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Response Surfaces

Given a response variable y and explanatory variables x1, . . . , xq, a
response surface is a function describing the relationship between the
expectation of Y and x,

E (Y |x) = η(x).

Note:

Assume Y
ind .∼ N (η(x) , σ2), although distributional assumption is not

essential;

Can be generalised, so that η(x) is the linear predictor in a GLM or
other model;

We are interested in response surface experimentation.
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Motivation

First and second order polynomial regression models are widely, and often
successfully, used as empirical response surface models in small- to
moderate-sized experiments.

However:

second order model may not fit the data and higher order models are
difficult to interpret and have multiple stationary points;

a factor may be known to have a monotonic, but not linear, effect.
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Example 1

An experiment to optimise a bioreactor.

Factors: substrate concentration, enzyme concentration, pressure.

Design: three-level central composite with four centre points. One run
lost, so only 17 runs.

Response: flux.

Fitted model: second order polynomial, plus Substrate×Pressure2 term.

Steven Gilmour (King’s College London) Optimal Design for Fractional Polynomials Banff Workshop 6 / 31



Fitted Polynomial Model
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Approximating Models

Taking a Taylor series expansion of η(x) and truncating gives a low order
polynomial, f (x), as a local approximation, e.g.

f (x) = β0 +

q∑
i=1

βixi +

q∑
i=1

βiix
2
i +

q−1∑
i=1

q∑
j=i+1

βijxixj .

This argument applies equally if xi is measured in a different metric, e.g.
pressure is measured in units of Pa = N/m2. It could equally well be
measured in

√
N/m, m2/N, m/

√
N, etc.

Hence, it is equally justifiable to use a polynomial in
√
xi ,

1
xi

, 1√
xi

, etc.
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Box-Tidwell Transformations

Box and Tidwell (1962) suggested using power transformations,

x
(αi )
i =

{
xαi
i , αi 6= 0;

log xi , αi = 0,

and then using polynomials in x
(αi )
i .
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Fractional Polynomials

One extra parameter for each factor allows:

models with asymptotes;

nonlinear monotonic relationships;

asymmetrical relationships with a stationary point.

It is often useful to restrict powers to a few rational numbers, e.g.{
−3,−2,−1,−1

2
,−1

3
, 0,

1

3
,

1

2
, 1, 2, 3

}
.

Royston and Altman (1994) called these fractional polynomials.
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Models

We can use polynomials in x
(αi )
i , i = 1, . . . , q as the default class of

models, e.g. the second order fractional polynomial,

f (x) = β0 +

q∑
i=1

βix
(αi )
i +

q∑
i=1

βii

{
x

(αi )
i

}2
+

q−1∑
i=1

q∑
j=i+1

βijx
(αi )
i x

(αj )
j .

Prior knowledge may dictate that we should restrict the set further, e.g. if
it is known that the response to some factor will be monotonic or
asymptotic.
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Estimation

We have had few problems with convergence using nonlinear least squares
with a partial linear algorithm (e.g. in R or GenStat) exploiting the fact
that only the power parameters appear nonlinearly.

We round the powers by trying the rational numbers within our set closest
to the values obtained by nonlinear least squares (NLLS).

If estimates of the power parameters are outside the range [−3, 3], we can
use the algorithm given by Royston and Altman: set α2, . . . , αq to initial
values, find the value of α1 in our set that minimises Residual MS; cycle
through the other parameters; repeat until convergence.
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Estimation

A modification of this is to estimate αi at each stage by (one-dimensional)
NLLS. Another is to fix one parameter and evaluate the others by NLLS,
repeating at a grid of points.

Performing model simplification before rounding (e.g. dropping some
second order terms) often reduces the problem of unstable parameter
estimates.
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Inference

There are technical problems in performing inferences with the rounded
powers - in particular, the χ2 approximation to the deviance is invalid.

In response surface experiments, we recommend using the unrounded
powers to perform inferences and using the rounded powers just for
interpretation of the fitted model, which is often more important anyway.
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Example 1 (ctd.)

An experiment to optimise a bioreactor.

Factors: substrate concentration, enzyme concentration, pressure.

Design: three-level central composite with four centre points. One run
lost, so only 17 runs.

Response: flux.

Fitted polynomial model: second order polynomial, plus
Substrate×Pressure2 term (9 parameters).

Fitted fractional polynomial model: first order in substrate concentration
and enzyme concentration, plus Substrate×Enzyme term (6 parameters).
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Fitted Models
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Example 2

Data from an experiment on spacing and density effects on turnip yields
reported by Mead (1988) - 4× 5 treatments in 3 complete blocks.

Models fitted:

1 Full model:

f (x) = β0 + δi + τj ; i = 1, 2, 3; j = 1, . . . , 20,

where
∑3

i=1 δi = 0 and
∑20

j=1 τj = 0.

2 Second order polynomial:

f (x) = β0 + δi + β1x1ij + β2x2ij + β11x
2
1ij + β22x

2
2ij + β12x1ijx2ij .

3 Highest possible order polynomial, with non-significant terms dropped:

f (x) = β0 + δi + β1x1ij + β2x2ij + β11x
2
1ij + β22x

2
2ij + β12x1ijx2ij

+β111x
3
1ij + β222x

3
2ij + β122x1ijx

2
2ij + β2222x

4
2ij .
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Example 2

4 Second order fractional polynomial:

f (x) = β0 + δi + β1x
(α1)
1ij + β2x

(α2)
2ij

+β11

{
x

(α1)
1ij

}2
+ β22

{
x

(α2)
2ij

}2
+ β12x

(α1)
1ij x

(α2)
2ij .

5 Second order fractional polynomial, with non-significant term
dropped:

f (x) = β0 + δi + β1x
(α1)
1ij + β2x

(α2)
2ij + β11

{
x

(α1)
1ij

}2
+ β12x

(α1)
1ij x

(α2)
2ij .

6 Model 5 with powers rounded (α̂1 = −1
2 , α̂2 = −1

3 ).
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Comparison of Models

Model SSRes df MSRes
1 1.4884 38 0.0392
2 7.5639 52 0.1455
3 1.8252 48 0.0380
4 1.7545 50 0.0351
5 1.7848 51 0.0350
6 1.7958 51 0.0352

Model 2 shows overwhelming evidence of lack of fit.

Models 3 and 6 look equally good until we consider interpretability.
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Fitted Models
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Comments

Fractional polynomials can and should be used routinely in experiments
instead of polynomials for modelling response surfaces, . . .

. . . if more than a very approximate idea of the shape of the response
surface is required.

They are not likely to be useful in situations where we would not
contemplate fitting polynomials.

A problem is that standard response surface designs are very poor for
fitting fractional polynomials.
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Design

For computational and presentational simplicity, we present results for one
factor for the second order model,

f (x) = β0 + β1x
(α) + β11

{
x (α)

}2
.

Fractional polynomial models are nonlinear, so the optimal design depends
on the unknown parameter values.

Unlike the first order model, the second order model is not partially
nonlinear ⇒ the optimal design depends on β1 and β11, as well as α.

Designs are very sensitive to the prior value of α, so pseudo-Bayesian
optimal design seems natural.
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Reparameterization

Eliciting priors and finding optimal designs are much easier if priors for
different parameters are independent.

In fractional polynomial models, the interpretation of the β parameters
depends on the value of α.

We reparameterize to more reasonably assume prior independence.

Define parameters which measure:

the difference in response between xmin and xmax (= 1 after scaling);
and

the difference between the average response at the extremes and in
the (transformed) centre.
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Reparameterized Model

We get

γ1 = β1

{
1− x

(α)
min

}
+ β11

[
1−

{
x

(α)
min

}2
]

and

γ11 = β11

{
1− x

(α)
min

}2

4
.

The model becomes

f (x) = β0 + γ1
x (α)

1− x
(α)
min

+ 4γ11

{
x (α)

}2 −
{

1 + x
(α)
min

}
x (α){

1− x
(α)
min

}2
.
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Another complication

Normal priors for γ1 and γ11 seem natural, but we have to be aware of a
singularity.

If γ1 = γ11 = 0, any value of α gives an identical fit and V (α̂)→∞.

We get round this by truncating the priors for γ1 and γ11 on both sides of
zero. (This makes it difficult to use quadrature methods.)

Comment: in pseudo-Bayesian design, “priors” should not represent
strength of belief in different parameter values, but strength of interest in
being optimal for different parameter values.
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Optimality Criteria

As usual, we obtain the asymptotic variance matrix, σ2M(X,θ)−1, where
M(X,θ)−1 = messy, but computable.

We illustrate using weighted-A-optimality, with appropriate weights on
each parameter.
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Exact optimal design

Continuous optimal designs can be found and rounded.

These work well when n >> p, e.g. most cases with one or two factors.

Otherwise, we need exact designs.

We use a modified Fedorov exchange algorithm, with sampling from the
truncated priors and a fine candidate grid.
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Results

Design space: x ∈ [0.1, 1], n = 20.

Priors: γ1 ∼ N(1, 0.25), γ11 ∼ N(−2.5, 2.25),
p(α) = (0.15, 0.25, 0.25, 0.15, 0.10, 0.07, 0.03) for
α = (−2, − 1, − 1/2, 0, 1/2, 1, 2).

Design type Design Efficiency

True Prior

{
xi 0.1 0.1400 0.1742 0.5100 0.6200 1
ni 3 1 5 6 1 4

100

Point Prior
α = 0

{
xi 0.1 0.1507 0.6073 1
ni 2 7 7 4

86.25

Point Prior
α = −1/2

{
xi 0.1 0.1532 0.4492 1
ni 6 4 4 6

60.86
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Results

Design type Design Efficiency
5 levels
α = 0

{
xi 0.1 01778 0.3162 0.5623 1
ni 4 4 4 4 4

78.57

5 levels
α = −1/2

{
xi 0.1 0.1455 0.2309 0.4213 1
ni 4 4 4 4 4

69.57

4 levels
α = 0

{
xi 0.1 0.2154 0.4642 1
ni 5 5 5 5

65.32

4 levels
α = −1/2

{
xi 0.1 0.1678 0.3377 1
ni 5 5 5 5

49.71
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Conclusions

Bayesian exact design is feasible, at least for a few factors, and
necessary.

For many factors we require further improvements (or simplification,
e.g. point priors for γ parameters).

Fractional polynomial response surfaces are very promising for many
practical problems.
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