STATISTICAL MODELING AND APPLICATIONS OF PARTICLE SWARM OPTIMIZATION

Seongho Kim, Ph.D

Biostatistics Core, Karmanos Cancer Institute Department of Oncology, School of Medicine Wayne State University, Detroit, MI

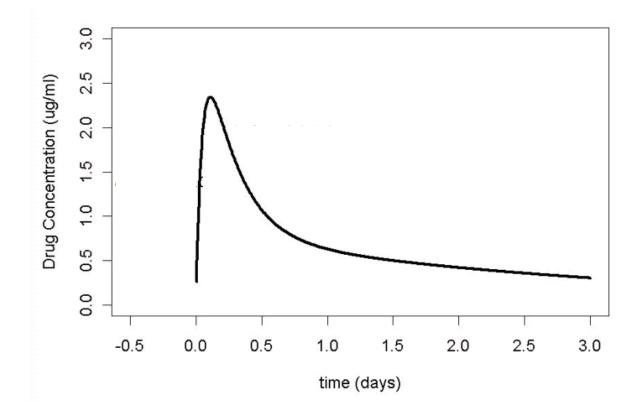
Outline

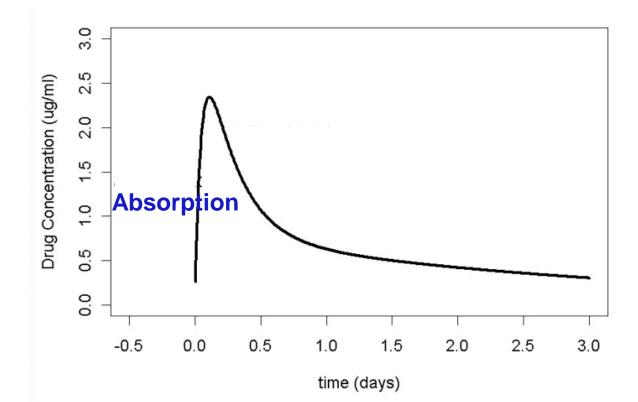
- Pharmacokinetics (PK) analysis
 - Global optimization
 - Identifiability
- Two-stage single-arm phase 2 clinical trial designs
 - Simon's two-stage and Lin and Shih's adaptive designs
 - Adaptive designs with three target response rates

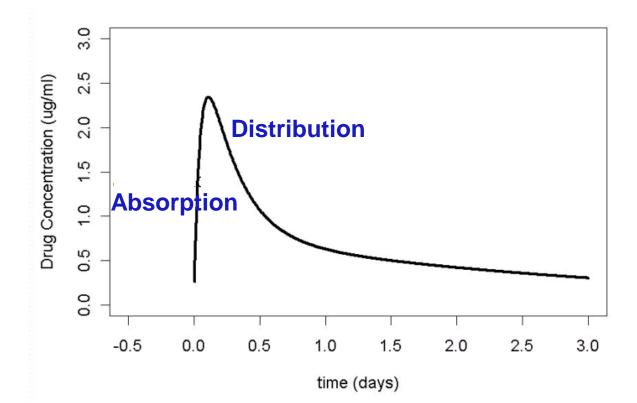
Outline

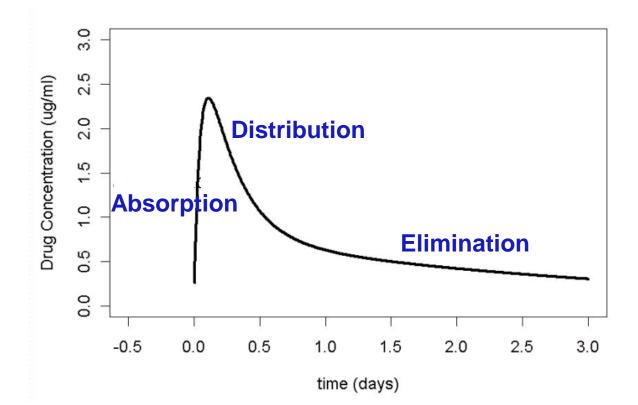
Pharmacokinetics (PK) analysis

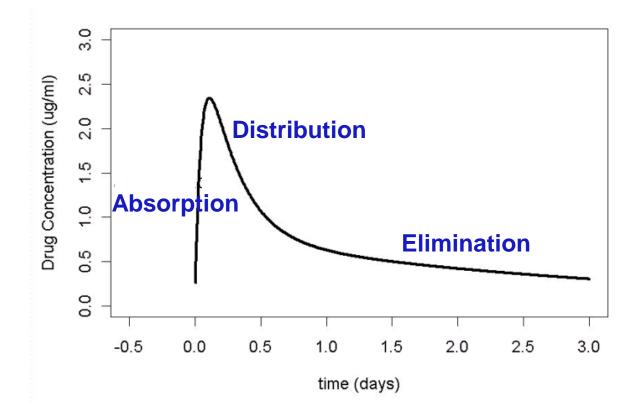
- Global optimization
- Identifiability
- Two-stage single-arm phase 2 clinical trial designs
 - Simon's two-stage designs
 - Lin and Shih's adaptive designs
 - Adaptive designs with three target response rates







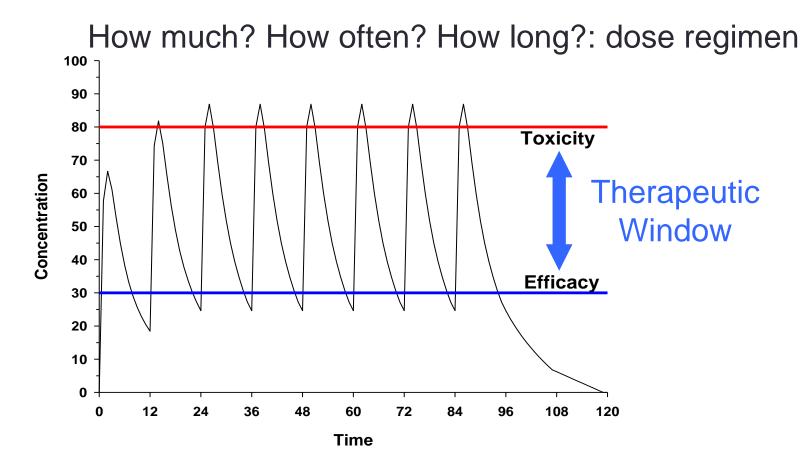




Pharmacokinetic (PK) analysis is to estimate the rates of the absorption, the distribution and the elimination (metabolism and excretion) over time of a drug and its metabolites

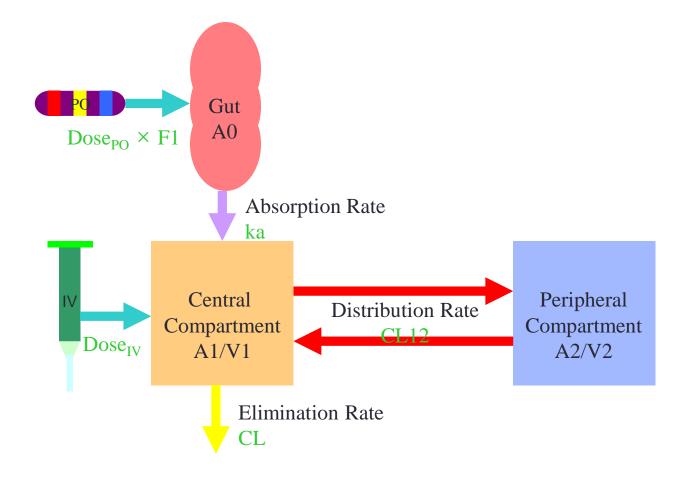
Pharmacokinetics (PK) Goal: Therapeutic Optimization

 Achieve concentration profile attaining Efficacy and avoiding Toxicity



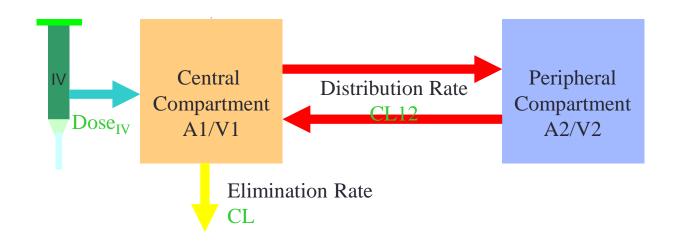
Pharmacokinetics (PK) Study

: Two-Compartment Model



Pharmacokinetics (PK) Study

- : Two-Compartment Model
- IV model



Pharmacokinetics (PK) Study

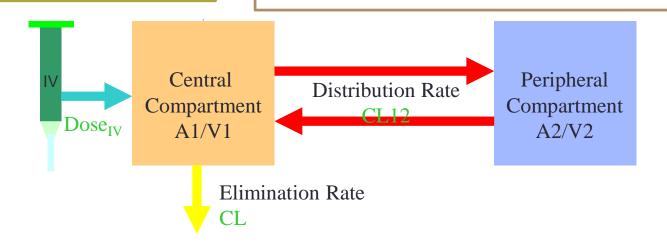
- : Two-Compartment Model
- IV model

$$\begin{aligned} \frac{dA_1}{dt} &= -CL \times \frac{A_1}{V_1} + CL_{12} \times (\frac{A_2}{V_2} - \frac{A_1}{V_1}) \\ \frac{dA_2}{dt} &= CL_{12} \times (-\frac{A_2}{V_2} + \frac{A_1}{V_1}) \\ \left[A_1(t), A_2(t)\right]|_{t=0} &= (Dose, 0) \end{aligned}$$

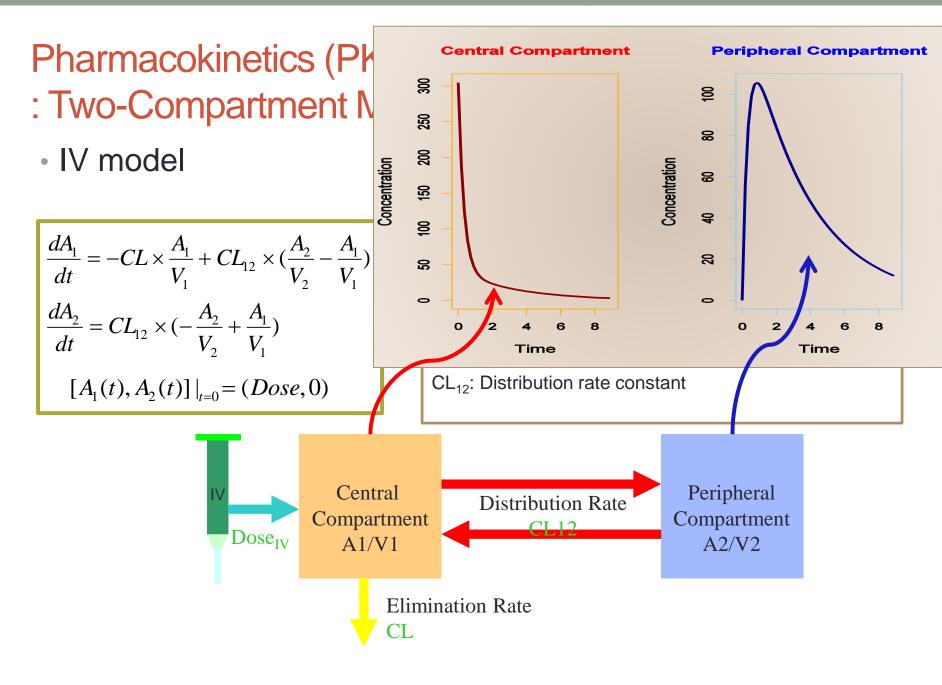
A₁: Amount of drug in central compartment A₂: Amount of drug in peripheral compartment

 V_1 : Volume of distribution in the central compartment V_2 : Volume of distribution in the peripheral compartment

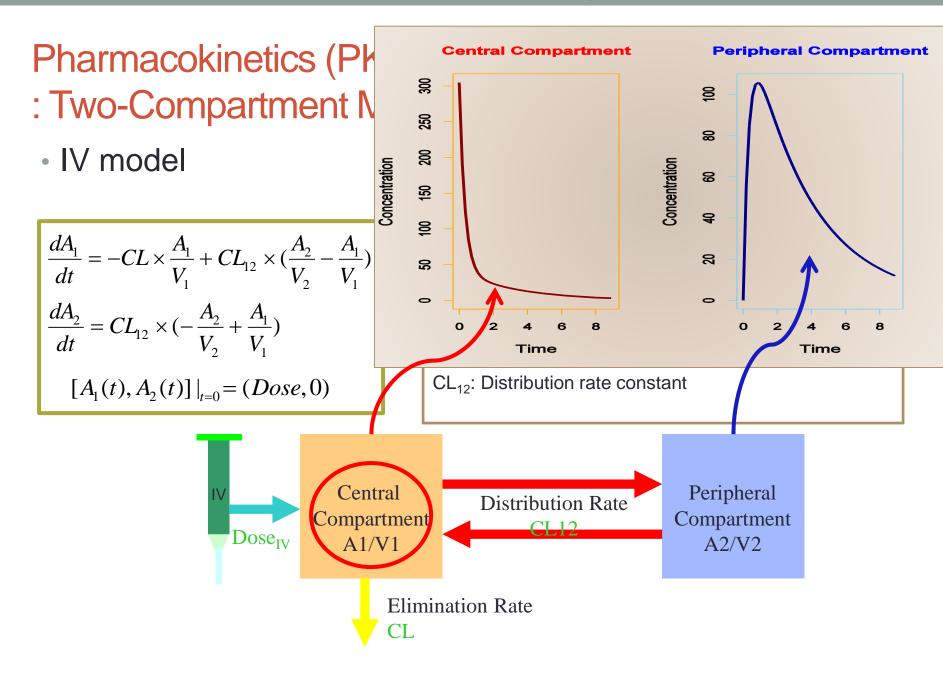
CL: Clearance CL_{12} : Distribution rate constant



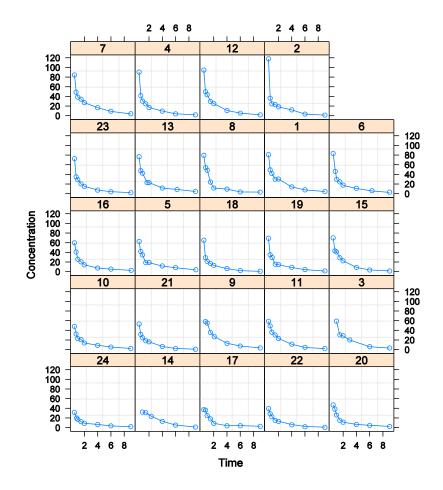
Pharmacokinetics (PK) analysis



Pharmacokinetics (PK) analysis



Midazolam (MDZ) data: IV infusion



CYP3A is responsible for 60% of drugs' metabolism

CYP3A Substrates → standard CYP3A probe drug

24 volunteers, 18 to 55 years of age, received single dose of 2.74~4.80 mg MDZ intravenously (IV) and Blood samples were collected at 0.5, 0.75, 1, 1.5, 2, 4, 6, and 9 hours after IV MDZ dosing.

Mixed-Effects Model

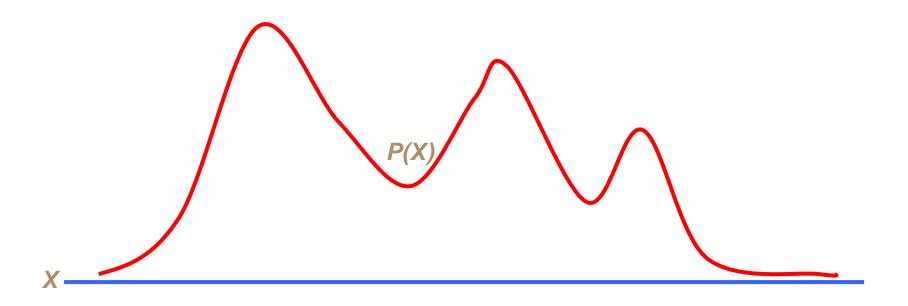
- Provide a powerful and flexible tool for the analysis of balanced and unbalanced grouped data.
- A mixture of fixed and random factors
 - Fixed-effect (Population-level): the effects of the levels to one another
 - Random-effect (Subject-level): a random sample from a population of effects

Parameter estimation

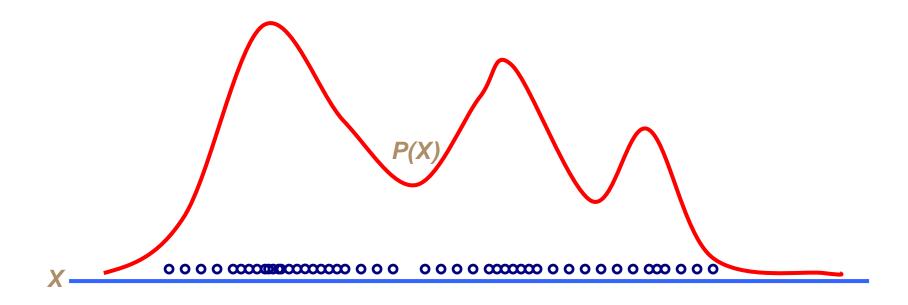
- Estimation: EM-like Algorithms and Monte Carlo-based Algorithms
- EM Algorithm >
 - It can guarantee only up to local optima
 - Approximation needed if either E-step or M-step is intractable (no closed form available)
 - PK/PD models have the nonlinear differential equations
 - It gives us point estimates
- Monte Carlo Algorithm
 - It can guarantee global optima theoretically
 - It can deal with nonlinear functions
 - It can estimate the distribution of parameters (Bayesian approach)

• Given: a domain X and a distribution p(x)

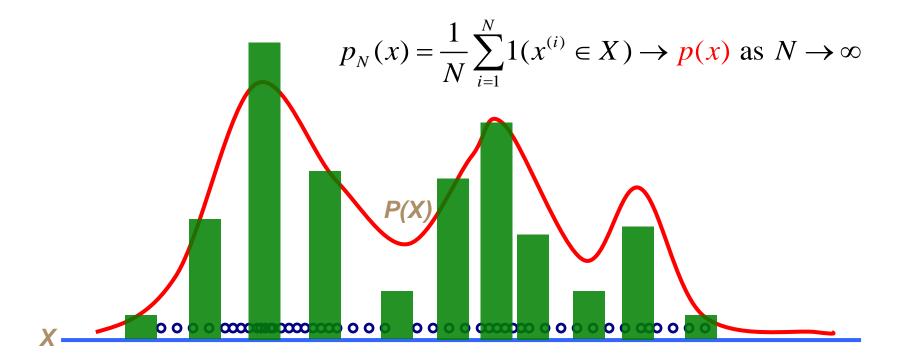
- Given: a domain X and a distribution p(x)
- Draw a set of N samples independently



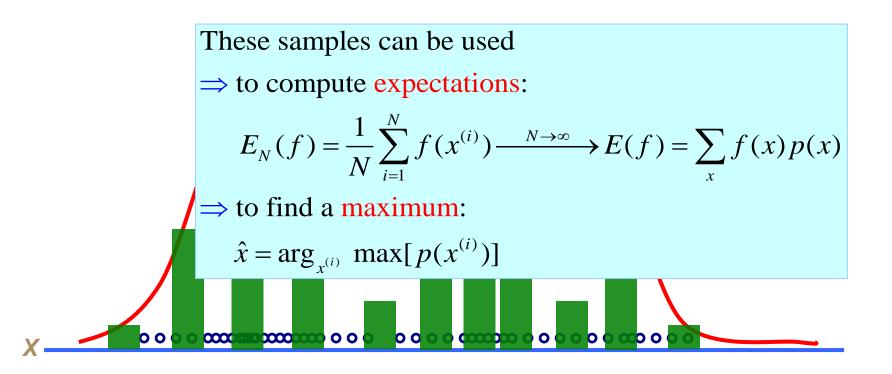
- Given: a domain X and a distribution p(x)
- Draw a set of N samples independently
- Approximate the distribution by these samples



- Given: a domain X and a distribution p(x)
- Draw a set of N samples independently
- Approximate the distribution by these samples



- Given: a domain X and a distribution p(x)
- Draw a set of N samples independently
- Approximate the distribution by these samples



Non-Markovian Methods

Non-Markovian Methods

Markovian Methods

Non-Markovian Methods

- Rejection Sampling (Smith and Gelfand, 1992)
- Ratio-of-uniforms method (Wakefield et al., 1994)

• ...

- Non-Markovian Methods
 - Rejection Sampling (Smith and Gelfand, 1992)
 - Ratio-of-uniforms method (Wakefield et al., 1994)

• ...

Markovian Methods

- Gibbs Sampling (Geman and Geman 1984)
- Markov Chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970)
 - Random-walk Metropolis (Roberts, 1995)
 - Independence Metropolis-Hasting (Roberts, 1995)
 - Reversible jump MCMC (Green, 1995)

• ...

Non-Markovian Method

[Rejection Sampling]

 $\pi(x)$: intractable target density

 $\pi(x) \propto f(x)$

Find a tractable envelope h(x) s.t. $f(x) \le c \cdot h(x)$

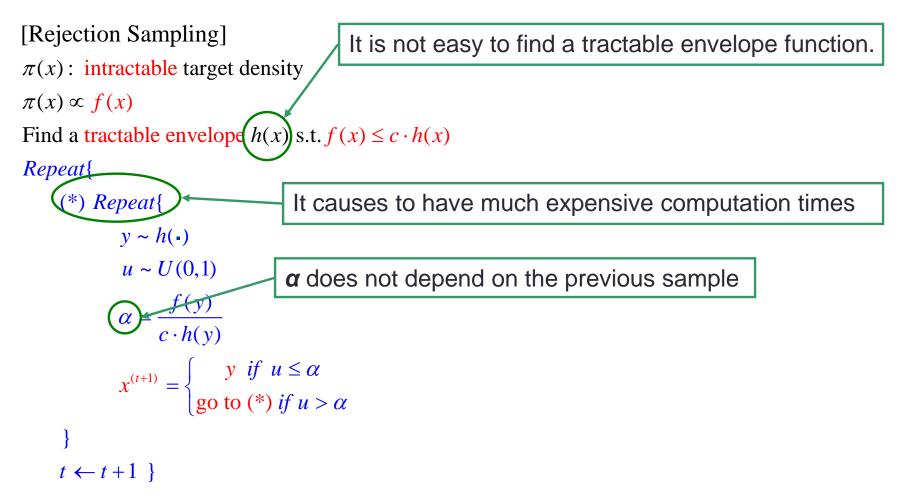
Repeat{

```
(*) Repeat{

y \sim h(\cdot)
u \sim U(0,1)
\alpha = \frac{f(y)}{c \cdot h(y)}
x^{(t+1)} = \begin{cases} y \text{ if } u \leq \alpha \\ \text{go to (*) if } u > \alpha \end{cases}
}

t \leftarrow t+1 \end{cases}
```

Non-Markovian Method



Markovian Method

[MCMC]

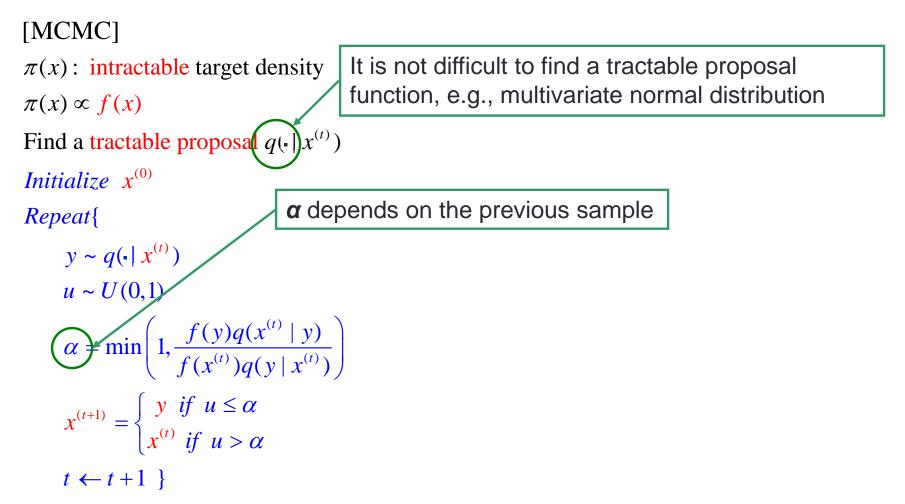
- $\pi(x)$: intractable target density
- $\pi(x) \propto f(x)$
- Find a tractable proposal $q(\cdot | x^{(t)})$

Initialize $x^{(0)}$

Repeat{

```
y \sim q(\cdot | x^{(t)})
u \sim U(0,1)
\alpha = \min\left(1, \frac{f(y)q(x^{(t)} | y)}{f(x^{(t)})q(y | x^{(t)})}\right)
x^{(t+1)} = \begin{cases} y \text{ if } u \leq \alpha \\ x^{(t)} \text{ if } u > \alpha \end{cases}
t \leftarrow t+1 \end{cases}
```

Markovian Method



Nonlinear Mixed-Effects Model

• The first - stage model:

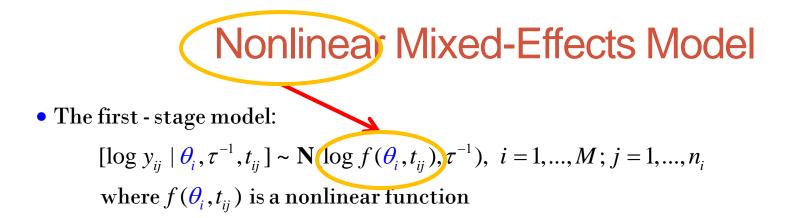
 $[\log y_{ij} | \theta_i, \tau^{-1}, t_{ij}] \sim \mathbf{N}(\log f(\theta_i, t_{ij}), \tau^{-1}), \ i = 1, ..., M; j = 1, ..., n_i$ where $f(\theta_i, t_{ij})$ is a nonlinear function

τ • The second - stage model : $[\boldsymbol{\theta}_i \mid \boldsymbol{\theta}, \boldsymbol{\Sigma}_p] \sim \mathbf{MVN}(\boldsymbol{\theta}, \boldsymbol{\Sigma}_p)$ У₁ y_i θ1 θ_i Random-Effects θ Σp **Fixed-Effects**

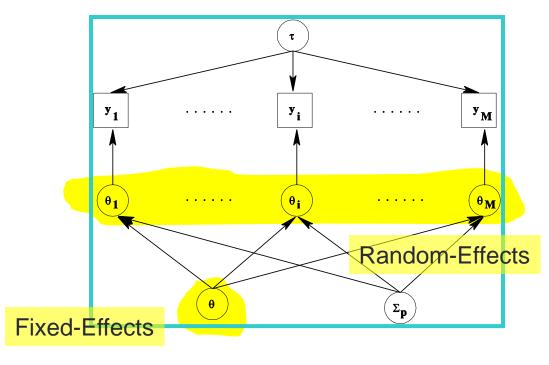
УM

θΜ

Pharmacokinetics (PK) analysis



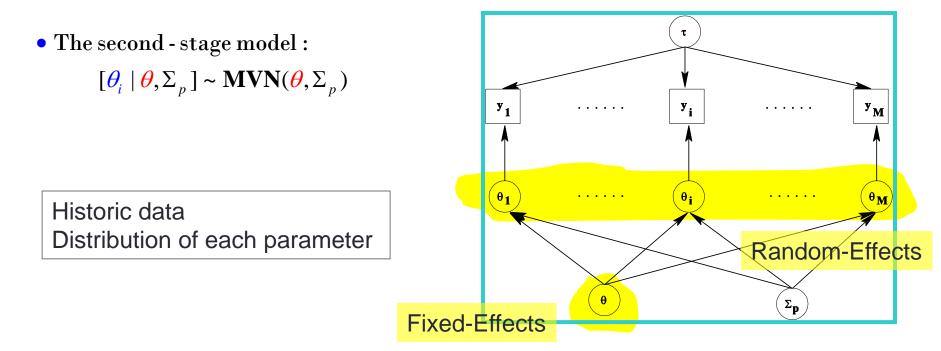
• The second - stage model : $[\theta_i \mid \theta, \Sigma_p] \sim \mathbf{MVN}(\theta, \Sigma_p)$



Nonlinear Mixed-Effects Model

• The first - stage model:

 $[\log y_{ij} | \theta_i, \tau^{-1}, t_{ij}] \sim \mathbf{N}(\log f(\theta_i, t_{ij}), \tau^{-1}), \ i = 1, ..., M; j = 1, ..., n_i$ where $f(\theta_i, t_{ij})$ is a nonlinear function

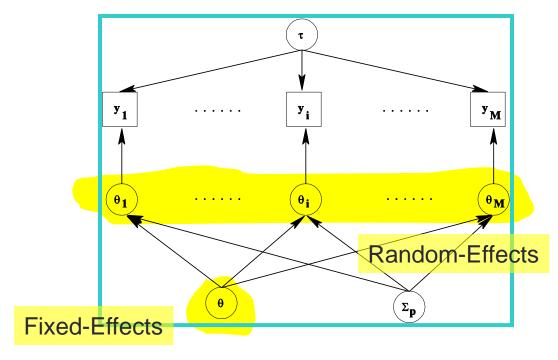


(Bayesian MCMC) Nonlinear Mixed-Effects Model

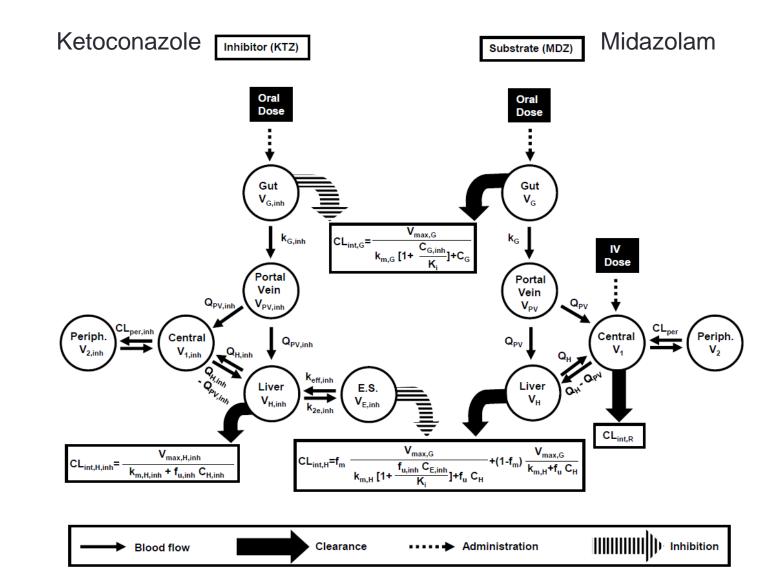
• The first - stage model:

 $[\log y_{ij} | \theta_i, \tau^{-1}, t_{ij}] \sim \mathbf{N}(\log f(\theta_i, t_{ij}), \tau^{-1}), \ i = 1, ..., M; j = 1, ..., n_i$ where $f(\theta_i, t_{ij})$ is a nonlinear function

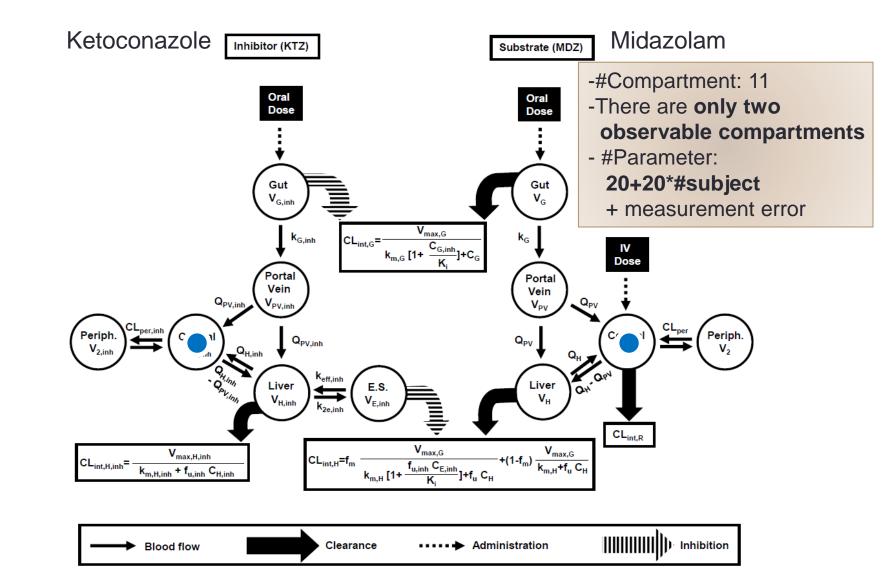
- The second stage model : $[\theta_i \mid \theta, \Sigma_p] \sim \mathbf{MVN}(\theta, \Sigma_p)$
- The third stage model : $[\tau] \sim Ga(\frac{\nu_0}{2}, \frac{\tau_0 \nu_0}{2})$ $[\theta] \sim \mathbf{MVN}(\mathbf{c}, \mathbf{C}_p)$ $[\Sigma_p^{-1}] \sim W(\rho, [\rho \mathbf{R}_p]^{-1})$



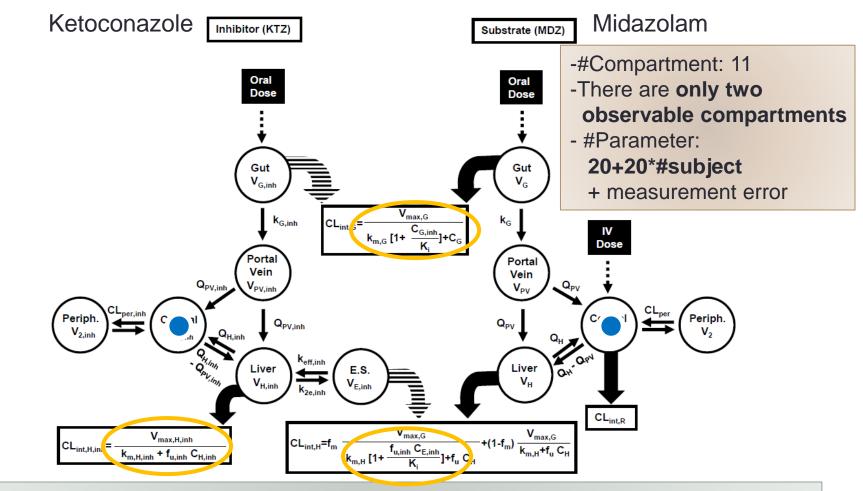
Physiologically based PK drug interaction model



Physiologically based PK drug interaction model



Physiologically based PK drug interaction model



-Numerous uncertain parameters (multidimensional problem) and Identifiability problem

Practical Issues for Bayesian MCMC

- Global optima or local optima?
 - High-dimensionality makes it difficult to reach global optima
- The speed of convergence is slow
 - Proposal function (variance-covariance matrix)
 - Starting points (initial values)
- High correlation due to unidentifiable parameters (identifiability)
 - Michaelis-Menten kinetics equation

Three challenges of PK analysis

- Global Optimization: global maximum of the likelihood
 - What is an efficient approach to finding global optima?
- Convergence Rate: the speed of convergence
 - How to improve the speed of convergence?
- (Statistical) Identifiability of PK models
 - What can we do with the statistically unidentifiable parameters?

Outline

- Pharmacokinetics (PK) analysis
 - Global optimization
 - Identifiability
- Two-stage single-arm phase 2 clinical trial designs
 - Simon's two-stage and Lin and Shih's adaptive designs
 - Adaptive designs with three target response rates

An Efficient Global Search Algorithm

- NONMEM (Beal and Sheiner, 1980)
 - The most popular approaches to a population pharmacokinetics/pharmacodynamics (PK/PD) analysis for nonlinear mixed-effects models
 - Local optimization using a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm
- A global search algorithm for nonlinear mixed-effects models to meet the challenges of the local optimization in NONMEM

First-stage

$$logy_{ij} = logf(\phi_i, t_{ij}) + \epsilon_{ij}; i = 1, ..., N; j = 1, ..., n_i$$
(1)

- N: the number of subjects
- n_i : the number of observations from the *i*th subject
- y_{ij}: the drug concentration at time t_{ij}
- f: a nonlinear function of a subject-specific parameter vector φ_i
- Second-stage

$$\varphi_i = A_i\beta + B_ib_i$$

• A_i and B_i : known design matrices for fixed-effects β and random-effects b_i

First-stage

$$logy_{ij} = logf(\phi_i, t_{ij}) + \epsilon_{ij}; i = 1, ..., N; j = 1, ..., n_i$$
(1)

- N: the number of subjects
- *n_i*: the number of observations from the *i*th subject
- y_{ij} : the drug concentration at time t_{ij}
- f: a nonlinear function of a subject specific parameter vector φ_i
- Second-stage

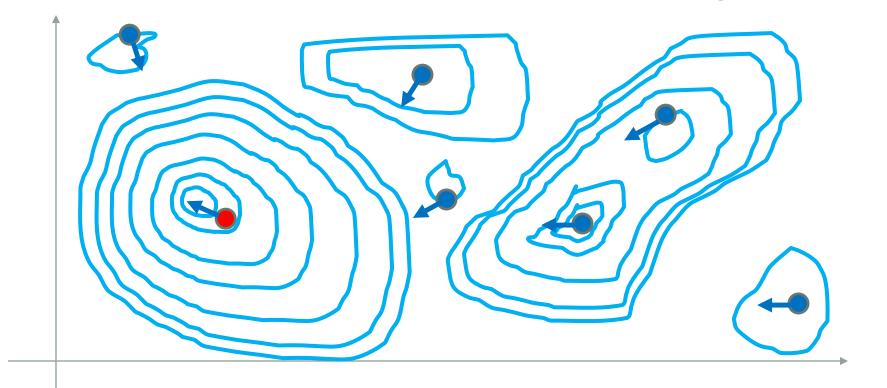
$$\varphi_i = A_i\beta + B_ib_i$$

• A_i and B_i : known design matrices for fixed-effects β and random-effects b_i

Laplacian estimation method First-order estimation method First-order conditional estimation methods

Particle Swarm Optimization (PSO)

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmx}[l(\boldsymbol{\beta}; \boldsymbol{Y}, \boldsymbol{X})] \qquad \bullet \text{ global best} \\ \bullet \text{ local best}$$



Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995

Particle Swarm Optimization (PSO)

• *k*-th iteration

$$v_{k+1}^{p} = w_{k}v_{k}^{p} + c_{1}r_{1}(x_{lbest}^{p} - x_{k}^{p}) + c_{2}r_{2}(x_{gbest} - x_{k}^{p})$$
(4)

$$x_{k+1}^p = x_k^p + v_{k+1}^p$$
(5)

- *p* = 1,...,*P*; *P*: the population size
- $x_{(lbest)}^{p}$ and x_{gbest} : local best and global best, respectively
- v_{k+1}^p : the velocity
- wk: inertia weight

$$w_k = w_{max} - \frac{k}{K}(w_{max} - w_{min})$$

- c_1 , c_2 : cognitive and social coefficient, respectively
- r_1 , r_2 : two random sequences in [0,1]
- K: total number iteration number

First-stage

$$logy_{ij} = logf(\phi_i, t_{ij}) + \epsilon_{ij}; i = 1, ..., N; j = 1, ..., n_i$$
(1)

- N: the number of subjects
- *n_i*: the number of observations from the *i*th subject
- y_{ij}: the drug concentration at time t_{ij}
- f: a nonlinear function of a subject-specific parameter vector ϕ_i
- ε_{ij}~ N(0, σ²)
- Second-stage

$$\varphi_i = A_i\beta + B_ib_i$$

- A_i and B_i: known design matrices for fixed-effects β and randomeffects b_i
- *b_i*~N(0, Ψ)

First-stage

$$logy_{ij} = logf(\phi_i, t_{ij}) + \epsilon_{ij}; i = 1, ..., N; j = 1, ..., n_i$$
(1)

- N: the number of subjects
- *n_i*: the number of observations from the *i*th subject
- y_{ij}: the drug concentration at time t_{ij}
- f: a nonlinear function of a subject-specific parameter vector ϕ_i
- $\varepsilon_{ij} \sim N(0, \sigma^2)$
- Second-stage

$$\phi_i = A_i \beta + B_i b_i$$

• A_i and B_j : known design matrices for fixed-effects β and randomeffects b_i

First-stage

$$logy_{ij} = logf(\phi_i, t_{ij}) + \epsilon_{ij}; i = 1, ..., N; j = 1, ..., n_i$$
(1)

- N: the number of subjects
- *n_i*: the number of observations from the *i*th subject
- y_{ij}: the drug concentration at time t_{ij}
- f: a nonlinear function of a subject-specific parameter vector ϕ_i
- $\varepsilon_{ij} \sim N(0, \sigma^2)$
- Second-stage

$$\phi_i = A_i \beta + B_i b_i$$

• A_i and B_j : known design matrices for fixed-effects β and randomeffects b_i

It requires expensive computation time

- High-dimensional parameter space
 - Parameters to estimate
 - β : fixed-effects
 - σ^2 : measurement error (variance-covariance matrix)
 - Ψ : inter-individual variance-covariance matrix
 - *b_i*: random-effects
 - E.g.: 5 fixed-effects, 5 random-effects, 10 subjects => 5 + 5 × 10 = 50 without variance estimation
- Expensive computation
- Slow speed of convergence

- Hybrid approach
 - NONMEM + PSO
 - NONMEM: exploitation by a local optimization
 - PSO: exploration by a global optimization

- Hybrid approach
 - NONMEM + PSO

Reduce the population size

- NONMEM: exploitation by a local optimization
- PSO: exploration by a global optimization

- Hybrid approach
 - NONMEM + PSO

Reduce the population size

- NONMEM: exploitation by a local optimization
- PSO: exploration by a global optimization
- Sacrifice random-effects
 - Random-effects by NONMEM
 - Fixed-effects and others by NONMEM+PSO

- Hybrid approach
 - NONMEM + PSO

Reduce the population size

- NONMEM: exploitation by a local optimization
- PSO: exploration by a global optimization
- Sacrifice random-effects
 - Random-effects by NONMEM
 - Fixed-effects and others by NONMEM+PSO

Reduce the PSO parameter space

- Hybrid approach
 - NONMEM + PSO
 - NONMEM: exploitation by a local optimization
 - PSO: exploration by a global optimization
- Sacrifice random-effects
 - Random-effects by NONMEM
 - Fixed-effects and others by NONMEM+PSO
- Multivariate population
 - Grid population using univariate uniform distribution
 - Random-grid population using multivariate uniform distribution

Reduce the PSO parameter space

Reduce the population size

- Hybrid approach
 - NONMEM + PSO
 - NONMEM: exploitation by a local optimization
 - PSO: exploration by a global optimization
- Sacrifice random-effects
 - Random-effects by NONMEM
 - Fixed-effects and others by NONMEM+PSO
- Multivariate population
 - Grid population using univariate uniform distribution
 - Random-grid population using multivariate uniform distribution

Increase the population diversity

Reduce the PSO parameter space

Reduce the population size

First-stage

$$\textit{logy}_{ij} = \textit{logf}\bigl(\varphi_i, t_{ij}\bigr) + \varepsilon_{ij}; i = 1, ..., N; j = 1, ..., n_i$$

- N: the number of subjects
- *n_i*: the number of observations from the *i*th subject
- y_{ij}: the drug concentration at time t_{ij}
- f: a nonlinear function of a subject-specific parameter vector ϕ_i
- ε_{ij}~ N(0, σ²)
 Second-stage

 φ_i = A_iβ = B_ib_i

 A_i and B_j: known design matrices for fixed-effects β and random-effects b_i
 b_i~N(0, Ψ)

 Local Optimization

Convergence of PSO+NONMEM

- First-order stability analysis (expected value)
 - Trelea (2003)
 - The expected value of the position of each particle converges to its equilibrium

 $\frac{c_1 x_{lbest} + c_2 x_{gbest}}{c_1 + c_2}$

iff

$$w < 1, c = \frac{c_1 + c_2}{2} > 0, 2w - c + 2 > 0$$

• PSO+NONMEM: $w \in [0.4, 0.9], c_1 = c_2 = 2 \rightarrow 2 \cdot 0.4 - 2 + 2 > 0$

Convergence of PSO+NONMEM

- Second-order stability analysis (variance)
 - Jiang et al. (2007); Poli (2009); Poli et al. (2007)
 - The variance of the position of each particle converges to zero

iff

$$\frac{c_1 + c_2}{2} < \frac{12(w^2 - 1)}{5w - 7}$$

• PSO+NONMEM: $w \downarrow 0.4, c_1 = c_2 = 2 \Rightarrow 2 < 2.016$

Subject-specific parameter estimation: local or global?

Theorem 1. Let us consider a linear mixed-effect model, i.e.

 $f(\phi_i, t_{ij}) = A_i\beta + B_ib_i$

in (1). If the parameters β , σ^2 , and Ψ converge to their global optima, $\hat{\beta}$, $\hat{\sigma}^2$, and $\hat{\Psi}$, and \hat{b}_i is a

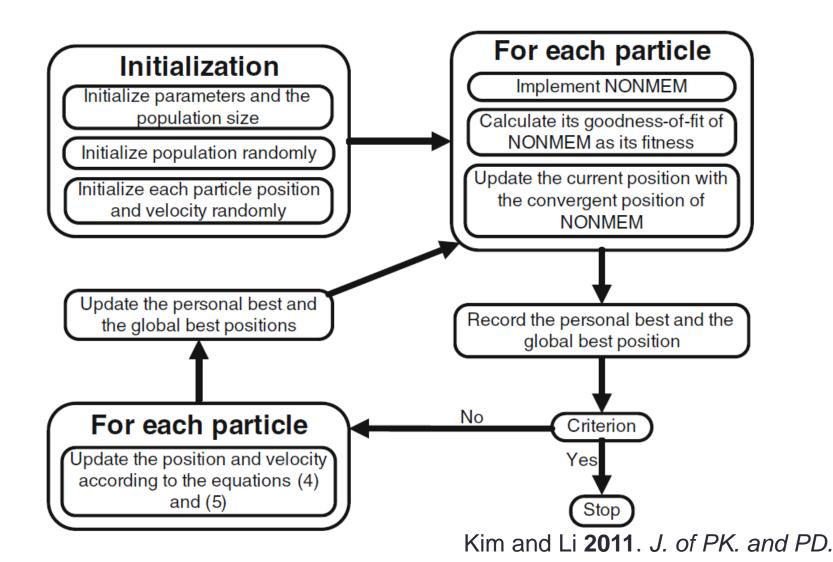
local optimum of the individual random-effect b_i , then \hat{b}_i is its global optimum, given the ith

observation y_i , $\hat{\beta}$, $\hat{\sigma}^2$, and $\hat{\Psi}$.

Subject-specific parameter estimation: local or global?

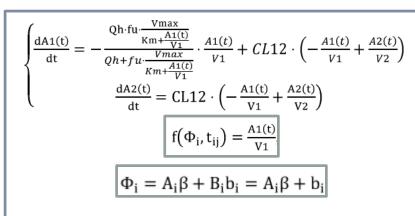
Theorem 2. Let us consider a nonlinear mixed-effect model, i.e., $f(\cdot)$ is nonlinear in (1). Suppose the parameters β , σ^2 , and Ψ converge to their global optima, $\hat{\beta}, \widehat{\sigma^2}$, and $\widehat{\Psi}$, and \hat{b}_i is a local optimum of the individual random-effect b_i . If $f(\cdot)$ is either concave and nonincreasing in b_i or convex and nondecreasing in b_i , then \widehat{b}_i is its global optimum, given the ith observation y_i , $\hat{\beta}, \widehat{\sigma^2}$, and $\widehat{\Psi}$.

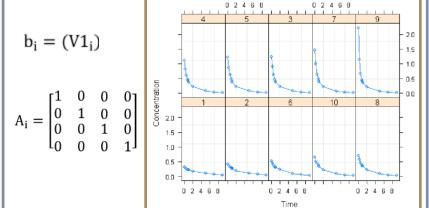
The flowchart of the proposed P-NONMEM



Simulation studies

PK example





PD example

$$f(\Phi_i, x_{ij}) = \frac{Emax \cdot x_{ij}}{C50 + x_{ij}}$$

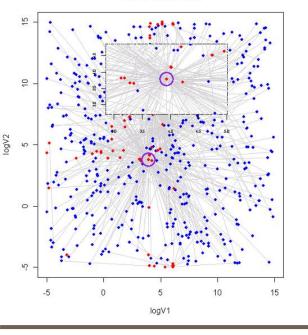
$$\Phi_i = A_i\beta + B_ib_i = A_i\beta + b_i$$

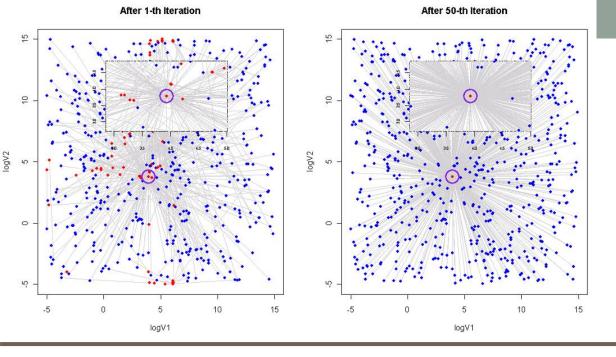
$$\beta = (logEmax, logC50)'$$

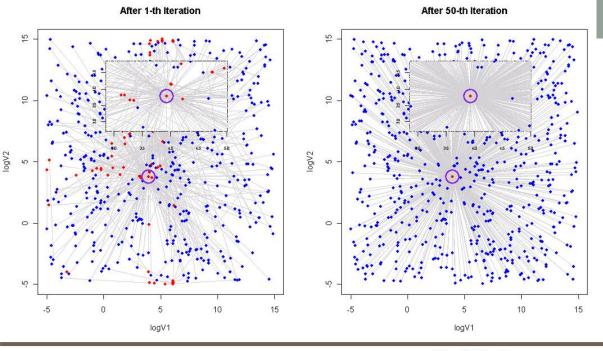
$$b_i = (Emax_i, C50_i)$$

$$A_i = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

Concentration

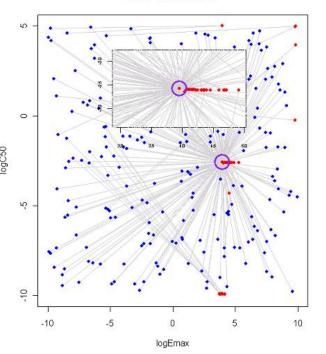


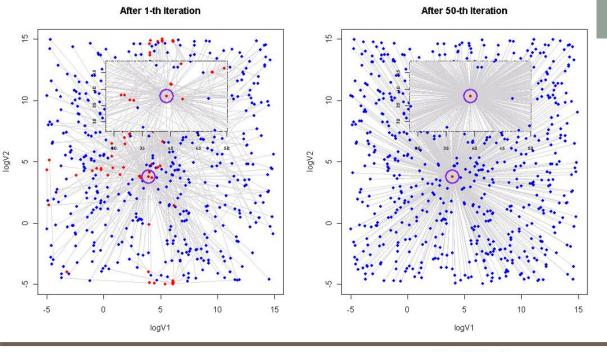




After 1-th Iteration

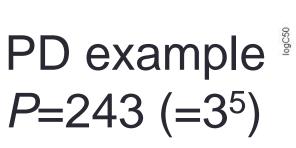
PD example [§] *P*=243 (=3⁵)

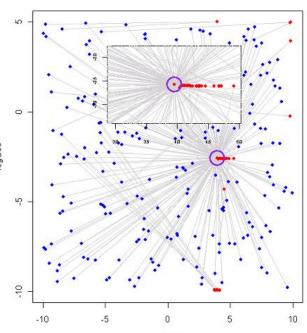




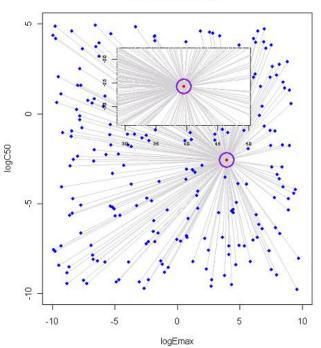
After 1-th Iteration

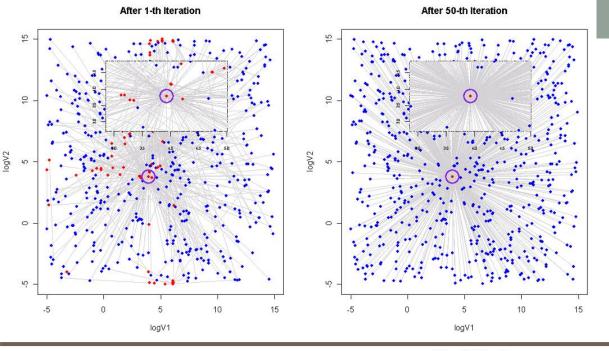
After 20-th Iteration





logEmax

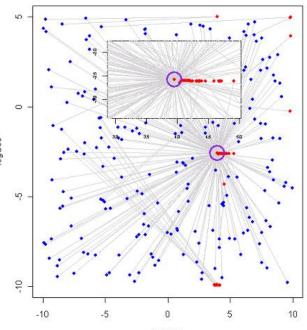




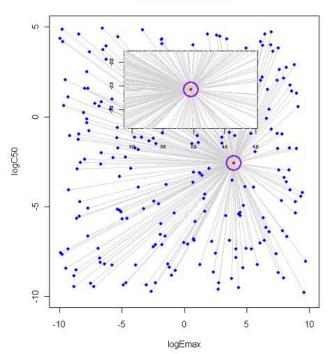
After 1-th Iteration

10⁵ >> 3⁵

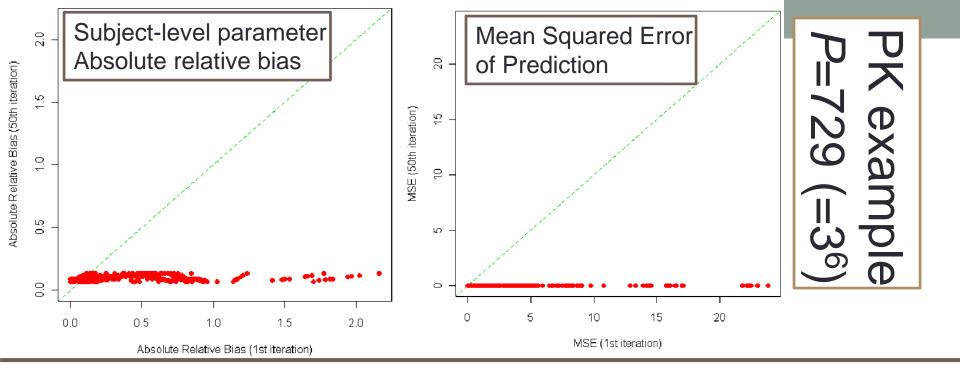
PD example [§] *P*=243 (=3⁵)

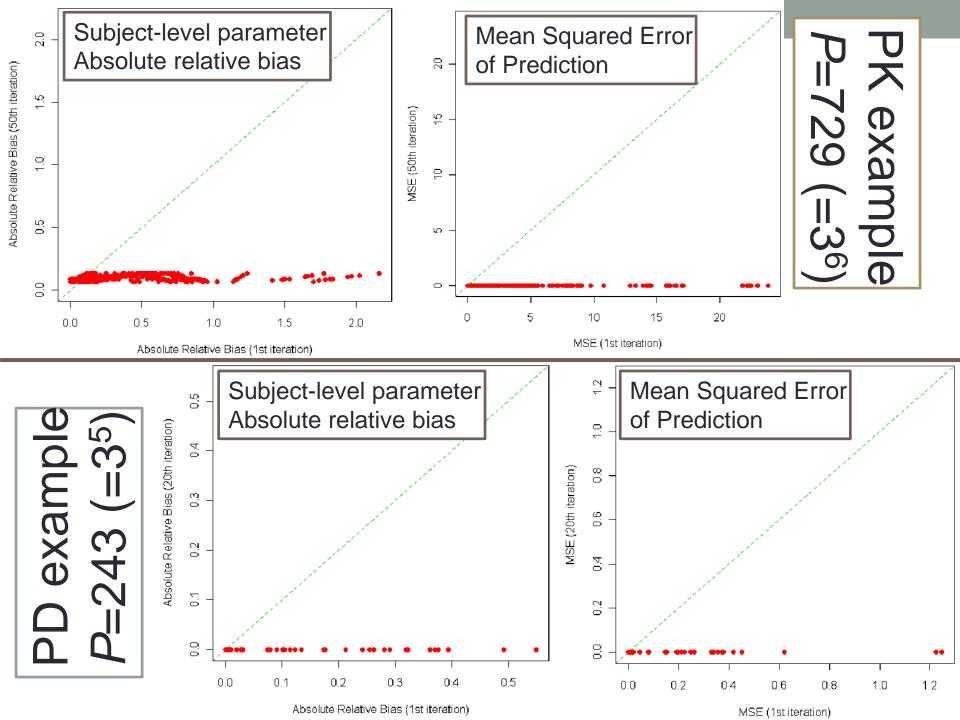


After 20-th Iteration



logEmax





Summary

- The proposed P-NONMEM is not sensitive to initial value selection.
- Even when the initial values are far away from their global optimal, P-NONMEM almost guarantees the global optimization.
- P-NONMEM guarantees the global optimization for fixed effect and variance parameters.
- Under certain regularity conditions, it also leads to global optimization for random effects

Outline

- Pharmacokinetics (PK) analysis
 - Global optimization
 - Identifiability
- Two-stage single-arm phase 2 clinical trial designs
 - Simon's two-stage and Lin and Shih's adaptive designs
 - Adaptive designs with three target response rates

Mathematical Identifiability

For PK models the corresponding equations are

(1) $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t), \ \mathbf{x}(0) = \mathbf{x}_{0}$ $\mathbf{y}(t) = \mathbf{G}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t)$ $\mathbf{x}(t): \text{ the state variables}$ $\mathbf{x}(0): \text{ the initial conditions}$ $\mathbf{u}(t): \text{ the input to the system}$ $\mathbf{B}(\theta): \text{ the matrices depending on } \theta$ $\mathbf{y}(t): \text{ observations}$

• A single parameter θ of Equation (1) is **globally identifiable** if there exists a <u>unique</u> solution for θ

 A parameter with <u>countable or uncountable</u> number of solutions is <u>locally identifiable or unidentifiable</u>

Mathematical Identifiability

For PK models the corresponding equations are

(1) $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t), \ \mathbf{x}(0) = \mathbf{x}_{0}$ $\mathbf{y}(t) = \mathbf{G}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t)$ $\mathbf{x}(t): \text{ the state variables}$ $\mathbf{x}(0): \text{ the initial conditions}$ $\mathbf{u}(t): \text{ the input to the system}$ $\mathbf{B}(\theta): \text{ the matrices depending on } \theta$ $\mathbf{y}(t): \text{ observations}$

A single parameter \$\theta\$ of Equation (1) is globally identifiable if there exists a unique colution for \$\theta\$.
Given a model formation and noise-free (perfect) data Which parameters of the model are identifiable?
A para (Bellman and Astrom, 1970) of solutions is locally identifiable or unidentifiable

Statistical Identifiability

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t), \ \mathbf{x}(0) = \mathbf{x}_0$ $\mathbf{y}(t) = \mathbf{G}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t) + \varepsilon(t)$

x(t): the state variables
x(0): the initial conditions
u(t): the input to the system
A(θ), B(θ): the matrices depending on θ
y(t): observations

Statistical Identifiability

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t), \ \mathbf{x}(0) = \mathbf{x}_0$ $\mathbf{y}(t) = \mathbf{G}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t) + \varepsilon(t)$

x(**t**): the state variables

 $\mathbf{x}(\mathbf{0})$: the initial conditions $\mathbf{u}(\mathbf{t})$: the input to the system $\mathbf{A}(\mathbf{0}), \mathbf{B}(\mathbf{0})$: the matrices depending on θ $\mathbf{y}(\mathbf{t})$: observations

Given (a perfect model structure and) experimental (noise) data Is it possible to <u>uniquely and accurately</u> estimate the parameters?

Statistical Identifiability

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t), \ \mathbf{x}(0) = \mathbf{x}_0$ $\mathbf{y}(t) = \mathbf{G}(\mathbf{x}(t), \mathbf{B}(\theta)\mathbf{u}(t), \theta, t) + \varepsilon(t)$

 $\mathbf{x}(\mathbf{t})$: the state variables

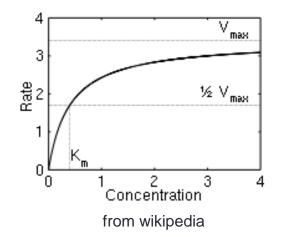
 $\mathbf{x}(\mathbf{0})$: the initial conditions $\mathbf{u}(\mathbf{t})$: the input to the system $\mathbf{A}(\mathbf{0}), \mathbf{B}(\mathbf{0})$: the matrices depending on θ $\mathbf{y}(\mathbf{t})$: observations

Given (a perfect model structure and) experimental (noise) data Is it possible to <u>uniquely and accurately</u> estimate the parameters?

 Estimates of the statistical identifiability are highly depending on the quality of the data

Michaelis-Menten (MM) Kinetics

- MM Kinetics Equation: $V(t) = \frac{dC(t)}{dt} = \frac{Vmax \cdot C(t)}{Km + C(t)}$
 - V(t): the overall velocity of the reaction
 - Vmax: the maximum velocity
 - Km: MM constant
 - C(t): the concentration

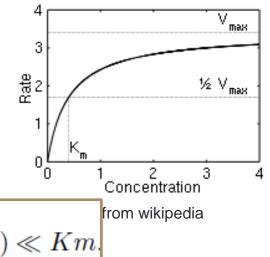


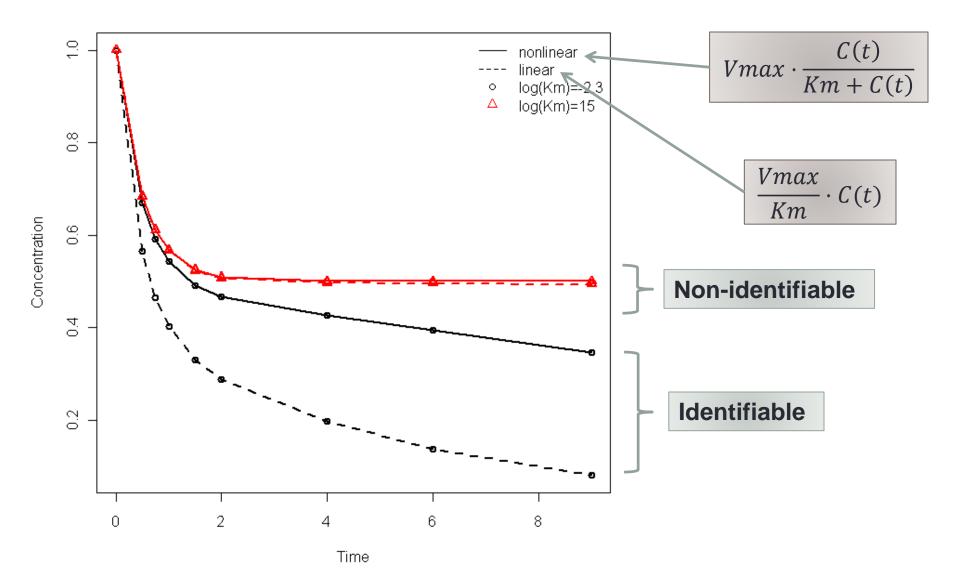
Michaelis-Menten (MM) Kinetics

- MM Kinetics Equation: $V(t) = \frac{dC(t)}{dt} = \frac{Vmax \cdot C(t)}{Km + C(t)}$
 - V(t): the overall velocity of the reaction
 - Vmax: the maximum velocity
 - Km: MM constant
 - C(t): the concentration

$$V(t) = \frac{Vmax \cdot C(t)}{Km + C(t)} \approx \frac{Vmax \cdot C(t)}{Km} \text{if } C(t) \ll Km.$$

$$V(t) = \frac{Vmax \cdot C(t)}{Km + C(t)} \approx Vmax \text{ if } C(t) \gg Km$$





What's the matter?

- Derivative-based optimization
 - Singularity
 - NONMEM uses derivative-based optimizations
- Bayesian approach
 - No theoretical concern for both mathematical and statistical identifiability
 - No singularity issue due to priors (Lindley, 1971)
 - Poor convergence of MCMC (Poirier, 1998; Gelfand and Sahu, 1999; Eberly and Carlin, 2000)

What's new?

- NONMEM is replaced with a derivative-free local optimization
- Convergence criteria
 - The local best-quartile method
 - The global best-variance method
 - The local best-quartile-variance method

Kim and Li 2014. CMPB.

The local best-quartile method

• Suppose θ^k is the $S \times p$ matrix of the population (local best) of size S and the p parameters at kth iteration, i.e.,

$$\theta^{k} = \begin{bmatrix} \theta_{11}^{k} & \cdots & \theta_{1p}^{k} \\ \vdots & \ddots & \vdots \\ \theta_{S1}^{k} & \cdots & \theta_{Sp}^{k} \end{bmatrix},$$

where θ_{ij}^k is the local best of *i*th particle of *j*th parameter at *k*th iteration, $1 \le i \le S$, $1 \le j \le p$.

• The difference between the first and third quartiles for each parameter is calculated based on $\hat{\theta}^k$, i.e.,

$$d_j^k = \left| Q_1^{kj} - Q_3^{kj} \right|$$
, where $j = 1, ..., p$,

obtaining the maximum difference of all the parameters as the following

$$d^k = \max_{j=1,2,\dots,p} d^k_j$$

• The $p \times p$ correlation matrix of θ^k , i.e.,

$$\Omega^{k} = \begin{bmatrix} 1 & \cdots & \omega_{1p} \\ \vdots & \ddots & \vdots \\ \omega_{p1} & \cdots & 1 \end{bmatrix}$$

- Its maximum and minimum eigenvalues, λ_{max}^k and λ_{min}^k , are estimated to calculate the ratio of two eigenvalues, $\rho^k = \left| \frac{\lambda_{min}^k}{\lambda_{max}^k} \right|$.
- If at least one parameter has $d_j^k = 0$, then the eigenvalues cannot be obtained, so we will assign zero to ρ^k in this case.

The global best-variance method

• Suppose ψ^k is the $k \times p$ matrix consisting of the global best for each parameter up to *k*th iteration,

$$\psi^{k} = \begin{bmatrix} \psi_{1}^{1} & \cdots & \psi_{p}^{1} \\ \vdots & \ddots & \vdots \\ \psi_{1}^{k} & \cdots & \psi_{p}^{k} \end{bmatrix},$$

where ψ_j^i is the global best of *j*th parameter at *i*the iteration and l^k is the vector of the loglikehood of each global best of size *k* such as $l^k = (l^1, l^2, ..., l^k)$. Then the reduced matrix is obtained based on the user-defined window size, *w*.

$$\psi_{w}^{k} = \begin{bmatrix} \psi_{1}^{k-w+1} & \cdots & \psi_{p}^{k-w+1} \\ \vdots & \ddots & \vdots \\ \psi_{1}^{k} & \cdots & \psi_{p}^{k} \end{bmatrix},$$

e reduced loglikebood vector is $l^{k} = (l^{k-w+1})$

where $k \ge w > 0$, and the reduced loglikehood vector is $l_w^k = (l^{k-w+1}, l^{k-w+2}, ..., l^k)$.

•
$$SD(\psi_w^k) = \max_{j=1,\dots,p} SD_w(\psi_j^k);$$

• $SD(l_w^k) = \sqrt{Var(l^{k-w+1}, l^{k-w+2}, \dots, l^k)},$
where $SD_w(\psi_j^k) = \sqrt{Var(\psi_j^{k-w+1}, \psi_j^{k-w+2}, \dots, \psi_j^k)}.$

The local-quartile-variance method

•
$$SD(d_w^k) = \sqrt{Var(d^{k-w+1}, d^{k-w+2}, \dots, d^k)};$$

•
$$SD(\rho_w^k) = \sqrt{Var(\rho^{k-w+1}, \rho^{k-w+2}, \dots, \rho^k)}.$$

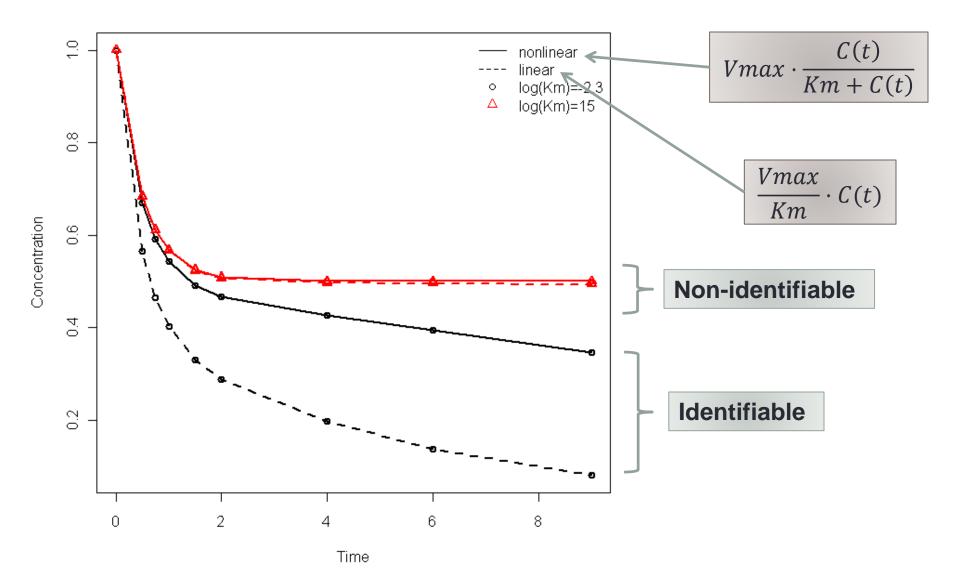
Convergence diagnostics

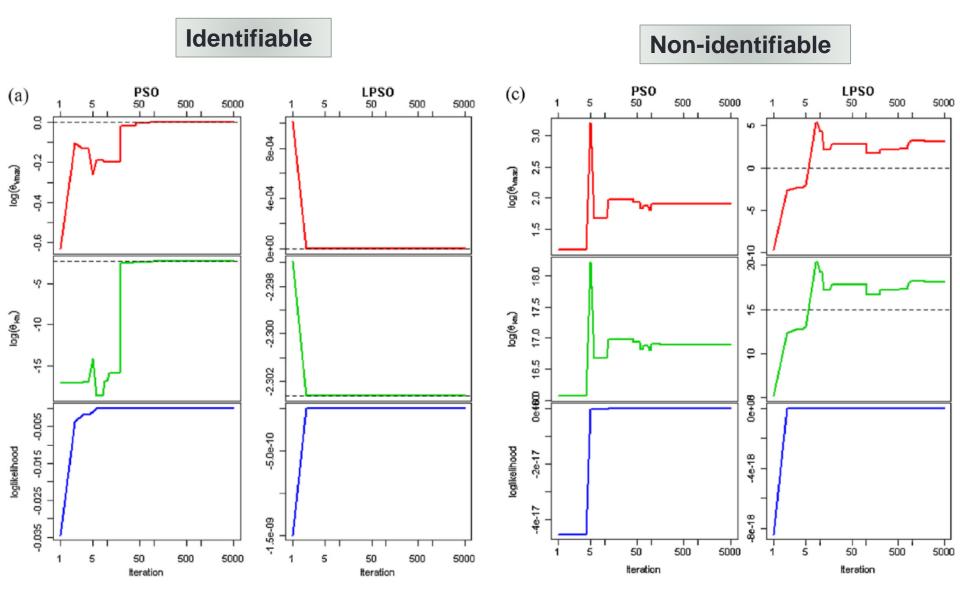
If $SD(\rho_w^k)$ is less than equal to the user-defined cutoff value (α) with the window size of w, LPSO will be considered as converged to a global optimum. Furthermore, if d^k is greater than the user-defined cutoff value (β) , the model is considered as non-identifiable, where k is the number of iterations to converge which is identified by $SD(\rho_w^k)$. The general guideline for α and β is 0.001 and one, respectively.

Simulation

The constants of PSO

- $(c_1, c_2, w_{max}, w_{min}, K) = (2, 2, 0.9, 0.3, 5000)$
- #particles of each parameter: 10 for PSO and 5 for LPSO.
- The parameter boundaries = (-20, 20).
- The true values are $\theta^{true} = (0, -2.3)$ for the identifiable case and (0,15) for non-identifiable case.
- For both PSO and LPSO, the same seed number was used to generate the initial population.





(a) After 1st iteration

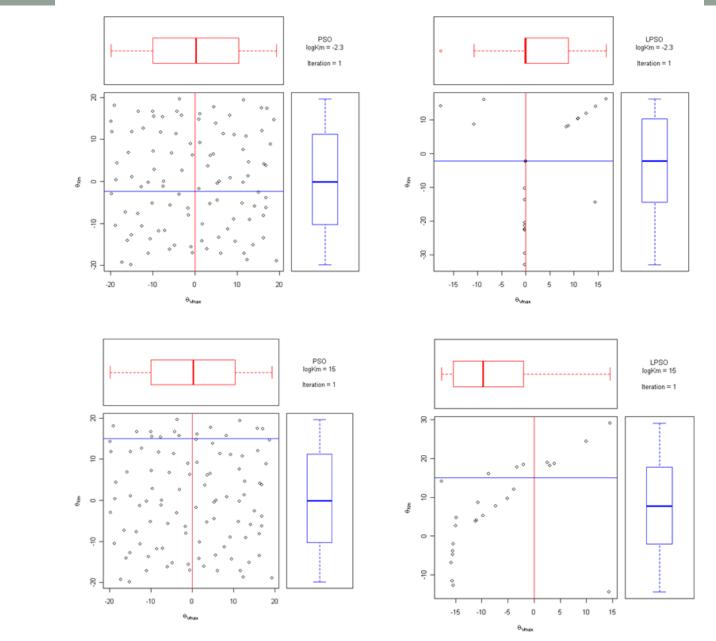


Fig. 4 – The scatter-box plots between log V_{max} and log K_m for PSO and LPSO. The plots in the left and right columns are for PSO and LPSO, respectively, and the first and second rows are for identifiable and non-identifiable cases. The solid lines in the plot indicate the true values for each parameter.

Identifiable

Non-identifiable

(b) After 500th iteration

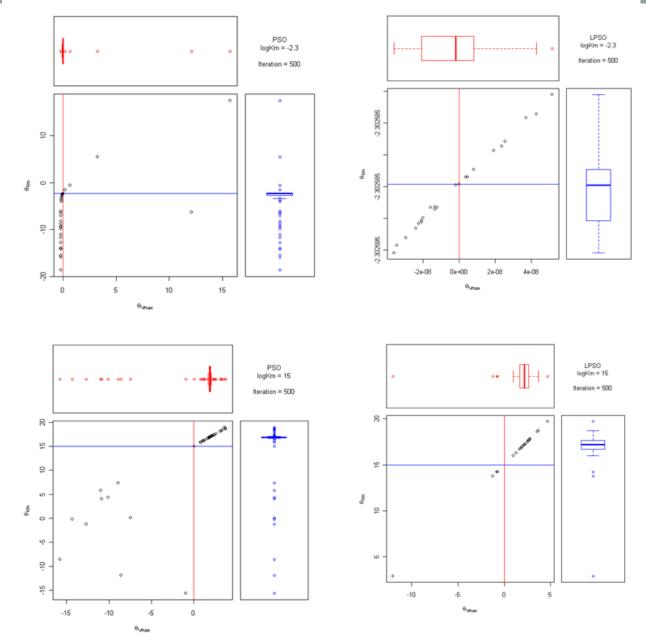


Fig. 4 – The scatter-box plots between log V_{max} and log K_m for PSO and LPSO. The plots in the left and right columns are for PSO and LPSO, respectively, and the first and second rows are for identifiable and non-identifiable cases. The solid lines in the plot indicate the true values for each parameter.

(b) After 500th iteration

Non-identifiable

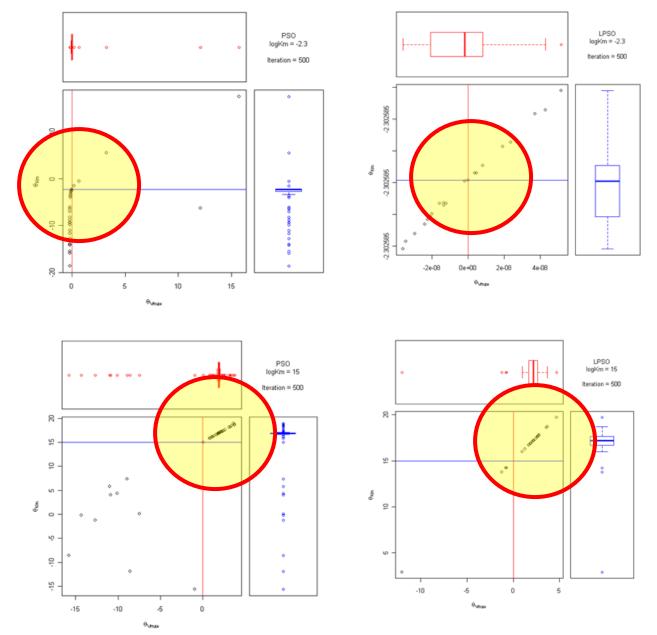


Fig. 4 – The scatter-box plots between log V_{max} and log K_m for PSO and LPSO. The plots in the left and right columns are for PSO and LPSO, respectively, and the first and second rows are for identifiable and non-identifiable cases. The solid lines in the plot indicate the true values for each parameter.

(c) After 5000th iteration

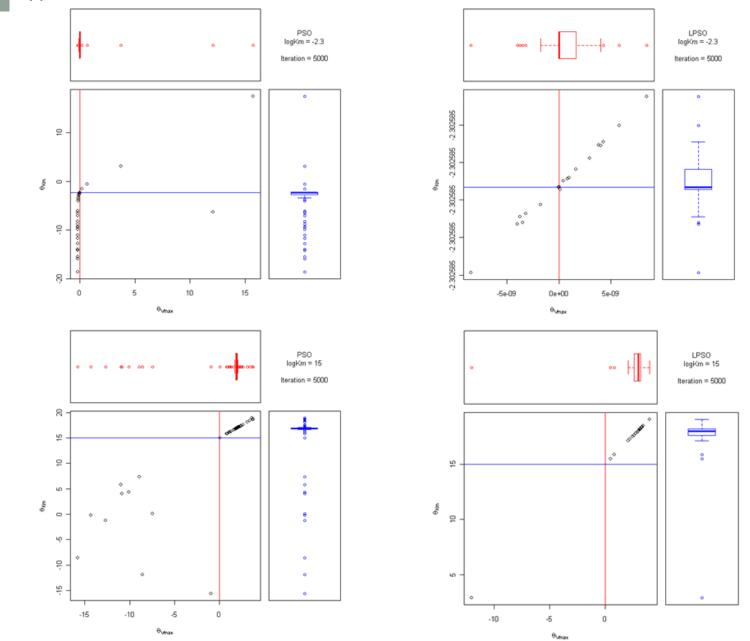


Fig. 4 – The scatter-box plots between log V_{max} and log K_m for PSO and LPSO. The plots in the left and right columns are for PSO and LPSO, respectively, and the first and second rows are for identifiable and non-identifiable cases. The solid lines in the plot indicate the true values for each parameter.

Identifiable

Non-identifiable

(c) After 5000th iteration

-15

-10

0

-5

θ_{vtrax}

Identifiable

Non-identifiable

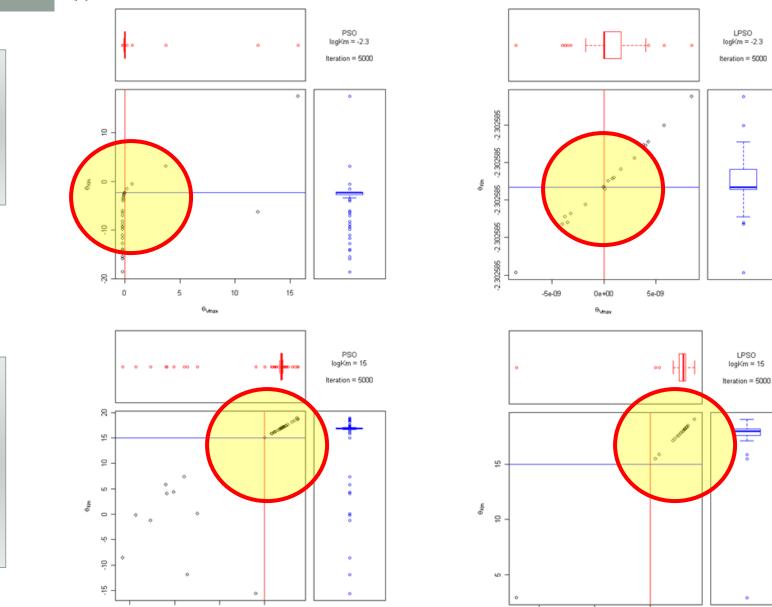


Fig. 4 – The scatter-box plots between log V_{max} and log K_m for PSO and LPSO. The plots in the left and right columns are for PSO and LPSO, respectively, and the first and second rows are for identifiable and non-identifiable cases. The solid lines in the plot indicate the true values for each parameter.

-10

-5

0.max

0

Summary

- A novel version of PSO is proposed with enhancing the convergence of the local best using a derivative-free local optimization algorithm, which is called LPSO.
- LPSO converges to a global optimum much faster than PSO does.
- Since PSO is a derivative-free algorithm and a derivativefree local optimization is combined, the proposed LPSO becomes a derivative-free global optimization algorithm so that LPSO can be applied to the parameter estimation regardless of the identifiability.
- Several convergence diagnostic measures are proposed and evaluated through both the simulation studies and clinical PK data analysis.

Outline

- Pharmacokinetics (PK) analysis
 - Global optimization
 - Identifiability
- Two-stage single-arm phase 2 clinical trial designs
 - Simon's two-stage and Lin and Shih's adaptive designs
 - Adaptive designs with three target response rates

Outline

- Pharmacokinetics (PK) analysis
 - Global optimization
 - Identifiability
- Two-stage single-arm phase 2 clinical trial designs
 - Simon's two-stage and Lin and Shih's adaptive designs
 - Adaptive designs with three target response rates

Two-stage single-arm phase 2 clinical trial design					
- Ninice I Trial F					g is accepted or marketing
Phase I Phase III Phase III Safety Activity Evaluation					
	Phas e	No. of Patients	Length of Phase	Goal	Success rate
	1	Small (20-100)	Short (several months)	-Dose finding trials -Safety, dosages (Maximum tolerated dose (MTD)), efficacy	70%
	2	Small (30-500)	Short (several months to 2 years)	-Screening trials -Effectiveness and short-term safety	33%
	3	Large (500-3000)	Longer (1-4 years)	-Safety and effectiveness	25-30%
	4	Huge (>3000)	Long-long (>20 years)	-post-marketing monitor -long-term safety and rare adverse effects	70-90%

Phase II Trials

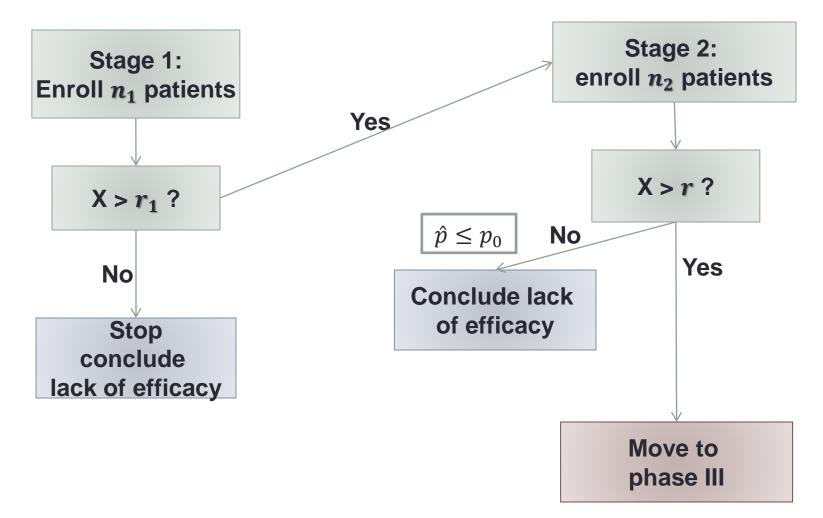
- Provide initial assessment of efficacy or 'clinical activity'
 - Screen out ineffective drugs
 - Identify promising new drugs for further evaluation
- Further define safety and toxicity
- Minimize cost of the trial
 - Minimize number of patients exposed to an ineffective treatment
 - Enroll as few patients as "necessary" to show benefit or failure

Phase II study

- Single-arm phase II study (Phase IIA)
 - Response rate is often used as its primary end point
 - Small number of patients enrolled
 - Reliance on historical controls for an estimation of expected response rate
 - Gehan's design (1961); Simon's two-stage designs (1989); predictive probability design (2008), etc.
- Randomized phase II trial (Phase IIB)
 - Simon et al's ranking and selection randomized design (1985); randomized discontinuation design (2002); Bayesian adaptive designs, etc.

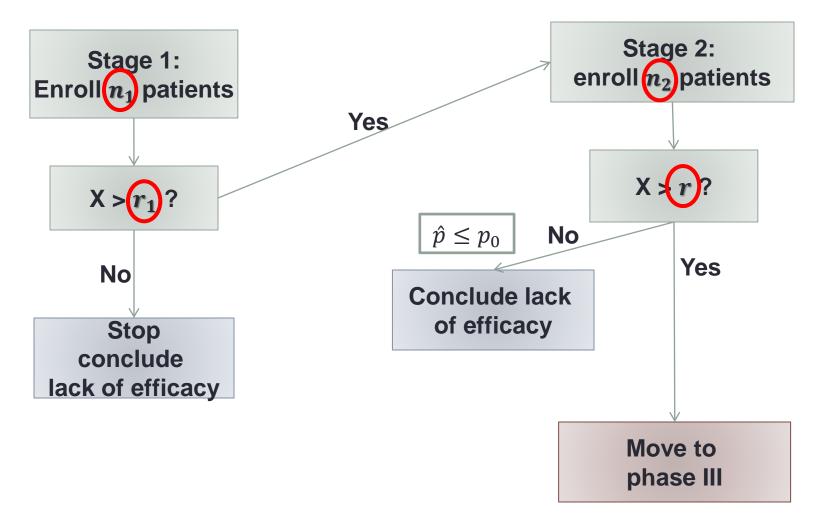
Simon's Two-Stage Designs

• X: the number of responders



Simon's Two-Stage Designs

• X: the number of responders



Simon's Two-Stage Designs

• $H_0: p \le p_0 vs. H_1: p \ge p_1$, where $p_0 < p_1$

- b(x, m, p) and B(x, m, p): the pmf and cdf for $x \sim Bin(m, p)$
- $G(r_1, n_1, r, n, p)$: the prob of failing to reject H_0

$$= B(r_1, n_1, p) + \sum_{x=r_1+1}^{\infty} b(x, n_1, p)B(r - x, n_2, p)$$

, where $n = n_1 + n_2$

• $E(N|p) = n_1 + (1 - B(r_1, n_1, p))n_2$: the expected sample size

 $\min(r.n_1)$

- Greedy search (look for all cases) given α , β
 - $G(r_1, n_1, r, n, p_0) \ge 1 \alpha; G(r_1, n_1, r, n, p_1) \le \beta$
 - Optimum design (min EN_0)
 - Minimax design (min {maxN})

Adaptive Two-Stage Designs

- Allow the sample size at the second stage to depend on the results at the first stage
 - Lin and Shih (2004)
 - Banerjee and Tsiatis (2006)

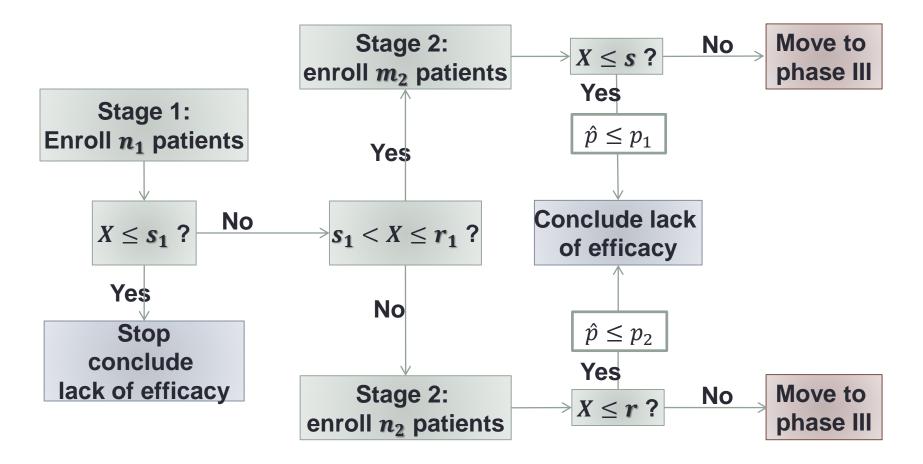
Lin and Shih (2004)

- p_0 : the maximum uninteresting response rate
- $p_{\rm 1}, p_{\rm 2}$: two choices of the target response rates, where $p_{\rm 0} < p_{\rm 1} < p_{\rm 2}$
- n_1 patients will be enrolled to the first stage
- #(patients) for the second stage will depend on the number of observed responses in the first stage

Two-stage single-arm phase 2 clinical trial designs

Lin and Shih (2004)

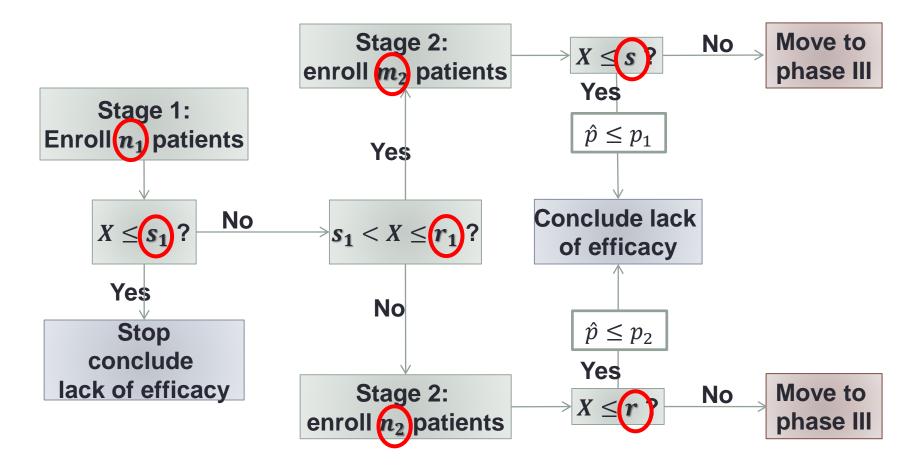
• X: the number of observed responders



Two-stage single-arm phase 2 clinical trial designs

Lin and Shih (2004)

• X: the number of observed responders



•
$$H_0: p \le p_0 vs. H_1: p \ge p_1 \text{ or } H_1: p \ge p_2 \text{ where } p_0 < p_1 < p_2$$

- b(x, m, p) and B(x, m, p): the pmf and cdf for $x \sim Bin(m, p)$
- $G(s_1, r_1, n_1, s, m, r, n, p)$: the prob of failing to reject H_0

$$= B(s_1, n_1, p) + \sum_{\substack{x=s_1+1 \\ x=r_1+1}}^{\min(r_1, s)} b(x, n_1, p)B(s - x, m_2, p)$$

+
$$\sum_{\substack{x=r_1+1 \\ x=r_1+1}}^{\min(r, n_1)} b(x, n_1, p)B(r - x, n_2, p)$$

, where $m = m_1 + m_2$; $n = n_1 + n_2$ • $E(N|p) = n_1 + \{(B(r_1, n_1, p) - B(s_1, n_1, p))m_2 + (1 - B(r_1, n_1, p))n_2\}$: the expected sample size

- Greedy search (look for all cases) given α , β_1 , β_2
 - $G(s_1, r_1, n_1, s, m, r, n, p_0) \ge 1 \alpha$
 - $G(s_1, r_1, n_1, s, m, r, n, p_1) \le \beta_1$
 - $G(s_1, r_1, n_1, s, m, r, n, p_2) \le \beta_2$

Optimality criteria

- $O1: \min\{EN_0\}$
- 02: min $\left\{ \max_{i} EN_{i} \right\}$
- $O3: \min\{\max(n, m)\}$ and $\min\{EN_0\}$
- 04: min{max(n, m)} and min{max EN_i }

Motivation

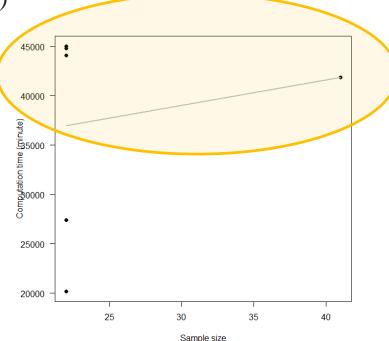
- A single arm two-stage phase II trial to see the effect of head and neck cancer (HNC) on the incidence of obstructive sleep apnea (OSA).
- The maximum incidence rate of snoring and sleep apnea on healthy patients is 16.5% (i.e., p0 = 0.165).
- Neither historical nor preliminary data available, except that the incidence rate of OSA will be higher in HNC patients.
- An empirical range of the target response rates, from 24.38% to 39.00%.
- Simon's two-stage design (80% power and 5% level) → the required sample sizes range from 30 to 197
- Due to wide range of the target response rates, Lin and Shih's approach will not be able to cover the great uncertainty.

Extension to three choices?

• "We do not extend the selection to more than two prefixed possible response rates mainly **due to the complexity in the numerical solutions**, and also because it is **usually adequate** for practitioners to contemplate between two (high./low) choices of p_* ."-Lin and Shih (2004)

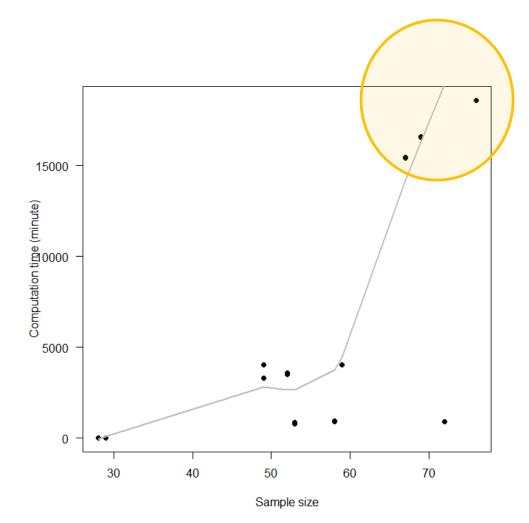
Extension to three choices?

• "We do not extend the selection to more than two prefixed possible response rates mainly **due to the complexity in the numerical solutions**, and also because it is **usually adequate** for practitioners to contemplate between two (high./low) choices of p_* ."-Lin and Shih (2004)



Sample size vs. Computation time

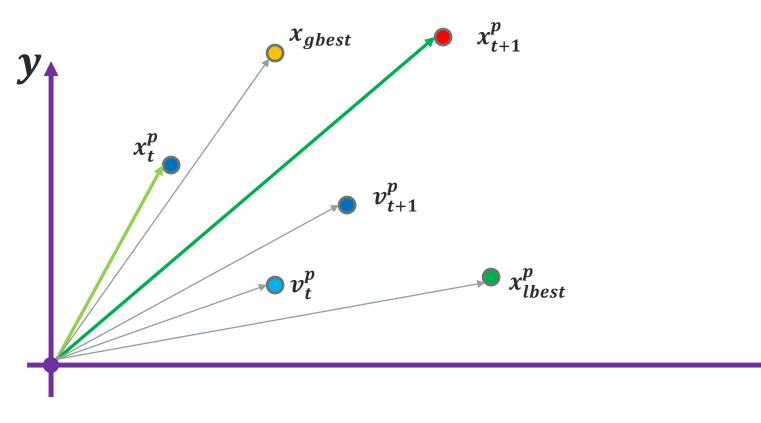
Simon's two-stage



How to reduce the computational burden?

- Nonlinear
- No closed form solution
- Not differentiable

Particle Swarm Optimization (PSO) $v_{k+1}^p = w_k v_k^p + c_1 r_1 (x_{lbest}^p - x_k^p) + c_2 r_2 (x_{gbest} - x_k^p)$ $x_{k+1}^p = x_k^p + v_{k+1}^p$



Discrete Particle Swarm Optimization (DPSO)

k-th iteration

$$v_{k+1}^{p} = w_{k}v_{k}^{p} + c_{1}r_{1}(x_{lbest}^{p} - x_{k}^{p}) + c_{2}r_{2}(x_{gbest} - x_{k}^{p})$$

$$x_{k+1}^p = x_k^p + v_{k+1}^p$$

- *p* = 1,...,*P*; *P*: the population size
- x_{lbest}^{p} and x_{gbest} : local best and global best, respectively
- v_{k+1}^p : the velocity
- wk: inertia weight

$$w_{k} = round\left(w_{max} - \frac{k}{K}(w_{max} - w_{min})\right)$$

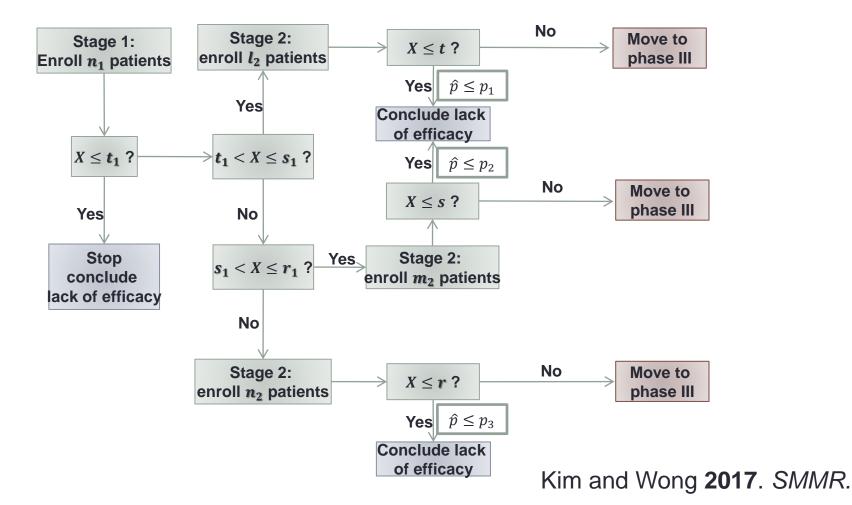
- r_1c_1, r_2c_2 : two random sequences in {0,1,2,...,n}; $n = c_1 or c_2$
- K: total number of iterations

Outline

- Pharmacokinetics (PK) analysis
 - Global optimization
 - Identifiability
- Two-stage single-arm phase 2 clinical trial designs
 - Simon's two-stage and Lin and Shih's adaptive designs
 - Adaptive designs with three target response rates

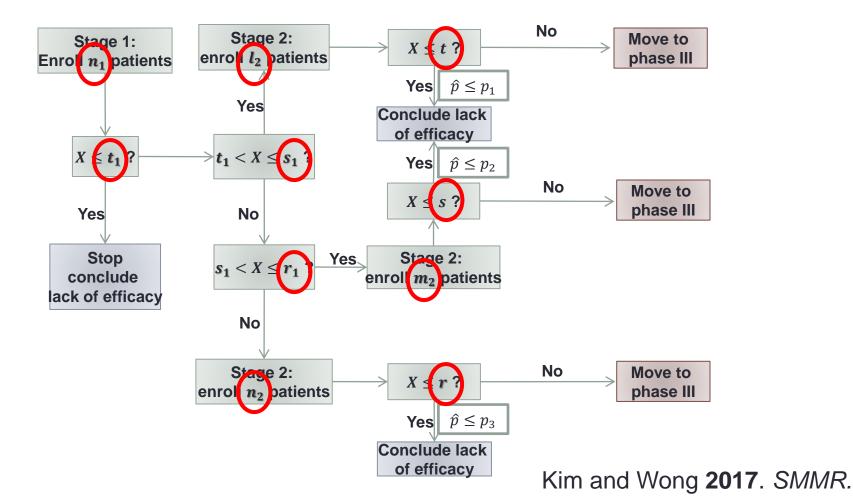
Extension of Lin and Shih (2004)

• X: the number of observed responders



Extension of Lin and Shih (2004)

• X: the number of observed responders



Extension of Lin and Shih (2004)

- $H_0: p \le p_0 vs. H_1: p \ge p_1 \text{ or } H_1: p \ge p_2 \text{ or } H_1: p \ge p_3, where p_0 < p_1 < p_2 < p_3$
 - b(x,m,p) and B(x,m,p): the pmf and cdf for $x \sim Bin(m,p)$
 - $G(s_1, r_1, n_1, s, m, r, n, p)$: the prob of failing to reject H_0

$$= B(t_1, n_1, p) + \sum_{x=t_1+1}^{\min(s_1, t)} b(x, n_1, p) B(t - x, l_2, p) + \sum_{x=s_1+1}^{\min(r_1, s)} b(x, n_1, p) B(s - x, m_2, p) + \sum_{x=r_1+1}^{\min(r, n_1)} b(x, n_1, p) B(r - x, n_2, p)$$

, where $l = l_1 + l_2$; $m = m_1 + m_2$; $n = n_1 + n_2$

- $E(N|p) = n_1 + \{(B(s_1, n_1, p) B(t_1, n_1, p))l_2 + (B(r_1, n_1, p) B(s_1, n_1, p))m_2 + (1 B(r_1, n_1, p))n_2\}$: the expected sample size
- Greedy search (look for all cases) given α , β_1 , β_2 , β_3
 - $G(s_1, r_1, n_1, s, m, r, n, p_0) \ge 1 \alpha$
 - $G(s_1, r_1, n_1, s, m, r, n, p_1) \leq \beta_1$
 - $G(s_1, r_1, n_1, s, m, r, n, p_2) \le \beta_2$
 - $G(s_1, r_1, n_1, s, m, r, n, p_3) \le \beta_3$

Optimality criteria

- $O1: \min\{EN_0\}$
- 02: min $\left\{ \max_{i} EN_{i} \right\}$
- *O*3: min{max(l, n, m)} and min{ EN_0 }
- *O*4: min{max(*l*, *n*, *m*)} and min {max EN_i }

Finding initial values

• G-DPSO

 Within this smaller domain, we searched for an appropriate set of initial values using the same strategy as the greedy search did for the rest of the parameters.

• D-DPSO

- Use when the number of target responses is two or more.
- Find the initial set of values using an optimal set of values decided by the case with the one less number of target response.

Po	Þı	Optimal criteria	Method	s ₁ /n ₁	s / n	$I - \alpha$	β	E(N þ ₀)	E(N þ1)
0.05	0.20	CI	GS	0/10	3/29	0.953	0.199	17.624	26.960
			G-DPSO	0/10	3/29	0.953	0.199	17.624	26.960
		C2	GS	0/11	3/28	0.956	0.199	18.330	26.540
			G-DPSO	0/11	3/28	0.956	0.199	18.330	26.540
		C3	GS	0/11	3/28	0.956	0.199	18.330	26.540
			G-DPSO	0/11	3/28	0.956	0.199	18.330	26.540
		C4	GS	0/11	3/28	0.956	0.199	18.330	26.540
			G-DPSO	0/11	3/28	0.956	0.199	18.330	26.540
0.20	0.20 0.35	CI	GS	5/22	19/72	0.951	0.200	35.368	63.855
			G-DPSO	5/22	19/72	0.951	0.200	35.368	63.855
		C2	GS	3/21	15/53	0.950	0.200	41.148	51.941
			G-DPSO	3/21	15/53	0.950	0.200	41.148	51.941
		C3	GS	6/31	15/53	0.950	0.198	40.436	51.983
			G-DPSO	6/31	15/53	0.950	0.198	40.436	51.983
		C4	GS	3/21	15/53	0.950	0.200	41.148	51.941
			G-DPSO	3/21	15/53	0.950	0.200	41.148	51.941
0.55	0.70	CI	GS	15/26	48/76	0.952	0.195	42.021	69.735
			G-DPSO	15/26	48/76	0.952	0.195	42.021	69.735
		C2	GS	20/35	43/67	0.953	0.200	45.802	64.662
			G-DPSO ^a	20/35	43/67	0.953	0.200	45.802	64.662
		C3	GS	20/35	43/67	0.953	0.200	45.802	64.662
			G-DPSO	20/35	43/67	0.953	0.200	45.802	64.662
		C4	GS	20/35	43/67	0.953	0.200	45.802	64.662
			G-DPSO ^b	20/35	43/67	0.953	0.200	45.802	64.662

Table 1. Various adaptive two-stage optimal designs with one target response when $\alpha = 0.05$ and $\beta = 0.20$.

a,b: The number of particles was increased from 10 to 20 and the population size was increased from 10,000 to 70,000.

Рo	Þ١	Optimal criteria	Method	s ₁ /n ₁	s / n	$I - \alpha$	β	E(N þ ₀)	$E(N p_1)$
0.05	0.20	CI	GS	0/10	3/29	0.953	0.199	17.624	26.960
			G-DPSO	0/10	3/29	0.953	0.199	17.624	26.960
		C2	GS	0/11	3/28	0.956	0.199	18.330	26.540
			G-DPSO	0/11	3/28	0.956	0.199	18.330	26.540
		C3	GS	0/11	3/28	0.956	0.199	18.330	26.540
			G-DPSO	0/11	3/28	0.956	0.199	18.330	26.540
		C4	GS	0/11	3/28	0.956	0.199	18.330	26.540
			G-DPSO	0/11	3/28	0.956	0.199	18.330	26.540
0.20	0.35	CI	GS	5/22	19/72	0.951	0.200	35.368	63.855
			G-DPSO	5/22	19/72	0.951	0.200	35.368	63.855
		C2	GS	3/21	15/53	0.950	0.200	41.148	51.941
			G-DPSO	3/21	15/53	0.950	0.200	41.148	51.941
		C3	GS	6/31	I 5/53	0.950	0.198	40.436	51.983
			G-DPSO	6/31	I 5/53	0.950	0.198	40.436	51.983
		C4	GS	3/21	15/53	0.950	0.200	41.148	51.941
			G-DPSO	3/21	I 5/53	0.950	0.200	41.148	51.941
0.55	0.70	CI	GS	15/26	48/76	0.952	0.195	42.021	69.735
			G-DPSO	15/26	48/76	0.952	0.195	42.021	69.735
		C2	GS	20/35	43/67	0.953	0.200	45.802	64.662
			G-DPSO ^a	20/35	43/67	0.953	0.200	45.802	64.662
		C3	GS	20/35	43/67	0.953	0.200	45.802	64.662
			G-DPSO	20/35	43/67	0.953	0.200	45.802	64.662
		C4	GS	20/35	43/67	0.953	0.200	45.802	64.662
			G-DPSO ^b	20/35	43/67	0.953	0.200	45.802	64.662

Table 1. Various adaptive two-stage optimal designs with one target response when $\alpha = 0.05$ and $\beta = 0.20$.

a,b: The number of particles was increased from 10 to 20 and the population size was increased from 10,000 to 70,000.

Table S1. Computation time corresponding to **Table 1**; Various adaptive 2-stage optimal designs with one target response when $\alpha = 0.05$ and $\beta = 0.20$.

p ₀	p ₁	Optimal criteria	Method	Computation time (minute)
0.05	0.20	C1	GS	0.09
			G-DPSO	2.51
		C2	GS	0.1
			G-DPSO	2.32
		C3	GS	0.09
			G-DPSO	2.35
		C4	GS	0.09
			G-DPSO	2.39
0.20	0.35	C1	GS	15.15
			G-DPSO	2.87
		C2	GS	14.25
			G-DPSO	2.66
		C3	GS	13.04
			G-DPSO	2.59
		C4	GS	13.43
			G-DPSO	2.72
0.55	0.70	C1	GS	310.23
			G-DPSO	3.44
		C2	GS	258.06
			G-DPSO	9.28
		C3	GS	256.76
			G-DPSO	2.93
		C4	GS	257.66
			G-DPSO	9.40

Table S1. Computation time corresponding to **Table 1**; Various adaptive 2-stage optimal designs with one target response when $\alpha = 0.05$ and $\beta = 0.20$.

p ₀	p ₁	Optimal criteria	Method	Computation time (minute)
0.05	0.20	C1	GS	0.09
			G-DPSO	2.51
		C2	GS	0.1
			G-DPSO	2.32
		C3	GS	0.09
			G-DPSO	2.35
		C4	GS	0.09
			G-DPSO	2.39
0.20	0.35	C1	GS	15.15
			G-DPSO	2.87
		C2	GS	14.25
			G-DPSO	2.66
		C3	GS	13.04
			G-DPSO	2.59
		C4	GS	13.43
			G-DPSO	2.72
0.55	0.70	C1	GS	310.23
			G-DPSO	3.44
		C2	GS	258.06
			G-DPSO	9.28
		C3	GS	256.76
			G-DPSO	2.93
		C4	GS	257.66
			G-DPSO	9.40

			Optimal										
Þο	Þ١	₽2	criteria	Method	$s_1/r_1/n_1$	s / m	r / n	$I - \alpha$	β_1	β_2	$E(N p_0)$	$E(N p_1)$	$E(N p_2)$
0.05	0.20	0.25	CI	GS	0/1/9	3/30	4/41	0.957	0.199	0.094	17.548	33.383	36.119
				G-DPSO	0/1/10	3/28	3/3 I	0.953	0.199	0.088	17.481	27.940	29.254
				D-DPSO	0/1/8	4/41	3/36	0.952	0.200	0.107	18.821	32.980	34.532
			C2	GS	0/2/16	3/29	3/22	0.955	0.199	0.082	22.978	24.097	23.249
				G-DPSO	0/2/14	3/29	3/21	0.954	0.200	0.084	21.444	23.925	22.982
				D-DPSO	0/2/14	3/29	3/21	0.954	0.200	0.084	21.444	23.925	22.982
			C3	GS	0/4/9	4/41	5/22	0.960	0.174	0.084	20.83 I	36.333	37.668
				G-DPSO	0/5/11	3/28	6/25	0.956	0.199	0.083	18.330	26.505	27.179
				D-DPSO	0/5/11	3/28	6/25	0.956	0.199	0.083	18.330	26.505	27.179
			C4	GS	0/2/16	3/29	3/22	0.955	0.199	0.082	22.978	24.097	23.249
				G-DPSO	0/2/15	3/28	3/23	0.957	0.197	0.078	21.796	24.533	24.007
				D-DPSO	0/2/15	3/28	3/23	0.957	0.197	0.078	21.796	24.533	24.007
0.20	0.35	0.40	CI	G-DPSO	4/9/20	17/62	10/36	0.952	0.199	0.069	35.487	53.869	53.499
				D-DPSO	<mark>/10/22</mark>	19/72	11/36	0.951	0.199	0.078	35.311	60.004	60.179
			C2	G-DPSO	<mark>8</mark> /12/37	16/57	3/4	0.950	0.196	0.059	42.913	46.949	44.252
				D-DPSO	<mark>/10/29</mark>	16/56	11/36	0.951	0.196	0.055	43.094	46.415	42.638
			C3	G-DPSO	<mark>(</mark> /11/27	16/58	13/43	0.950	0.200	0.063	35.833	51.406	50.886
				D-DPSO	3/10/21	15/53	11/36	0.950	0.200	0.058	41.131	50.629	49.683
			C4	G-DPSO	<mark>8</mark> /12/38	16/56	13/43	0.952	0.200	0.057	43.830	47.337	45.224
				D-DPSO	3/10/21	15/53	11/36	0.950	0.200	0.058	41.131	50.629	49.683
0.55	0.70	0.75	CI	G-DPSO	1 <mark>5</mark> /20/26	48/76	27/39	0.951	0.200	0.053	41.807	63.720	61.521
				D-DPSO	1 <mark>5</mark> /20/26	48/76	27/39	0.951	0.200	0.053	41.807	63.720	61.521
			C2	G-DPSO	2 <mark>4</mark> /28/41	47/73	30/45	0.951	0.194	0.039	48.872	55.463	50.268
				D-DPSO	/17/24	45/70	30/45	0.951	0.199	0.043	57.956	59.756	54.718
			C3	G-DPSO	1 <mark>3</mark> /20/25	43/67	25/42	0.951	0.194	0.038	47.730	62.880	61.206
				D-DPSO	1 <mark>4</mark> /20/26	43/67	23/39	0.950	0.199	0.041	45.163	59.975	56.926
			C4	G-DPSO	2 <mark>5</mark> /30/44	44/68	32/49	0.950	0.197	0.037	51.862	56.540	52.457
				D-DPSO	19/16/21	43/67	28/4 I	0.950	0.200	0.044	51.907	60.628	57.152

Table 2. Various adaptive two-stage optimal designs with two target responses when $\alpha = 0.05$, $\beta_1 = 0.20$ and $\beta_2 = 0.10$.

Optimal criteria Method **Computation time (minute) p**₀ **p**₁ \mathbf{p}_2 0.05 0.20 0.25 **C1** GS 697.41 **G-DPSO** 3.49 **D-DPSO** 5.07 **C2** GS 335.84 **G-DPSO** 3.49 4.89 **D-DPSO C3** GS 456.9 **G-DPSO** 3.48 **D-DPSO** 4.95 **C4** GS 734.74 **G-DPSO** 3.4 **D-DPSO** 4.92 0.20 0.35 0.40 **C1 G-DPSO** 10.6 **D-DPSO** 5.86 **C2 G-DPSO** 10.24 **D-DPSO** 5.54 **C3 G-DPSO** 11.44 **D-DPSO** 5.6 **C4 G-DPSO** 11.07 **D-DPSO** 5.58 0.55 0.70 0.75 **C1 G-DPSO** 147.31 **D-DPSO** 5.89 **C2 G-DPSO** 131.2 **D-DPSO** 5.64 **C3 G-DPSO** 197.07 **D-DPSO** 5.86 **C4 G-DPSO** 193.18 **D-DPSO** 5.68

Table S2. Computation time corresponding to **Table 2**; Various adaptive 2-stage optimal designs with two target responses when $\alpha = 0.05$, $\beta_1 = 0.20$ and $\beta_2 = 0.10$.

Optimal criteria Method **Computation time (minute)** p₁ p₀ \mathbf{p}_2 0.05 0.20 0.25 **C1** GS 697.41 **G-DPSO** 3.49 **D-DPSO** 5.07 **C2** GS 335.84 **G-DPSO** 3.49 4.89 **D-DPSO C3** GS 456.9 **G-DPSO** 3.48 4.95 **D-DPSO C4** GS 734.74 **G-DPSO** 3.4 **D-DPSO** 4.92 0.20 0.35 0.40 **C1 G-DPSO** 10.6 5.86 **D-DPSO C2 G-DPSO** 10.24 **D-DPSO** 5.54 **C3 G-DPSO** 11.44 **D-DPSO** 5.6 **C4 G-DPSO** 11.07 **D-DPSO** 5.58 0.55 0.70 0.75 **C1 G-DPSO** 147.31 **D-DPSO** 5.89 **C2 G-DPSO** 131.2 **D-DPSO** 5.64 **C3 G-DPSO** 197.07 **D-DPSO** 5.86 **C4 G-DPSO** 193.18 **D-DPSO** 5.68

Table S2. Computation time corresponding to **Table 2**; Various adaptive 2-stage optimal designs with two target responses when $\alpha = 0.05$, $\beta_1 = 0.20$ and $\beta_2 = 0.10$.

$E(N p_3)$
29.593
31.691
21.636
21.245
27.116
27.172
24.354
23.260
40.823
61.554
37.117
39.094
46.353
50.929
39.542
37.622
51.947
54.260
39.493
51.268
46.497
52.356
39.493
50.252

Table 3. Various adaptive two-stage optimal designs with three target responses when $\alpha = 0.05$, $\beta_1 = 0.20$, $\beta_2 = 0.10$, and $\beta_3 = 0.05$.

				Optima				,	,		0	0	0			-	
Þо	Þ١	₽2	́Рз	criteria	Method	s ₁ /r ₁ /q ₁ /n ₁	s / I	r / m	q / n	$-\alpha$	β_1	β2	β_3	E(N þ ₀)	$E(N p_1)$	$E(N p_2)$	$E(N p_3)$
0.05	0.20	0.25	0.30	CI	G-DPSO	0/1/4/10	3/28	3/31	5/28	0.953	0.200	0.088	0.037	17.481	27.841	29.020	29.593
					D-DPSO	0/1/2/9	4/36	3/34	3/3 I	0.959	0.199	0.093	0.044	18.816	30.463	31.375	31.691
				C2	G-DPSO	0/1/2/13	3/31	3/28	3/20	0.951	0.200	0.088	0.036	21.158	23.725	22.613	21.636
					D-DPSO	0/1/2/14	4/36	3/33	3/19	0.952	0.198	0.094	0.043	24.391	24.899	22.847	21.245
				C3	G-DPSO	0/2/5/11	3/28	3/28	6/21	0.956	0.200	0.084	0.033	18.330	26.458	27.042	27.116
					D-DPSO	0/3/4/11	3/29	5/29	5/22	0.953	0.198	0.085	0.034	18.761	27.101	27.437	27.172
				C4	G-DPSO	0/1/2/15	3/28	3/27	3/24	0.958	0.198	0.077	0.026	21.698	24.904	24.615	24.354
					D-DPSO	0/1/2/14	4/32	3/30	3/22	0.960	0.198	0.079	0.028	22.675	25.189	24.130	23.260
0.20	0.35	0.40	0.45	CI	G-DPSO	5/9/10/24	17/61	10/36	11/32	0.952	0.200	0.064	0.017	36.401	48.570	45.349	40.823
					D-DPSO	5/11/13/22	19/72	12/36	4/32	0.951	0.200	0.078	0.028	35.355	62.126	63.957	61.554
				C2	G-DPSO	5/9/10/29	17/60	13/44	11/34	0.951	0.197	0.061	0.015	44.649	45.199	40.615	37.117
					D-DPSO	3/6/8/19	19/67	11/38	9/3 I	0.950	0.194	0.060	0.016	43.149	47.817	43.504	39.094
				C3	G-DPSO	4/9/13/22	16/57	10/39	6/36	0.951	0.196	0.059	0.014	37.889	50.724	49.244	46.353
					D-DPSO	3/8/9/17	17/62	12/36	11/28	0.951	0.197	0.070	0.024	37.230	54.484	54.003	50.929
				C4	G-DPSO	5/9/10/26	16/57	13/44	11/34	0.950	0.197	0.059	0.013	38.717	46.656	43.284	39.542
					D-DPSO	4/8/11/24	18/64	11/36	12/28	0.952	0.193	0.068	0.026	44.584	48.279	42.940	37.622
0.55	0.70	0.75	0.80	CI	G-DPSO	5/20/21/26	48/76	29/43	23/3 I	0.951	0.199	0.052	0.010	41.812	63.491	60.658	51.947
					D-DPSO	0/15/16/19	46/72	23/39	18/29	0.951	0.198	0.047	0.008	44.911	62.696	60.68 I	54.260
				C2	G-DPSO	7/22/23/32	47/73	32/48	24/35	0.950	0.195	0.041	0.005	51.994	54.810	46.623	39.493
					D-DPSO	B/13/14/17	46/72	27/39	21/31	0.951	0.195	0.048	0.009	52.800	62.503	58.360	51.268
				C3	G-DPSO	5/20/21/27	46/72	27/41	24/35	0.951	0.192	0.041	0.005	44.743	59.648	54.638	46.497
					D-DPSO	2/17/18/22	47/74	26/39	24/32	0.950	0.197	0.054	0.014	44.314	63.00 I	60.007	52.356
				C4	G-DPSO	7/22/23/32	47/73	32/48	24/35	0.950	0.195	0.041	0.005	51.994	54.810	46.623	39.493
					D-DPSO	7/12/14/16	45/70	26/39	I 9/3 I	0.951	0.200	0.044	0.006	55.302	60.783	56.534	50.252
						/											

Table 3. Various adaptive two-stage optimal designs with three target responses when $\alpha = 0.05$, $\beta_1 = 0.20$, $\beta_2 = 0.10$, and $\beta_3 = 0.05$.

Table S3. Computation time corresponding **Table 3**; Various adaptive 2-stage optimal designs with three target responses when $\alpha = 0.05$, $\beta_1 = 0.20$, $\beta_2 = 0.10$, and $\beta_3 = 0.05$.

p ₀	p ₁	p ₂	p ₃	Optimal criteria	Method	Computation time (minute)
0.05	0.20	0.25	0.30	C1	G-DPSO	5.49
					D-DPSO	5.75
				C2	G-DPSO	5.32
					D-DPSO	5.64
				С3	G-DPSO	5.42
					D-DPSO	5.69
				C4	G-DPSO	5.3
					D-DPSO	5.66
0.20	0.35	0.40	0.45	C1	G-DPSO	1592.3
					D-DPSO	6.42
				C2	G-DPSO	1581.77
					D-DPSO	6.32
				C3	G-DPSO	1602.55
					D-DPSO	6.33
				C4	G-DPSO	1584.49
					D-DPSO	6.34
0.55	0.70	0.75	0.80	C1	G-DPSO	41962.35
					D-DPSO	6.49
				C2	G-DPSO	41384.16
					D-DPSO	6.39
				C3	G-DPSO	41835.97
					D-DPSO	6.45
				C4	G-DPSO	41498.29
					D-DPSO	6.38

Table S3. Computation time corresponding **Table 3**; Various adaptive 2-stage optimal designs with three target responses when $\alpha = 0.05$, $\beta_1 = 0.20$, $\beta_2 = 0.10$, and $\beta_3 = 0.05$.

p ₀	p ₁	p ₂	p ₃	Optimal criteria	Method	Computation time (minute)
0.05	0.20	0.25	0.30	C1	G-DPSO	5.49
					D-DPSO	5.75
				C2	G-DPSO	5.32
					D-DPSO	5.64
				С3	G-DPSO	5.42
					D-DPSO	5.69
				C4	G-DPSO	5.3
					D-DPSO	5.66
0.20	0.35	0.40	0.45	C1	G-DPSO	1592.3
					D-DPSO	6.42
				C2	G-DPSO	1581.77
					D-DPSO	6.32
				С3	G-DPSO	1602.55
					D-DPSO	6.33
				C4	G-DPSO	1584.49
					D-DPSO	6.34
0.55	0.70	0.75	0.80	C1	G-DPSO	41962.35
					D-DPSO	6.49
				C2	G-DPSO	41384.16
					D-DPSO	6.39
				С3	G-DPSO	41835.97
					D-DPSO	6.45
				C4	G-DPSO	41498.29
					D-DPSO	6.38

Figure 2. Expected sample sizes under the null hypothesis for the 4 criteria C1–C4 with 1, 2 or 3 target alternatives estimated by D–DPSO for 3 scenarios (from left to right): (i) $p_0 = 0.05, p_1 = 0.20, p_2 = 0.25, p_3 = 0.30$, (ii) $p_0 = 0.20, p_1 = 0.35, p_2 = 0.40, p_3 = 0.45$, and (iii) $p_0 = 0.55, p_1 = 0.70, p_2 = 0.75, p_3 = 0.80$. Error rates were set at $\alpha = 0.05, \beta_1 = 0.20, \beta_2 = 0.10$ and $\beta_3 = 0.05$

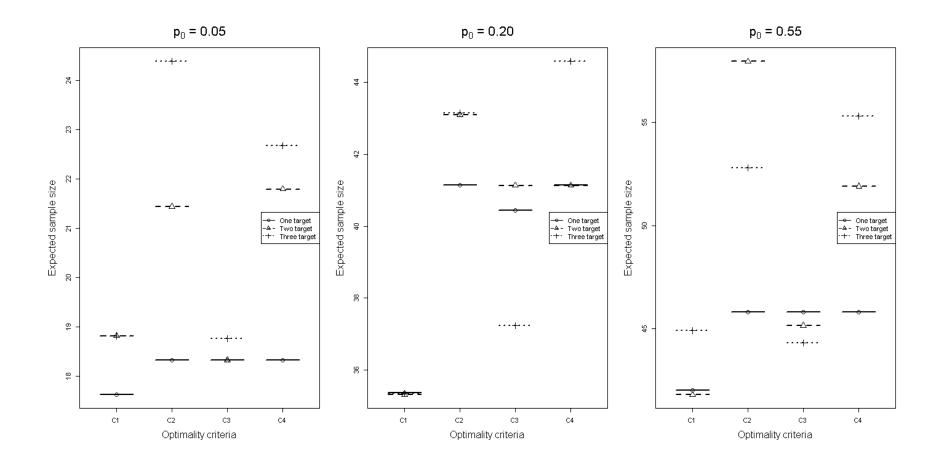
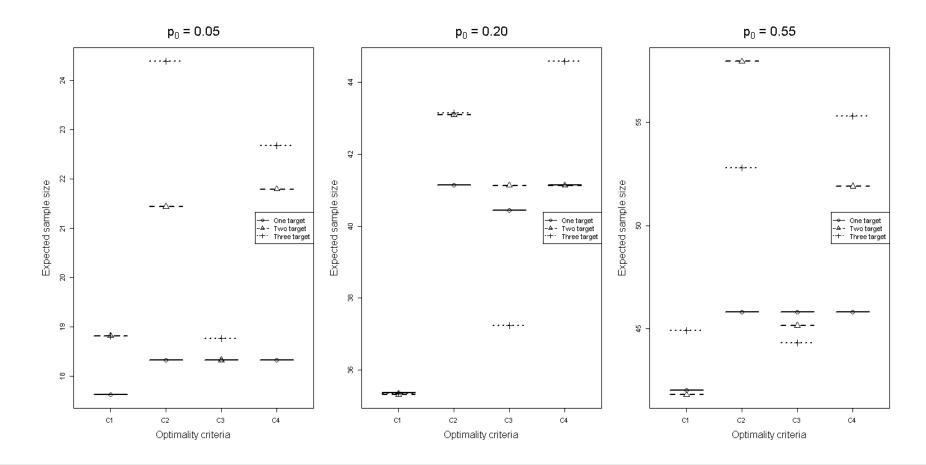


Figure 2. Expected sample sizes under the null hypothesis for the 4 criteria C1–C4 with 1, 2 or 3 target alternatives estimated by D–DPSO for 3 scenarios (from left to right): (i) $p_0 = 0.05, p_1 = 0.20, p_2 = 0.25, p_3 = 0.30$, (ii) $p_0 = 0.20, p_1 = 0.35, p_2 = 0.40, p_3 = 0.45$, and (iii) $p_0 = 0.55, p_1 = 0.70, p_2 = 0.75, p_3 = 0.80$. Error rates were set at $\alpha = 0.05, \beta_1 = 0.20, \beta_2 = 0.10$ and $\beta_3 = 0.05$



There is **no clear winner** that consistently requires the smallest expected sample sizes

Motivation

- A single arm two-stage phase II trial to see the effect of head and neck cancer (HNC) on the incidence of obstructive sleep apnea (OSA).
- The maximum incidence rate of snoring and sleep apnea on healthy patients is 16.5% (i.e., p0 = 0.165).
- Neither historical nor preliminary data available, except that the incidence rate of OSA will be higher in HNC patients.
- An empirical range of the target response rates, from 24.38% to 39.00%.
- Simon's two-stage design (80% power and 5% level) → the required sample sizes range from 30 to 197
- Due to wide range of the target response rates, Lin and Shih's approach will not be able to cover the great uncertainty.

Obstructive sleep apnea (OSA)

- To assess the effect of HNC on the incidence of OSA compared to healthy patients.
- p0 = 16.50%, p1 = **24.38%**, p2 = 31.69%, p3 = **39.00%**

•
$$\beta 1 = 0.20, \ \beta 2 = 0.15, \ \beta 3 = 0.10$$

Optimality criteria	s ₁ /r ₁ /q ₁ /n ₁	s/l	r/m	q/n	E(N þ ₀)	$E(N p_1)$	$E(N p_2)$	E(N þ ₃)
OSA								
CI	2/8/9/21	39/188	13/55	10/39	136.92	167.28	157.91	124.73
C2 and C4	1/11/12/25	34/161	20/72	13/36	152.07	158.99	154.07	135.42
C3	1/8/9/17	37/177	12/58	10/35	144.40	166.73	167.70	153.87

Obstructive sleep apnea (OSA)

- To assess the effect of HNC on the incidence of OSA compared to healthy patients.
- p0 = 16.50%, p1 = **24.38%**, p2 = 31.69%, p3 = **39.00%**

•
$$\beta 1 = 0.20, \ \beta 2 = 0.15, \ \beta 3 = 0.10$$

Optimality criteria	s ₁ /r ₁ /q ₁ /n ₁	s/I	r/m	q/n	E(N þ ₀)	E(N þ1)	E(N þ2)	E(N þ ₃)
OSA								
CI	2/8/9/21	39/188	13/55	10/39	136.92	167.28	157.91	124.73
C2 and C4	1/11/12/25	34/161	20/72	13/36	152.07	158.99	154.07	135.42
C3	1/8/9/17	37/177	12/58	10/35	144.40	166.73	167.70	153.87

It can cover the wide variation of the total sample size (35~188)

Phase II study: BREAK-2

- A multicenter, international, single-arm, phase II study (BREAK-2) was carried out to assess the overall response rate of dabrafenib from patients with BRAFV 600E mutationpositive metastatic melanoma (Ascierto et al. (2013)).
- The null hypothesis was set at p0 = 0.25 and the alternative hypothesis was set at p1 = 0.40. The trial wanted to recruit at least 85 patients and the plan was to declare the treatment a success if at least 29 patients responded.
- The efficacy results show that 76 patients with BRAFV 600E mutationpositive metastatic melanoma were enrolled and 45 patients (59%) had a confirmed response.
- Although its parent phase I study (Falchook *et al.* (2012)) showed the same type of patients had a response rate of 50%, this phase II study chose the response rate of 40% as an alternative hypothesis by lowering the response rate of phase I study.
- However, based on the phase I study, it would be of benefit if the higher response rate was explored in addition to 40% because the final response rate of the phase II study was 59%.

•
$$p0 = 0.25$$
, $p1 = 0.40$, $p2 = 0.50$, and $p3 = 0.55$
• $\beta 1 = 0.15$, $\beta 2 = 0.10$, and $\beta 3 = 0.05$

Optimality criteria	s ₁ /r ₁ /q ₁ /n ₁	s/I	r/m	q/n	$E(N p_0)$	$E(N p_1)$	$E(N p_2)$	E(N þ ₃)
OSA								
CI	2/8/9/21	39/188	13/55	10/39	136.92	167.28	157.91	124.73
C2 and C4	1/11/12/25	34/161	20/72	13/36	152.07	158.99	154.07	135.42
C3	1/8/9/17	37/177	12/58	10/35	144.40	166.73	167.70	153.87
BREAK-2								
CI	4/10/11/19	26/80	14/44	12/34	51.522	72.216	65.961	58.879
C2 and C4	4/9/12/22	27/83	16/43	13/31	62.079	65.691	50.196	43.063
C3	2/7/9/13	25/77	15/44	14/39	55.526	70.032	66.463	62.186

•
$$p0 = 0.25$$
, $p1 = 0.40$, $p2 = 0.50$, and $p3 = 0.55$
• $\beta 1 = 0.15$, $\beta 2 = 0.10$, and $\beta 3 = 0.05$

Optimality criteria	s ₁ /r ₁ /q ₁ /n ₁	s/I	r/m	q/n	E(N þ ₀)	$E(N p_1)$	$E(N p_2)$	E(N þ ₃)
OSA								
CI	2/8/9/21	39/188	13/55	10/39	136.92	167.28	157.91	124.73
C2 and C4	1/11/12/25	34/161	20/72	13/36	152.07	158.99	154.07	135.42
C3	1/8/9/17	37/177	12/58	10/35	144.40	166.73	167.70	153.87
BREAK-2								
CI	4/10/11/19	26/80	14/44	12/34	51.522	72.216	65.961	58.879
C2 and C4	4/9/12/22	27/83	16/43	13/31	62.079	65.691	50.196	43.063
C3	2/7/9/13	25/77	15/44	14/39	55.526	70.032	66.463	62.186

- The total sample sizes at p1 = 0.4 is less than 85 (BREAK-2)
- The total sample size at p3 = 0.55 is 31~39, which is at least 46 patients less than 85 (BREAK-2)

Summary

- A novel and effective nature-inspired stochastic population-based algorithm called discrete particle swarm optimization (DPSO) to find extended two-stage adaptive designs.
- Algorithms based on a greedy search invariably failed to find extended two-stage adaptive designs and an improved version of DPSO, called D-DPSO finds the optimum.
- When the problem is simplified to one or two target response rates, D-DPSO outperformed their peers by a wide margin.

Thank you for being patient!

EM Algorithms

- Expectation (E) step
 - Use current parameters to estimate the missing data

$$Q(\theta) = E_{\mathbf{z}} \Big[\log p(\mathbf{y}, \mathbf{z} \mid \theta) \, \Big| \mathbf{y} \Big] = \int_{-\infty}^{\infty} p(\mathbf{z} \mid \mathbf{y}, \theta_n) \log p(\mathbf{y}, \mathbf{z} \mid \theta) \, d\mathbf{z}$$

- Maximization (M) step
 - Use estimated missing data to perform ML/MAP parameter estimation

$$heta_{n+1} = rg\max_{ heta} Q(heta)$$

• Repeat EM steps, until convergence

EM Algorithms

- Expectation (E) step
 - Use current parameters to estimate the missing data

$$Q(\theta) = E_{\mathbf{z}} \Big[\log p(\mathbf{y}, \mathbf{z} \mid \theta) \, \Big| \mathbf{y} \Big] = \int_{-\infty}^{\infty} p(\mathbf{z} \mid \mathbf{y}, \theta_n) \log p(\mathbf{y}, \mathbf{z} \mid \theta) \, d\mathbf{z}$$

• Maximization (M) step

Use estimated missing data to perform ML/MAP parameter estimation

$$heta_{n+1} = rg\max_{ heta} Q(heta)$$

• Repeat EM steps, until convergence

EM Algorithms: some limitations

- Its limiting position can strongly depend on its starting position
- Its speed of convergence can be slow

•

- It can converge to local maxima or saddle points
- Either E-step or M-step is intractable (no closed form available)
 - Pharmacokinetics/pharmacodynamics (PK/PD) models have nonlinear differential equations