xi_i)$

with

 $y_i = (y_{i1}, \dots, y_{in_i})^T$ response for individual $i (i = 1, \dots, N)$

f, h structural model

 ξ_i elementary design for subject i

 $\beta_i = g(\mu, b_i)$ individual parameters vector

 μ vector of fixed effects

 b_i vector of random effects for individual $i, b_i \sim \mathcal{N}(0, \Omega)$

 ϵ_i vector of residual errors, $\epsilon_i \sim \mathcal{N}(0, \Sigma)$ and Σ diagonal matrix

Ψ: Population parameters (μ , ω , σ)

 $p(y_i|b_i) = \mathcal{N}(f, \Sigma)$

MC-HMC method for comp of FIM 000000000 Methods for Robust designs and Applications

Discussion

MC-HMC method for computation of FIM in NLMEM

Population FIM for one group design: $\mathcal{M}(\Psi, \Xi) = N \times \mathcal{M}(\Psi, \xi)$ Population design $\Xi = \{\xi, N\}$ with identical elementary design ξ in all *N* subjects

Elementary FIM:
$$\mathcal{M}(\psi, \xi) = E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi} \right)^{T}$$

$$\mathcal{M}(\psi, \xi)_{k,l} = E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}}_{D_{y}} \right)$$

Monte Carlo - MC

After calculation... $D_y \iff$

$$\int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_k} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_1 \\ \int_{b_2} \frac{\partial [\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l} \frac{p(y|b_2,\psi)p(b_2|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_l} \frac{p(y|b_2,\psi)p(b_2|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)]}{\partial \psi_l} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)p(b_1|\psi)]}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi)p(b_1|\psi)]}{\partial \psi_l} db_2 \\ = \int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi$$

MC-HMC method for comp of FIM 000000000 Methods for Robust designs and Applications

Discussion

MC-HMC method for computation of FIM in NLMEM

$$\mathcal{M}(\psi,\xi) = E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T} \right)$$
$$\mathcal{M}(\psi,\xi)_{k,l} = E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T}}_{D_{y}} \right)$$
Monte Carlo - MC

After calculation... $D_{\gamma} \iff$

$$\int_{b_1} \underbrace{\frac{\partial (\log(p(y|b_1,\psi)p(b_1|\psi)))}{\partial \psi_k}}_{\substack{\partial \psi_k}} \underbrace{\frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{of } b \text{ given } y} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial (\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{of } b \text{ given } y}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{of } b \text{ given } y}} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial (\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{of } b \text{ given } y}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{of } b \text{ given } y}} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial (\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial (\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial (\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }} db_2 \cdot \underbrace{\frac{\partial (\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }}} db_2 \cdot \underbrace{\frac{\partial (\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\substack{\partial \psi_l \\ \text{conditional density} }}_{\substack{\partial \psi_l \\ \text{conditional density} \\ \text{conditional density} }}_{\substack{\partial \psi_l \\ \text{conditional$$

MC-HMC method for comp of FIM 000000000 Methods for Robust designs and Applications

Discussion

MC-HMC method for computation of FIM in NLMEM

$$\mathcal{M}(\psi,\xi) = E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T} \right)$$
$$\mathcal{M}(\psi,\xi)_{k,l} = E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T}}_{D_{y}} \right)$$
Monte Carlo - MC

$$\begin{split} \text{After calculation...} & D_{y} \Longleftrightarrow \\ f_{b_{1}} \underbrace{\frac{\partial [\log(p(y|b_{1},\psi)p(b_{1}|\psi))]}{\partial \psi_{k}}}_{f_{p}(y|b_{y},\psi)p(b|\psi)db} \underbrace{\frac{p(y|b_{1},\psi)p(b_{1}|\psi)}{\int p(y|b_{y},\psi)p(b|\psi)db}}_{p(y|b_{y},\psi)p(b|\psi)db} \underbrace{db_{1} \cdot f_{b_{2}}}_{f_{p}(y|b_{2},\psi)p(b_{2}|\psi))} \underbrace{\frac{p(y|b_{2},\psi)p(b_{2}|\psi)}{\int p(y|b_{y},\psi)p(b|\psi)db}}_{p(y|b_{y},\psi)p(b|\psi)db} \underbrace{db_{2}}_{p(y|b_{y},\psi)p(b|\psi)db} \underbrace{db_{2}}_{p(y|b_{y},\psi)db} \underbrace{db_{2}}_{p(y|b_{y},\psi)db$$

Markov Chains Hamiltonian Monte Carlo - MC-HMC

 \Rightarrow Two integrals to compute: w.r.t. y and w.r.t. b

The (k, l) term of the FIM estimated as:

$$\tilde{\mathcal{M}}(\psi,\xi)_{k,l} = \frac{1}{R} \sum_{r=1}^{R} A_{k,r}^{(1)} \cdot A_{l,r}^{(2)}$$

with
$$A_{k,r}^{(1)} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \left(\log(p(y_r | b_{m,r}^{(1)}, \psi) p(b_{m,r}^{(1)})) \right)}{\partial \psi_k}$$
$$A_{l,r}^{(2)} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \left(\log(p(y_r | b_{m,r}^{(2)}, \psi) p(b_{m,r}^{(2)})) \right)}{\partial \psi_l}$$

where

- $(y_r)_{r=1,...,R}$ is a *R*-sample of the marginal distribution of *y* (*MC*)
- (b⁽¹⁾_{m,r})_{m=1,...,M} and (b⁽²⁾_{m,r})_{m=1,...,M} are 2R M-samples of the conditional density of b given y_r (HMC)

To be symmetric
$$\Rightarrow \hat{\mathcal{M}}(\psi, \xi) = \frac{\tilde{\mathcal{M}}(\psi, \xi) + \tilde{\mathcal{M}}(\psi, \xi)^T}{2}$$

Use of MC and Hamiltonian Monte Carlo (HMC) (in Stan ¹¹) ⁷

⁷Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

¹¹Stan Development Team. Stan: A C++ Library for Probability and Sampling.

MC-HMC method for comp of FIN 000000000 Methods for Robust designs and Applications

Discussion

Example of count response

Poisson model for repeated count response at several dose levels with a full Imax model describing the relationship between $\log(\lambda)$ and dose ⁷

- $\beta_p = \mu_p exp(b_p); b_p \sim \mathcal{N}(0, \omega_p^2)$
- *d*: dose among 3 levels
 {0,0.4,0.7}
- N = 20 subjects, n_{rep} = 30 replications/subject/dose

Parameters	Ψ^*
μ_1	1
μ_2	0.5
ω_1	0.3
ω_2	0.3

⁷Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

Discussion

Example of count response: FIM evaluation

We compared 3 approaches:

- MCMC-based approach (package *MIXFIM*)
 - 1000 MC / 200 MCMC with 500 burn
 - 1000 MC / 1000 MCMC with 1000 burn
 - 5000 MC / 200 MCMC with 500 burn
 - 5000 MC / 1000 MCMC with 1000 burn
- Adaptive Gaussian Quadrature (AGQ) implemented in R
- Laplace approximation (LA) (\iff AGQ with 1 node)

with clinical trial simulations (CTS):

- Simulate 1000 datasets *Y* with $\Psi = \Psi_T$ using R
- For each *Y*: estimate $\hat{\Psi}$ using Monolix 4.3

MC-HMC method for comp of FIM 0000000000 Methods for Robust designs and Applications

Discussion

Example of count response: RSE/RRMSE⁷

⁷Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

Introduction MC-H 00000 0000

MC-HMC method for comp of FIM 0000000000 Methods for Robust designs and Applications

Discussion

Example of count response: convergence of the normalized determinant of the FIM

The number of MCMC samples M is fixed at 200 with 500 burn-in.

MC-HMC method for comp of FIM 0000000000 Methods for Robust designs and Applications

Discussion

Example of count response: design optimization

		Count example
	Ν	60 subjects
	n _{rep}	10 replications
Constraints	n	3 doses
	choice	$d_1 = 0$ (placebo)
	of doses	<i>d</i> ₂ , <i>d</i> ₃ from 0.1 to 1
		(<i>step</i> = 0.1,
		no repetition)
	Evaluation of FIM	5000 MC
Combinatorial	for all possible designs	200 HMC
optimization		
	D-efficiency	$D-eff(\Xi) = \frac{\Phi_D(\Xi)}{\Phi_D(\Xi_D)}$

MC-HMC method for comp of FIM 0000000000 Methods for Robust designs and Applications

Discussion

D-optimal design for count data: Results

Optimal doses: $\xi_D = \{0, 0.4, 0.5\}$.

Contents

2 MCMC method for computation of FIM and Application

- Method
- Illustration in design optimization for count data

Extensions of method for Robust designs and Applications

- Robustness w.r.t parameters of a given model
 - Method
 - Count data example
- Robustness w.r.t a set of M candidates models
 - Method
 - Count data example
- Robustness w.r.t model and parameters
 - Method
 - Count data example

Discussion

MC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robustness w.r.t. parameters: method

Robustness w.r.t. parameters of a given model

• Robust FIM, assuming a distribution $p(\Psi)$ on the parameters

 $\mathcal{M}_R(\Xi) = \underline{E}_{\Psi}(\mathcal{M}(\Psi,\Xi))$

- two integrals w.r.t. *y* and w.r.t. *b* for evaluation of $\mathcal{M}(\Psi, \Xi)$
- one supplementary integral w.r.t. Ψ for evaluation of $\mathcal{M}_R(\Xi)$
- Evaluation by MC-HMC using Stan (drawing jointly Ψ and y by MC)

MC-HMC method for comp of FIM

Discussion

Robustness w.r.t. parameters: method (2)

Robustness w.r.t. parameters of a given model

- Using robust FIM (5000 MC 200 HMC)
- Using DE-criterion for robust design Ξ_{DE}

 $\Phi_{DE}(\Xi) = \det(\mathcal{M}_R(\Xi))^{1/P}$

with P, number of population parameters of the model

Implementation

• in R using Stan : extension of MIXFIM

Application to count data example

- Comparison between Ξ_D vs Ξ_{DE} in terms of
 - Allocation of optimal doses
 - Relative efficiencies

$$D\text{-eff}(\Xi) = \frac{\Phi_D(\Xi)}{\Phi_D(\Xi_D)} \quad \text{and} \quad D\text{E}\text{-eff}(\Xi_D) = \frac{\Phi_{DE}(\Xi)}{\Phi_{DE}(\Xi_{DE})}$$

where

$$\phi_D(\Xi) = \det(\mathcal{M}(\psi^*, \Xi))^{1/P} \quad \text{and} \quad \phi_{DE}(\Xi) = \det(\mathcal{M}(p(\psi), \Xi))^{1/P}$$

MC-HMC method for comp of FIM

Methods for Robust designs and Applications

lications Discu

Robustness w.r.t. parameters: count data example

Poisson model for repeated count outcome at several dose levels with a full Imax model describing the relationship between $log(\lambda)$ and dose

$$P(y=k|b) = \frac{\lambda^k exp(-\lambda)}{k!}$$

with
$$\log(\lambda) = \beta_1 \left(1 - \frac{d}{d + \beta_2} \right)$$

•
$$\beta_p = \mu_p exp(b_p); b_p \sim \mathcal{N}(0, \omega_p^2)$$

Assuming uncertainty on parameters μ₂ and ω₂

	Ψ^*	$p(\Psi)$
μ_1	1	1
μ_2	0.5	$\mathcal{LN}(-0.89, 0.63)$
		$E(\mu_2) = 0.5; CV(\mu_2) = 70\%$
ω_1	0.3	0.3
ω_2	0.3	$\mathcal{LN}(-1.50, 0.77)$
		$E(\omega_2) = 0.3; CV(\omega_2) = 90\%$

- Optimization of 3 doses with
 - $N = 60, n_{rep} = 10$
 - fixing $d_1 = 0$
 - choosing d_2 and d_3 from 0 to 1

4C-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robustness w.r.t. parameters: count data example

Optimal doses: $\xi_D = \{0, 0.4, 0.5\}$.

Optimal doses: $\xi_{DE} = \{0, 0.2, 0.4\}$.

Efficiencies

Design Ξ	$D-eff(\Xi)$	$DE-eff(\Xi)$
Ξ_D	100%	94.1%
$\{N=60, \xi=(0,0.4,0.5)\}$		
Ξ_{DE}	93.3%	100%
$\{N = 60, \xi = (0, 0.2, 0.4)\}$		

4C-HMC method for comp of FIM

Discussion

Robustness w.r.t. a set of M candidate models: method

- Using FIM (5000 MC 200 HMC)
- Using D-criterion for of optimal design $\Xi_{D,m}$ for each model m

$$\Phi_{D,m}(\Xi) = \det(\mathcal{M}(\Psi_m^*,\Xi))^{1/P_m}$$

• Compound D-criterion 12 , 13 for of common design Ξ_{CD}

$$\Phi_{CD}(\Xi) = \prod_{m=1}^{M} \Phi_{D,m}(\Xi)^{\alpha_m} = \prod_{m=1}^{M} \left(\det(\mathcal{M}(\Psi_m^*,\Xi)) \right)^{\alpha_m/P_m}, \text{ with }$$

- P_m , number of population parameters of model m
- α_m , weight quantifying the balance between *M* models, $\sum_m \alpha_m = 1$

Implementation in R

• Use of compound optimality criterion to combine several models

¹²Atkinson et al. J Stat Plan Inference, 2008.

¹³Nguyen et al. *Pharm Stat*, 2016.

MC-HMC method for comp of FIM

Robustness w.r.t. a set of M candidate models: method

Application to design in a count example

Robust optimal design across M candidate models

- Using FIM by MC-HMC and compound D-optimality ($\alpha_m = 1/M$)
- Comparison between $\Xi_{D,m}$ vs Ξ_{CD} in terms of
 - Allocation of optimal doses
 - Relative efficiencies

$$D\text{-eff}_m(\Xi) = \frac{\Phi_{D,m}(\Xi)}{\Phi_{D,m}(\Xi_{D,m})} \quad \text{and} \quad CD\text{-eff}(\Xi) = \frac{\Phi_{CD}(\Xi)}{\Phi_{CD}(\Xi_{CD})}$$

C-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robust design for count data: 5 candidate models

- Fixed effects μ_1 , μ_2 for M2, M3, M4 chosen to have similar mean value of log(λ) as for M1 at dose 0 and at dose 1
- Variability $\omega_1 = \omega_2 = 0.3$ and $\omega_3 = 0$

IC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robust design w.r.t model: application on count data

Optimal doses: $\xi_{D,1} = \{0, 0.4, 0.5\}$.

Optimal doses: $\xi_{D,2} = \{0, 0.9, 1\}$.

Optimal doses: $\xi_{D,3} = \{0, 0.9, 1\}$.

Optimal doses: $\xi_{D,4} = \{0, 0.2, 1\}$.

Optimal doses: $\xi_{D,5} = \{0, 0.5, 1\}$.

AC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robust design w.r.t model: application on count data

D-efficiencies

 $\mathrm{D\text{-}eff}_m(\Xi) = \frac{\Phi_{D,m}(\Xi)}{\Phi_{D,m}(\Xi_{D,m})}$

Design Ξ	$\mathrm{D\text{-}eff}_1(\Xi)$	$\mathrm{D\text{-}eff}_2(\Xi)$	$\mathrm{D\text{-}eff}_3(\Xi)$	$\mathrm{D\text{-}eff}_4(\Xi)$	$\mathrm{D} ext{-}\mathrm{eff}_5(\Xi)$
Ξ <i>D</i> ,1	100%	60.8%	68.9%	50.3%	27.7%
$\{N = 60, \xi = (0, 0.4, 0.5)\}$					
$\Xi_{D,2}$	87.0%	100%	100%	30.8%	67.2%
$\{N = 60, \xi = (0, 0.9, 1)\}$					
$\frac{\Xi_{D,3}}{\{N = 60, \xi = (0, 0.9, 1)\}}$	87.0%	100%	100%	30.8%	67.2%
$\Xi_{D,4} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	88.4%	85.7%	85.4%	100%	85.6%
$\frac{\Xi_{D,5}}{\{N = 60, \xi = (0, 0.5, 1)\}}$	94.6%	89.9%	91.7%	69.9%	100%

MC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robust design w.r.t model: application on count data

D-efficiencies

 $\mathrm{D\text{-}eff}_m(\Xi) = \frac{\Phi_{D,m}(\Xi)}{\Phi_{D,m}(\Xi_{D,m})}$

Design Ξ	$D-eff_1(\Xi)$	$D-eff_2(\Xi)$	$D-eff_3(\Xi)$	$\mathrm{D} ext{-}\mathrm{eff}_4(\Xi)$	$D-eff_5(\Xi)$
$\boxed{ \begin{aligned} \Xi_{D,1} \\ \{N = 60, \xi = (0, 0.4, 0.5)\} \end{aligned} }$	100%	60.8%	68.9%	50.3%	27.7%
$\Xi_{D,2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%	67.2%
$\Xi_{D,3} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%	67.2%
$\Xi_{D,4} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	88.4%	85.7%	85.4%	100%	85.6%
$\Xi_{D,5}$ { $N = 60, \xi = (0, 0.5, 1)$ }	94.6%	89.9%	91.7%	69.9%	100%

• Important loss of efficiency in some scenarios where the model is not correctly pre-specified

IC-HMC method for comp of FIM

0.2

Methods for Robust designs and Applications

Discussion

0.2

Robust design w.r.t model: application on count data

Compound D-optimal design: $\xi_{CD} = (0, 0.3, 1)$.

0.6

0.8

0.4

2nd dose

$$\text{CD-eff}(\Xi) = \frac{\Phi_{CD}(\Xi)}{\Phi_{CD}(\Xi_{CD})}$$

IC-HMC method for comp of FIM 000000000 Methods for Robust designs and Applications

Discussion

Robust design for count data: 5 candidate models

D-efficiencies

D_{-} off $(\Xi) =$	$\Phi_{D,m}(\Xi)$
$D^{-} \operatorname{cli}_{m}(\underline{-}) =$	$\overline{\Phi_{D,m}(\Xi_{D,m})}$

CD-efficiencies

$$\text{CD-eff}(\Xi) = \frac{\Phi_{CD}(\Xi)}{\Phi_{CD}(\Xi_{CD})}$$

Design Ξ	$\mathrm{D} ext{-}\mathrm{eff}_1(\Xi)$	$D-eff_2(\Xi)$	$D-eff_3(\Xi)$	$\mathrm{D\text{-}eff}_4(\Xi)$	$D-eff_5(\Xi)$	$\text{CD-eff}(\Xi)$
Ξ _{D,1}	100%	60.8%	68.9%	50.3%	27.7%	65.1%
$\{N = 60, \xi = (0, 0.4, 0.5)\}$						
$\Xi_{D,2}$	87.0%	100%	100%	30.8%	67.2%	82.3%
$\{N = 60, \xi = (0, 0.9, 1)\}$						
$\Xi_{D,3}$	87.0%	100%	100%	30.8%	67.2%	82.3%
$\{N = 60, \xi = (0, 0.9, 1)\}$						
$\Xi_{D,4}$	88.4%	85.7%	85.4%	100%	85.6%	98.0%
$\{N = 60, \xi = (0, 0.2, 1)\}$						
$\Xi_{D,5}$	94.6%	89.9%	91.7%	69.9%	100%	98.5%
$\{N = 60, \xi = (0, 0.5, 1)\}$						
Ξ _{CD}	94.1%	88.1%	88.5%	79.7%	93.1%	100.0%
$\{N = 60, \xi = (0, 0.3, 1)\}$						

• Good performance of the compound D-optimal design

4C-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robustness w.r.t. model and parameters: method

- Using robust FIM (5000 MC 200 HMC)
- Using DE-criterion for robust design for each model M_m , $\Xi_{DE,m}$

$$\Phi_{DE,m}(\Xi) = \det(\mathcal{M}_R(\Xi))^{1/P_m}$$

with P_m , number of population parameters of the model M_m

Compound DE-criterion for common design Ξ_{CDE}

$$\Phi_{CDE}(\Xi) = \prod_{m=1}^{M} \Phi_{DE,m}(\Xi)^{\alpha_m} = \prod_{m=1}^{M} (\det(\mathcal{M}_R(\Xi))^{\alpha_m/P_m})$$

Implementation

• in R using Stan : extension of MIXFIM

Application to count data example

- Comparison between Ξ_{CD} and Ξ_{CDE} and between Ξ_{DE,m} and Ξ_{CDE} in terms of
 - Allocation of optimal doses
 - Relative efficiencies

 $\text{CDE-eff}(\Xi) = \frac{\Phi_{CDE}(\Xi)}{\Phi_{CDE}(\Xi_{CDE})}$

IC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robust design w.r.t model and parameters: application on count data

Optimal doses: $\xi_{DE,1} = \{0, 0.2, 0.4\}$.

Optimal doses: $\xi_{DE,2} = \{0, 0.9, 1\}$.

Optimal doses: $\xi_{DE,3} = \{0, 0.9, 1\}$.

Optimal doses: $\xi_{DE,4} = \{0, 0.1, 0.7\}$.

Optimal doses: $\xi_{DE,5} = \{0, 0.5, 1\}$.

IC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robust design w.r.t model and parameters: application on count data

DE-efficiencies

 $\text{DE-eff}_{m}(\Xi) = \frac{\Phi_{DE,m}(\Xi)}{\Phi_{DE,m}(\Xi_{DE,m})}$

Design Ξ	$\text{DE-eff}_1\left(\Xi\right)$	$DE-eff_2(\Xi)$	$DE-eff_3(\Xi)$	$DE-eff_4(\Xi)$	$DE-eff_5(\Xi)$
$\boxed{ \begin{array}{c} \Xi_{DE,1} \\ \{N = 60, \xi = (0, 0.2, 0.4)\} \end{array} }$	100%	49.9%	56.7%	77.5%	23.6%
$\Xi_{DE,2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,3} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,4} \\ \{N = 60, \xi = (0, 0.1, 0.7)\}$	89.1%	68.1%	73.9%	100%	51.4%
$\Xi_{DE,5} \\ \{N = 60, \xi = (0, 0.5, 1)\}$	83.1%	87.8%	89.6%	58.5%	100%

IC-HMC method for comp of FIM

Methods for Robust designs and Applications

Discussion

Robust design w.r.t model and parameters: application on count data

DE-efficiencies

 $\text{DE-eff}_{m}(\Xi) = \frac{\Phi_{DE,m}(\Xi)}{\Phi_{DE,m}(\Xi_{DE,m})}$

Design Ξ	$\text{DE-eff}_1(\Xi)$	$DE-eff_2(\Xi)$	$DE-eff_3(\Xi)$	$DE-eff_4(\Xi)$	$DE-eff_5(\Xi)$
$\Xi_{DE,1} \\ \{N = 60, \xi = (0, 0.2, 0.4)\}$	100%	49.9%	56.7%	77.5%	23.6%
$\Xi_{DE,2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,3} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,4} \\ \{N = 60, \xi = (0, 0.1, 0.7)\}$	89.1%	68.1%	73.9%	100%	51.4%
$\Xi_{DE,5} \\ \{N = 60, \xi = (0, 0.5, 1)\}$	83.1%	87.8%	89.6%	58.5%	100%

• Important loss of efficiency in some scenarios where the model is not correctly pre-specified

IC-HMC method for comp of FII

Methods for Robust designs and Applications

Discussion

Robust design w.r.t model and parameters: application on count data

IC-HMC method for comp of FIM 000000000 Methods for Robust designs and Applications

Discussion

Robust design w.r.t model and parameters: application on count data

Design Ξ	$\text{DE-eff}_1(\Xi)$	$DE-eff_2(\Xi)$	$DE-eff_3(\Xi)$	$DE-eff_4(\Xi)$	$DE-eff_5(\Xi)$	$CDE-eff(\Xi)$
$\Xi_{DE,1} \\ \{N = 60, \xi = (0, 0.2, 0.4)\}$	100%	46.9%	56.7%	77.5%	23.6%	63.5%
$\Xi_{DE,2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%	89.9%
$\Xi_{DE,3} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%	89.9%
$\Xi_{DE,4} \\ \{N = 60, \xi = (0, 0.1, 0.7)\}$	89.1%	68.1%	73.9%	100%	51.4%	86.6%
$\Xi_{DE,5} \\ \{N = 60, \xi = (0, 0.5, 1)\}$	83.1%	87.8%	89.6%	58.5%	100%	95.8%
$\Xi_{CDE} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	90.9%	83.8%	83.9%	84.6%	82.8%	100.0%
$\Xi_{CD} \\ \{N = 60, \xi = (0, 0.3, 1)\}$	90.0%	83.6%	83.8%	75.9%	94.1%	99.0%

• CDE-optimal design: robust w.r.t model and parameters

Contents

MC-HMC method for computation of FIM and Application

- Method
- Illustration in design in optimization for count data

Extensions of method for Robust designs and Applications

- Robustness w.r.t parameters of a given model
 - Method
 - Count data example
- Robustness w.r.t a set of M candidates models
 - Method
 - Count data example
- Robustness w.r.t model and parameters
 - Method
 - Count data example

Discussion

Discussion

Summary

- MC-HMC method for computation of FIM ⁷ enables applications to design optimization for discrete data
- Extension of this method to propose robust optimal designs accounting for uncertainty w.r.t. parameters and/or models
- Computationally challenging, much slower than FO approach

Perspectives

- Replacement of MC by more efficient approach: quasi-random sampling ¹⁴
- Application to continuous data, and to other type of discrete data (binary, time to event)
- $\bullet~$ Use in model-based adaptive design, for instance two-stage designs 15 , 16
- Implementation of an optimization algorithm

⁷Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

¹⁴Ueckert and Mentré. CM Statistics Conference, London, UK, 2015.

¹⁵Dumont, Chenel and Mentré. Commun Stat Simul Comput, 2016.

¹⁶Sinha and Xu. J Stat Plan Inference, 2011.

Thank you for your attention