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Pharmacokinetic (PK) analysis is to estimate the rates of the absorption, the
distribution and the elimination (metabolism and excretion) over time of a drug
and its metabolites
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Pharmacokinetics (PK) Goal: Therapeutic 

Optimization
• Achieve concentration profile attaining Efficacy and 

avoiding Toxicity
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Pharmacokinetics (PK) Study

: Two-Compartment Model
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Midazolam (MDZ) data: IV infusion

24 volunteers, 18 to 55 years of age, received 

single dose of 2.74~4.80 mg MDZ intravenously 

(IV) and Blood samples were collected at 0.5, 

0.75, 1, 1.5, 2, 4, 6, and 9 hours after IV MDZ 

dosing.

CYP3A is responsible for 60% of 

drugs’ metabolism

CYP3A Substrates  standard 

CYP3A probe drug
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Mixed-Effects Model

• Provide a powerful and flexible tool for the analysis of balanced 

and unbalanced grouped data. 

• A mixture of fixed and random factors

• Fixed-effect (Population-level): the effects of the levels to one another

• Random-effect (Subject-level): a random sample from a population of 

effects
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Parameter estimation

• Estimation: EM-like Algorithms and Monte Carlo-based Algorithms

• EM Algorithm 

• It can guarantee only up to local optima

• Approximation needed if either E-step or M-step is intractable (no closed form 

available)

• PK/PD models have the nonlinear differential equations

• It gives us point estimates

• Monte Carlo Algorithm

• It can guarantee global optima theoretically

• It can deal with nonlinear functions

• It can estimate the distribution of parameters (Bayesian approach)
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Monte Carlo

• Given: a domain X and a distribution p(x)

• Draw a set of N samples independently

• Approximate the distribution by these samples
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Monte Carlo-based Algorithms
• Non-Markovian Methods

• Rejection Sampling (Smith and Gelfand, 1992)

• Ratio-of-uniforms method (Wakefield et al., 1994)

• …

• Markovian Methods

• Gibbs Sampling (Geman and Geman  1984)

• Markov Chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970)

• Random-walk Metropolis (Roberts, 1995)

• Independence Metropolis-Hasting (Roberts, 1995)

• Reversible jump MCMC (Green, 1995)

• …
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Non-Markovian Method
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It causes to have much expensive computation times

α does not depend on the previous sample

It is not easy to find a tractable envelope function.

.
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Markovian Method

(0

( )

( ) ( )

)

( )

( 1)

( )

( )

intractable

( )

tractable pro

{

~ ( | )

~ (0,1)

( ) ( | )
mi

( ) :   target density

( )

Find a

n 1,
( ) ( | )

  ( | )p al

}

os

1

[MCMC]

t

t

t

t

t

t

t

Initialize

Re

f x

x

x

y
x

peat

y q

u U

f y q x y

f x q y x

if u

if u

t t

x

x

q x

x













 
  

 


 









.

.

Pharmacokinetics (PK) analysis



Markovian Method

(0

( )

( ) ( )

)

( )

( 1)

( )

( )

intractable

( )

tractable pro

{

~ ( | )

~ (0,1)

( ) ( | )
mi

( ) :   target density

( )

Find a

n 1,
( ) ( | )

  ( | )p al

}

os

1

[MCMC]

t

t

t

t

t

t

t

Initialize

Re

f x

x

x

y
x

peat

y q

u U

f y q x y

f x q y x

if u

if u

t t

x

x

q x

x













 
  

 


 









It is not difficult to find a tractable proposal 

function, e.g., multivariate normal distribution

α depends on the previous sample
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(Bayesian) Nonlinear Mixed-Effects Model
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(Bayesian) Nonlinear Mixed-Effects Model

Random-Effects

Fixed-Effects

Historic data

Distribution of each parameter
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(Bayesian MCMC) Nonlinear Mixed-Effects Model

Random-Effects

Fixed-Effects
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Physiologically based PK drug interaction model

Ketoconazole Midazolam
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Physiologically based PK drug interaction model

-#Compartment: 11

-There are only two

observable compartments

- #Parameter: 

20+20*#subject

+ measurement error

Ketoconazole Midazolam
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Physiologically based PK drug interaction model

-#Compartment: 11

-There are only two

observable compartments

- #Parameter: 

20+20*#subject

+ measurement error

-Numerous uncertain parameters (multidimensional problem) and 

Identifiability problem

Ketoconazole Midazolam
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Practical Issues for Bayesian MCMC

• Global optima or local optima?

• High-dimensionality makes it difficult to reach global optima

• The speed of convergence is slow

• Proposal function (variance-covariance matrix)

• Starting points (initial values)

• High correlation due to unidentifiable parameters (identifiability)

• Michaelis-Menten kinetics equation
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Three challenges of PK analysis

• Global Optimization: global maximum of the likelihood

• What is an efficient approach to finding global optima?

• Convergence Rate: the speed of convergence

• How to improve the speed of convergence?

• (Statistical) Identifiability of PK models

• What can we do with the statistically unidentifiable parameters?
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An Efficient Global Search Algorithm

• NONMEM (Beal and Sheiner, 1980)

• The most popular approaches to a population 

pharmacokinetics/pharmacodynamics (PK/PD) analysis for 

nonlinear mixed-effects models

• Local optimization using a Broyden-Fletcher-Goldfarb-Shanno

(BFGS) quasi-Newton algorithm

• A global search algorithm for nonlinear mixed-effects 

models to meet the challenges of the local optimization in 

NONMEM
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Nonlinear mixed-effects models

• First-stage

• N: the number of subjects

• ni: the number of observations from the ith subject

• yij: the drug concentration at time tij

• f: a nonlinear function of a subject-specific parameter vector фi

• Second-stage

• Ai and Bi: known design matrices for fixed-effects β and random-

effects bi

(1)
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Nonlinear mixed-effects models

• First-stage

• N: the number of subjects

• ni: the number of observations from the ith subject

• yij: the drug concentration at time tij

• f: a nonlinear function of a subject-specific parameter vector фi

• Second-stage

• Ai and Bi: known design matrices for fixed-effects β and random-

effects bi
Laplacian estimation method

First-order estimation method

First-order conditional estimation methods

(1)

Pharmacokinetics (PK) analysis



Particle Swarm Optimization (PSO)

Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995

𝜷 = 𝒂𝒓𝒈𝒎𝒙 𝒍 𝜷; 𝒀, 𝑿 global best

local best
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Particle Swarm Optimization (PSO)
• k-th iteration

• p = 1,…,P; P: the population size

• 𝑥 𝑙𝑏𝑒𝑠𝑡
𝑝

and 𝑥𝑔𝑏𝑒𝑠𝑡: local best and global best, respectively

• 𝑣𝑘+1
𝑝

: the velocity

• wk: inertia weight

𝑤𝑘 = 𝑤𝑚𝑎𝑥 −
𝑘

𝐾
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

• c1, c2: cognitive and social coefficient, respectively

• r1, r2: two random sequences in [0,1]

• K: total number iteration number

𝑣𝑘+1
𝑝

= 𝑤𝑘𝑣𝑘
𝑝
+ 𝑐1𝑟1 𝑥𝑙𝑏𝑒𝑠𝑡

𝑝
− 𝑥𝑘

𝑝
+ 𝑐2𝑟2 𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑘

𝑝
(4)

𝑥𝑘+1
𝑝

= 𝑥𝑘
𝑝
+ 𝑣𝑘+1

𝑝
(5)
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Nonlinear mixed-effects models

• First-stage

• N: the number of subjects

• ni: the number of observations from the ith subject

• yij: the drug concentration at time tij

• f: a nonlinear function of a subject-specific parameter vector фi

• εij~ N(0, σ2)

• Second-stage

• Ai and Bi: known design matrices for fixed-effects β and random-

effects bi

• bi~N(0,  Ψ)

(1)
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Nonlinear mixed-effects models

• First-stage

• N: the number of subjects

• ni: the number of observations from the ith subject

• yij: the drug concentration at time tij

• f: a nonlinear function of a subject-specific parameter vector фi

• εij~ N(0, σ2)

• Second-stage

• Ai and Bi: known design matrices for fixed-effects β and random-

effects bi

• bi~N(0,  Ψ)

It requires expensive computation time

(1)
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PSO-based mixed-effects modeling

• High-dimensional parameter space

• Parameters to estimate

• 𝛽: fixed-effects

• 𝜎2: measurement error  (variance-covariance matrix)

• Ψ: inter-individual variance-covariance matrix

• 𝑏𝑖: random-effects

• E.g.: 5 fixed-effects, 5 random-effects, 10 subjects => 5 + 5 × 10 =
50 without variance estimation

• Expensive computation

• Slow speed of convergence
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PSO-based mixed-effects modeling

• Hybrid approach

• NONMEM + PSO

• NONMEM: exploitation by a local optimization

• PSO: exploration by a global optimization

• Sacrifice random-effects

• Random-effects by NONMEM

• Fixed-effects and others by NONMEM+PSO

• Multivariate population

• Grid population using univariate uniform distribution

• Random-grid population using multivariate uniform distribution
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PSO-based mixed-effects modeling

• Hybrid approach

• NONMEM + PSO

• NONMEM: exploitation by a local optimization

• PSO: exploration by a global optimization

• Sacrifice random-effects

• Random-effects by NONMEM

• Fixed-effects and others by NONMEM+PSO

• Multivariate population

• Grid population using univariate uniform distribution

• Random-grid population using multivariate uniform distribution

Increase the population diversity

Reduce the population size

Reduce the  PSO parameter space
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Nonlinear mixed-effects models

• First-stage

• N: the number of subjects

• ni: the number of observations from the ith subject

• yij: the drug concentration at time tij

• f: a nonlinear function of a subject-specific parameter vector фi

• εij~ N(0, σ2)

• Second-stage

• Ai and Bi: known design matrices for fixed-effects β and random-

effects bi

• bi~N(0,  Ψ)

Global + Local 

Optimization

Local Optimization
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Convergence of PSO+NONMEM

• First-order stability analysis (expected value)

• Trelea (2003)

• The expected value of the position of each particle converges to its 
equilibrium

𝑐1𝑥𝑙𝑏𝑒𝑠𝑡 + 𝑐2𝑥𝑔𝑏𝑒𝑠𝑡

𝑐1 + 𝑐2

𝑖𝑓𝑓

𝑤 < 1, 𝑐 =
𝑐1 + 𝑐2

2
> 0, 2𝑤 − 𝑐 + 2 > 0

• PSO+NONMEM: 𝑤 ∈ [0.4,0.9], 𝑐1 = 𝑐2 = 2 2 ⋅ 0.4 − 2 + 2 > 0
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Convergence of PSO+NONMEM

• Second-order stability analysis (variance)

• Jiang et al. (2007); Poli (2009); Poli et al. (2007)

• The variance of the position of each particle converges to zero

𝑖𝑓𝑓

𝑐1 + 𝑐2
2

<
12 𝑤2 − 1

5𝑤 − 7

• PSO+NONMEM: 𝑤 ↓ 0.4, 𝑐1 = 𝑐2 = 2 2 < 2.016
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Subject-specific parameter estimation: local or global?
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The flowchart of the proposed P-NONMEM

Kim and Li 2011. J. of PK. and PD.
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Simulation studies

PK example PD example
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PK example

P=729 (=36)

PD example

P=243 (=35)

106 >> 36

105 >> 35
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Summary
• The proposed P-NONMEM is not sensitive to initial value 

selection.

• Even when the initial values are far away from their global 
optimal, P-NONMEM almost guarantees the global 
optimization.

• P-NONMEM guarantees the global optimization for fixed 
effect and variance parameters. 

• Under certain regularity conditions, it also leads to global 
optimization for random effects
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Outline
• Pharmacokinetics (PK) analysis

• Global optimization

• Identifiability

• Two-stage single-arm phase 2 clinical trial designs

• Simon’s two-stage and Lin and Shih’s adaptive designs

• Adaptive designs with three target response rates
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Mathematical Identifiability
• For PK models the corresponding equations are

• A single parameter     of Equation (1) is globally identifiable

if there exists a unique solution for 

• A parameter with countable or uncountable number of 

solutions is locally identifiable or unidentifiable

0x(t) = f(x(t),B(θ)u(t),θ, t), x(0) = x

y(t) = G(x(t),B(θ)u(t),θ, t)

:  the state variables

:  the initial conditions

:  the input to the system

:  the matrices depending on 

: observations



x(t)

x(0)

u(t)

B(θ)

y(t)

(1)
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x(t)

x(0)

u(t)

B(θ)

y(t)

(1)

Given a model formation and noise-free (perfect) data

Which parameters of the model are identifiable?

(Bellman and Astrom, 1970)
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0x(t) = f(x(t),B(θ)u(t),θ, t), x(0) = x

y(t) = G(x(t),B(θ)u(t),θ, t) + ε(t)

:  the state variables

:  the initial conditions

:  the input to the system

,  :  the matrices depending on 

: observations



x(t)

x(0)

u(t)

A(θ) B(θ)

y(t)

Statistical Identifiability
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0x(t) = f(x(t),B(θ)u(t),θ, t), x(0) = x

y(t) = G(x(t),B(θ)u(t),θ, t) + ε(t)

:  the state variables

:  the initial conditions

:  the input to the system

,  :  the matrices depending on 

: observations



x(t)

x(0)

u(t)

A(θ) B(θ)

y(t)

Given (a perfect model structure and) experimental (noise) data

Is it possible to uniquely and accurately estimate the parameters?

Statistical Identifiability
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• Estimates of the statistical identifiability are highly 
depending on the quality of the data

0x(t) = f(x(t),B(θ)u(t),θ, t), x(0) = x

y(t) = G(x(t),B(θ)u(t),θ, t) + ε(t)

:  the state variables

:  the initial conditions

:  the input to the system

,  :  the matrices depending on 

: observations



x(t)

x(0)

u(t)

A(θ) B(θ)

y(t)

Given (a perfect model structure and) experimental (noise) data

Is it possible to uniquely and accurately estimate the parameters?

Statistical Identifiability
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Michaelis-Menten (MM) Kinetics

• MM Kinetics Equation:

• V(t): the overall velocity of the reaction

• Vmax: the maximum velocity

• Km: MM constant

• C(t): the concentration

from wikipedia
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𝑉𝑚𝑎𝑥 ⋅
𝐶 𝑡

𝐾𝑚 + 𝐶 𝑡

𝑉𝑚𝑎𝑥

𝐾𝑚
⋅ 𝐶(𝑡)

Non-identifiable

Identifiable
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What’s the matter?

• Derivative-based optimization

• Singularity

• NONMEM uses derivative-based optimizations

• Bayesian approach

• No theoretical concern for both mathematical and statistical 

identifiability

• No singularity issue due to priors (Lindley, 1971)

• Poor convergence of MCMC (Poirier, 1998; Gelfand and Sahu, 

1999; Eberly and Carlin, 2000)

Pharmacokinetics (PK) analysis



What’s new?

• NONMEM is replaced with a derivative-free local 

optimization

• Convergence criteria

• The local best-quartile method

• The global best-variance method

• The local best-quartile-variance method

Kim and Li 2014. CMPB.
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The local best-quartile method

• Suppose 𝜃𝑘 is the 𝑆 × 𝑝 matrix of the population (local best) of size 𝑆 and the p parameters at kth 

iteration, i.e.,

𝜃𝑘 =

𝜃11
𝑘 ⋯ 𝜃1𝑝

𝑘

⋮ ⋱ ⋮
𝜃𝑆1
𝑘 ⋯ 𝜃𝑆𝑝

𝑘
,

where 𝜃𝑖𝑗
𝑘 is the local best of 𝑖th particle of 𝑗th parameter at 𝑘th iteration, 1 ≤ i ≤ S, 1 ≤ j ≤ p. 

• The difference between the first and third quartiles for each parameter is calculated based on 𝜃𝑘, i.e.,

𝑑𝑗
𝑘 = 𝑄1

𝑘𝑗
− 𝑄3

𝑘𝑗
, where 𝑗 = 1, . . , 𝑝,

obtaining the maximum difference of all the parameters as the following

𝑑𝑘 = max
𝑗=1,2,…,𝑝

𝑑𝑗
𝑘.

• The 𝑝 × 𝑝 correlation matrix of 𝜃𝑘, i.e.,

𝛺𝑘 =

1 ⋯ 𝜔1𝑝

⋮ ⋱ ⋮
𝜔𝑝1 ⋯ 1

• Its maximum and minimum eigenvalues, 𝜆𝑚𝑎𝑥
𝑘 and 𝜆𝑚𝑖𝑛

𝑘 , are estimated to calculate the ratio of two 

eigenvalues, 𝜌𝑘 =
𝜆𝑚𝑖𝑛
𝑘

𝜆𝑚𝑎𝑥
𝑘 . 

• If at least one parameter has 𝑑𝑗
𝑘 = 0, then the eigenvalues cannot be obtained, so we will assign zero to 

𝜌𝑘 in this case. 
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The global best-variance method
• Suppose 𝜓𝑘 is the 𝑘 × 𝑝 matrix consisting of the global best for each parameter 

up to 𝑘th iteration,

𝜓𝑘 =

𝜓1
1 ⋯ 𝜓𝑝

1

⋮ ⋱ ⋮
𝜓1
𝑘 ⋯ 𝜓𝑝

𝑘
,

where 𝜓𝑗
𝑖 is the global best of 𝑗th parameter at 𝑖the iteration and 𝑙𝑘 is the vector of 

the loglikehood of each global best of size 𝑘 such as 𝑙𝑘 = (𝑙1, 𝑙2, … , 𝑙𝑘). Then the 
reduced matrix is obtained based on the user-defined window size, 𝑤. 

𝜓𝑤
𝑘 =

𝜓1
𝑘−𝑤+1 ⋯ 𝜓𝑝

𝑘−𝑤+1

⋮ ⋱ ⋮
𝜓1
𝑘 ⋯ 𝜓𝑝

𝑘
,

where 𝑘 ≥ 𝑤 > 0, and the reduced loglikehood vector is 𝑙𝑤
𝑘 = (𝑙𝑘−𝑤+1, 𝑙𝑘−𝑤+2, … , 𝑙𝑘). 

• 𝑆𝐷 𝜓𝑤
𝑘 = max

j=1,…,p
𝑆𝐷𝑤 𝜓𝑗

𝑘 ;

• 𝑆𝐷 𝑙𝑤
𝑘 = 𝑉𝑎𝑟 𝑙𝑘−𝑤+1, 𝑙𝑘−𝑤+2, … , 𝑙𝑘 ,

where 𝑆𝐷𝑤 𝜓𝑗
𝑘 = 𝑉𝑎𝑟 𝜓𝑗

𝑘−𝑤+1, 𝜓𝑗
𝑘−𝑤+2, … , 𝜓𝑗

𝑘 .
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The local-quartile-variance method

• 𝑆𝐷 𝑑𝑤
𝑘 = 𝑉𝑎𝑟 𝑑𝑘−𝑤+1, 𝑑𝑘−𝑤+2, … , 𝑑𝑘 ;

• 𝑆𝐷 𝜌𝑤
𝑘 = 𝑉𝑎𝑟 𝜌𝑘−𝑤+1, 𝜌𝑘−𝑤+2, … , 𝜌𝑘 .

Pharmacokinetics (PK) analysis



Convergence diagnostics

If 𝑆𝐷 𝜌𝑤
𝑘 is less than equal to the user-defined cutoff value

(𝛼) with the window size of 𝑤, LPSO will be considered as

converged to a global optimum. Furthermore, if 𝑑𝑘 is

greater than the user-defined cutoff value (𝛽), the model is

considered as non-identifiable, where 𝑘 is the number of

iterations to converge which is identified by 𝑆𝐷 𝜌𝑤
𝑘 . The

general guideline for 𝛼 and 𝛽 is 0.001 and one,

respectively.



Simulation

• The constants of PSO
• 𝑐1, 𝑐2, 𝑤𝑚𝑎𝑥, 𝑤𝑚𝑖𝑛, 𝐾 = 2,2,0.9,0.3,5000

• #particles of each parameter: 10 for PSO and 5 for LPSO. 

• The parameter boundaries = (−20, 20). 

• The true values are 𝜃𝑡𝑟𝑢𝑒 = (0,−2.3) for the identifiable case and (0,15)
for non-identifiable case. 

• For both PSO and LPSO, the same seed number was 

used to generate the initial population. 
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𝑉𝑚𝑎𝑥 ⋅
𝐶 𝑡

𝐾𝑚 + 𝐶 𝑡

𝑉𝑚𝑎𝑥

𝐾𝑚
⋅ 𝐶(𝑡)

Non-identifiable

Identifiable
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Summary
• A novel version of PSO is proposed with enhancing the 

convergence of the local best using a derivative-free local 
optimization algorithm, which is called LPSO. 

• LPSO converges to a global optimum much faster than 
PSO does.

• Since PSO is a derivative-free algorithm and a derivative-
free local optimization is combined, the proposed LPSO 
becomes a derivative-free global optimization algorithm 
so that LPSO can be applied to the parameter estimation 
regardless of the identifiability. 

• Several convergence diagnostic measures are proposed 
and evaluated through both the simulation studies and 
clinical PK data analysis. 
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Outline
• Pharmacokinetics (PK) analysis

• Global optimization

• Identifiability

• Two-stage single-arm phase 2 clinical trial designs

• Simon’s two-stage and Lin and Shih’s adaptive designs

• Adaptive designs with three target response rates
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Clinical Trial Phases

97

Phase I

Safety

Phase II

Activity

Phase III

Evaluation

Phase IV

Long-term monitor

Phas

e

No. of Patients Length of 

Phase

Goal Success 

rate

1 Small (20-100) Short (several 

months)

-Dose finding trials

-Safety, dosages 

(Maximum tolerated 

dose (MTD)), 

efficacy

70%

2 Small (30-500) Short (several 

months to 2 

years)

-Screening trials

-Effectiveness and 

short-term safety

33%

3 Large (500-3000) Longer (1-4 

years)

-Safety and 

effectiveness

25-30%

4 Huge (>3000) Long-long (>20 

years)

-post-marketing 

monitor

-long-term safety and 

rare adverse effects

70-90%

Two-stage single-arm phase 2 clinical trial designs
Drug is accepted 

for marketing



Phase II Trials

• Provide initial assessment of efficacy or ‘clinical activity’

• Screen out ineffective drugs

• Identify promising new drugs for further evaluation

• Further define safety and toxicity 

• Minimize cost of the trial

• Minimize number of patients exposed to an ineffective treatment

• Enroll as few patients as “necessary” to show benefit or failure

Two-stage single-arm phase 2 clinical trial designs



Phase II study

• Single-arm phase II study (Phase IIA)

• Response rate is often used as its primary end point

• Small number of patients enrolled

• Reliance on historical controls for an estimation of expected 

response rate

• Gehan’s design (1961); Simon’s two-stage designs (1989); 

predictive probability design (2008), etc.

• Randomized phase II trial (Phase IIB)

• Simon et al’s ranking and selection randomized design (1985); 

randomized discontinuation design (2002); Bayesian adaptive 

designs, etc.

Two-stage single-arm phase 2 clinical trial designs



Simon’s Two-Stage Designs

• X: the number of responders

Stage 1:

Enroll 𝒏𝟏 patients

X > 𝒓𝟏 ?

Stage 2: 

enroll 𝒏𝟐 patients

X > 𝒓 ?

Stop

conclude 

lack of efficacy

No

Yes

No

Yes

Conclude lack 

of efficacy

Move to 

phase III

Ƹ𝑝 ≤ 𝑝0

Two-stage single-arm phase 2 clinical trial designs
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Simon’s Two-Stage Designs

• 𝐻0: 𝑝 ≤ 𝑝0 𝑣𝑠. 𝐻1: 𝑝 ≥ 𝑝1, 𝑤ℎ𝑒𝑟𝑒 𝑝0 < 𝑝1
• 𝑏 𝑥,𝑚, 𝑝 𝑎𝑛𝑑 𝐵(𝑥,𝑚, 𝑝): the pmf and cdf for 𝑥~𝐵𝑖𝑛(𝑚, 𝑝)

• 𝐺(𝑟1, 𝑛1, 𝑟, 𝑛, 𝑝): the prob of failing to reject 𝐻0

= 𝐵 𝑟1, 𝑛1, 𝑝 + 

𝑥=𝑟1+1

min 𝑟,𝑛1

𝑏 𝑥, 𝑛1, 𝑝 𝐵(𝑟 − 𝑥, 𝑛2, 𝑝)

, where 𝑛 = 𝑛1 + 𝑛2

• 𝐸 𝑁 𝑝 = 𝑛1 + 1 − 𝐵 𝑟1, 𝑛1, 𝑝 𝑛2: the expected sample size

• Greedy search (look for all cases) given 𝛼, 𝛽

• 𝐺 𝑟1, 𝑛1, 𝑟, 𝑛, 𝑝0 ≥ 1 − 𝛼; 𝐺 𝑟1, 𝑛1, 𝑟, 𝑛, 𝑝1 ≤ 𝛽

• Optimum design (min 𝐸𝑁0)

• Minimax design (min {max𝑁})

Two-stage single-arm phase 2 clinical trial designs



Adaptive Two-Stage Designs

• Allow the sample size at the second stage to depend on 

the results at the first stage

• Lin and Shih (2004)

• Banerjee and Tsiatis (2006)

Two-stage single-arm phase 2 clinical trial designs



Lin and Shih (2004)

• 𝑝0: the maximum uninteresting response rate

• 𝑝1, 𝑝2: two choices of the target response rates, where 

𝑝0 < 𝑝1 < 𝑝2

• 𝑛1 patients will be enrolled to the first stage

• #(patients) for the second stage will depend on the 

number of observed responses in the first stage

Two-stage single-arm phase 2 clinical trial designs



Lin and Shih (2004)

• X: the number of observed responders

Stage 1:

Enroll 𝒏𝟏 patients

𝑿 ≤ 𝒔𝟏 ?

Stage 2: 

enroll 𝒎𝟐 patients
𝑿 ≤ 𝒔 ?

Stop

conclude 

lack of efficacy

Yes

No

No

Yes

Conclude lack 

of efficacy

Move to 

phase III

Ƹ𝑝 ≤ 𝑝1

𝒔𝟏 < 𝑿 ≤ 𝒓𝟏 ?

Stage 2: 

enroll 𝒏𝟐 patients
𝑿 ≤ 𝒓 ?

Move to 

phase III
No

No

Yes

Yes

Ƹ𝑝 ≤ 𝑝2
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Lin and Shih (2004)

• X: the number of observed responders

Stage 1:

Enroll 𝒏𝟏 patients

𝑿 ≤ 𝒔𝟏 ?

Stage 2: 

enroll 𝒎𝟐 patients
𝑿 ≤ 𝒔 ?

Stop

conclude 

lack of efficacy

Yes

No

No

Yes

Conclude lack 

of efficacy

Move to 

phase III

Ƹ𝑝 ≤ 𝑝1

𝒔𝟏 < 𝑿 ≤ 𝒓𝟏 ?

Stage 2: 

enroll 𝒏𝟐 patients
𝑿 ≤ 𝒓 ?

Move to 

phase III
No

No

Yes

Yes

Ƹ𝑝 ≤ 𝑝2
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Lin and Shih (2004)

• 𝐻0: 𝑝 ≤ 𝑝0 𝑣𝑠. 𝐻1: 𝑝 ≥ 𝑝1 𝑜𝑟 𝐻1: 𝑝 ≥ 𝑝2 𝑤ℎ𝑒𝑟𝑒 𝑝0 < 𝑝1 < 𝑝2
• 𝑏 𝑥,𝑚, 𝑝 𝑎𝑛𝑑 𝐵(𝑥,𝑚, 𝑝): the pmf and cdf for 𝑥~𝐵𝑖𝑛(𝑚, 𝑝)
• 𝐺(𝑠1, 𝑟1, 𝑛1, 𝑠, 𝑚, 𝑟, 𝑛, 𝑝): the prob of failing to reject 𝐻0

= 𝐵 𝑠1, 𝑛1, 𝑝 + 

𝑥=𝑠1+1

min 𝑟1,𝑠

𝑏 𝑥, 𝑛1, 𝑝 𝐵(𝑠 − 𝑥,𝑚2, 𝑝)

+ 

𝑥=𝑟1+1

min 𝑟,𝑛1

𝑏 𝑥, 𝑛1, 𝑝 𝐵(𝑟 − 𝑥, 𝑛2, 𝑝)

, where m = m1 +m2; 𝑛 = 𝑛1 + 𝑛2
• 𝐸 𝑁 𝑝 = 𝑛1 + 𝐵 𝑟1, 𝑛1, 𝑝 − 𝐵 𝑠1, 𝑛1, 𝑝 𝑚2 + 1 − 𝐵 𝑟1, 𝑛1, 𝑝 𝑛2 : the expected sample size

• Greedy search (look for all cases) given 𝛼, 𝛽1, 𝛽2
• 𝐺 𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝0 ≥ 1 − 𝛼

• 𝐺 𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝1 ≤ 𝛽1
• 𝐺 𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝2 ≤ 𝛽2

Two-stage single-arm phase 2 clinical trial designs



Optimality criteria

• 𝑂1:min 𝐸𝑁0

• 𝑂2:min max
𝑖

𝐸𝑁𝑖

• 𝑂3:min max 𝑛,𝑚 𝑎𝑛𝑑min 𝐸𝑁0

• 𝑂4:min max 𝑛,𝑚 𝑎𝑛𝑑min max
𝑖

𝐸𝑁𝑖

Two-stage single-arm phase 2 clinical trial designs



Motivation

• A single arm two-stage phase II trial to see the effect of head 

and neck cancer (HNC) on the incidence of obstructive sleep 

apnea (OSA). 

• The maximum incidence rate of snoring and sleep apnea on 

healthy patients is 16.5% (i.e., p0 = 0.165). 

• Neither historical nor preliminary data available, except that the 

incidence rate of OSA will be higher in HNC patients.

• An empirical range of the target response rates, from 24.38% 

to 39.00%. 

• Simon’s two-stage design (80% power and 5% level)  the 

required sample sizes range from 30 to 197

• Due to wide range of the target response rates, Lin and Shih’s 

approach will not be able to cover the great uncertainty. 

Two-stage single-arm phase 2 clinical trial designs



Extension to three choices?

• “We do not extend the selection to more than two prefixed

possible response rates mainly due to the complexity in the

numerical solutions, and also because it is usually adequate

for practitioners to contemplate between two (high./low)

choices of 𝑝∗.”-Lin and Shih (2004)
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Sample size vs. Computation time

Simon’s two-stage
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How to reduce the computational burden?

• Nonlinear

• No closed form solution

• Not differentiable

Two-stage single-arm phase 2 clinical trial designs



Particle Swarm Optimization (PSO)

𝒙𝒕
𝒑

𝒗𝒕+𝟏
𝒑

𝒙𝒕+𝟏
𝒑

𝒙𝒍𝒃𝒆𝒔𝒕
𝒑

𝒙𝒈𝒃𝒆𝒔𝒕

𝒗𝒕
𝒑

𝒙

𝒚

𝒗𝒌+𝟏
𝒑

= 𝒘𝒌𝒗𝒌
𝒑
+ 𝒄𝟏𝒓𝟏 𝒙𝒍𝒃𝒆𝒔𝒕

𝒑
− 𝒙𝒌

𝒑
+ 𝒄𝟐𝒓𝟐 𝒙𝒈𝒃𝒆𝒔𝒕 − 𝒙𝒌

𝒑

𝒙𝒌+𝟏
𝒑

= 𝒙𝒌
𝒑
+ 𝒗𝒌+𝟏

𝒑
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Discrete Particle Swarm Optimization (DPSO)
• k-th iteration

𝑣𝑘+1
𝑝

= 𝑤𝑘𝑣𝑘
𝑝
+ 𝑐1𝑟1 𝑥𝑙𝑏𝑒𝑠𝑡

𝑝
− 𝑥𝑘

𝑝
+ 𝑐2𝑟2 𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑘

𝑝

𝑥𝑘+1
𝑝

= 𝑥𝑘
𝑝
+ 𝑣𝑘+1

𝑝

• p = 1,…,P; P: the population size

• 𝑥𝑙𝑏𝑒𝑠𝑡
𝑝

and 𝑥𝑔𝑏𝑒𝑠𝑡: local best and global best, respectively

• 𝑣𝑘+1
𝑝

: the velocity

• wk: inertia weight 

𝑤𝑘 = 𝑟𝑜𝑢𝑛𝑑 𝑤𝑚𝑎𝑥 −
𝑘

𝐾
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

• 𝑟1𝑐1, 𝑟2𝑐2: two random sequences in {0,1,2,…,n}; 𝑛 = 𝑐1𝑜𝑟 𝑐2
• K: total number of iterations
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Outline
• Pharmacokinetics (PK) analysis

• Global optimization

• Identifiability

• Two-stage single-arm phase 2 clinical trial designs

• Simon’s two-stage and Lin and Shih’s adaptive designs

• Adaptive designs with three target response rates
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Extension of Lin and Shih (2004)

• X: the number of observed responders

Stage 1:

Enroll 𝒏𝟏 patients

𝑿 ≤ 𝒕𝟏 ?

Stage 2: 

enroll 𝒍𝟐 patients
𝑿 ≤ 𝒕 ?

Stop

conclude 

lack of efficacy

Yes No

No

Yes

Conclude lack 

of efficacy

Move to 

phase III

ො𝑝 ≤ 𝑝1

𝒕𝟏 < 𝑿 ≤ 𝒔𝟏 ?

Stage 2: 

enroll 𝒏𝟐 patients
𝑿 ≤ 𝒓 ?

No

Yes

Yes ො𝑝 ≤ 𝑝3

𝒔𝟏 < 𝑿 ≤ 𝒓𝟏 ?
Stage 2: 

enroll 𝒎𝟐 patients

𝑿 ≤ 𝒔 ?

Conclude lack 

of efficacy

Yes

Yes

Move to 

phase III

Move to 

phase III

No

No

ො𝑝 ≤ 𝑝2

Kim and Wong 2017. SMMR.
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Extension of Lin and Shih (2004)

• 𝐻0: 𝑝 ≤ 𝑝0 𝑣𝑠. 𝐻1: 𝑝 ≥ 𝑝1 𝑜𝑟 𝐻1: 𝑝 ≥ 𝑝2 𝑜𝑟 𝐻1: 𝑝 ≥ 𝑝3, 𝑤ℎ𝑒𝑟𝑒 𝑝0 < 𝑝1 < 𝑝2 < 𝑝3
• 𝑏 𝑥,𝑚, 𝑝 𝑎𝑛𝑑 𝐵(𝑥,𝑚, 𝑝): the pmf and cdf for 𝑥~𝐵𝑖𝑛(𝑚, 𝑝)
• 𝐺(𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝): the prob of failing to reject 𝐻0

= 𝐵 𝑡1, 𝑛1, 𝑝 + 

𝑥=𝑡1+1

min 𝑠1,𝑡

𝑏 𝑥, 𝑛1, 𝑝 𝐵(𝑡 − 𝑥, 𝑙2, 𝑝)

+ 

𝑥=𝑠1+1

min 𝑟1,𝑠

𝑏 𝑥, 𝑛1, 𝑝 𝐵(𝑠 − 𝑥,𝑚2, 𝑝) + 

𝑥=𝑟1+1

min 𝑟,𝑛1

𝑏 𝑥, 𝑛1, 𝑝 𝐵 𝑟 − 𝑥, 𝑛2, 𝑝

, where l = l1 + l2; m = m1 +m2; 𝑛 = 𝑛1 + 𝑛2

• 𝐸 𝑁 𝑝 = 𝑛1 + 𝐵 𝑠1, 𝑛1, 𝑝 − 𝐵 𝑡1, 𝑛1, 𝑝 𝑙2 + 𝐵 𝑟1, 𝑛1, 𝑝 − 𝐵 𝑠1, 𝑛1, 𝑝 𝑚2 + 1 − 𝐵 𝑟1, 𝑛1, 𝑝 𝑛2 : the 
expected sample size

• Greedy search (look for all cases) given 𝛼, 𝛽1, 𝛽2, 𝛽3
• 𝐺 𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝0 ≥ 1 − 𝛼

• 𝐺 𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝1 ≤ 𝛽1
• 𝐺 𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝2 ≤ 𝛽2
• 𝐺 𝑠1, 𝑟1, 𝑛1, 𝑠,𝑚, 𝑟, 𝑛, 𝑝3 ≤ 𝛽3
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Optimality criteria

• 𝑂1:min 𝐸𝑁0

• 𝑂2:min max
𝑖

𝐸𝑁𝑖

• 𝑂3:min max 𝑙, 𝑛,𝑚 𝑎𝑛𝑑min 𝐸𝑁0

• 𝑂4:min max 𝑙, 𝑛,𝑚 𝑎𝑛𝑑min max
𝑖

𝐸𝑁𝑖
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Finding initial values

• G-DPSO

• Within this smaller domain, we searched for an appropriate set of 

initial values using the same strategy as the greedy search did for 

the rest of the parameters. 

• D-DPSO

• Use when the number of target responses is two or more. 

• Find the initial set of values using an optimal set of values decided 

by the case with the one less number of target response.

Two-stage single-arm phase 2 clinical trial designs



Two-stage single-arm phase 2 clinical trial designs



Two-stage single-arm phase 2 clinical trial designs



Two-stage single-arm phase 2 clinical trial designs



Two-stage single-arm phase 2 clinical trial designs









Two-stage single-arm phase 2 clinical trial designs



Two-stage single-arm phase 2 clinical trial designs



Two-stage single-arm phase 2 clinical trial designs



Two-stage single-arm phase 2 clinical trial designs





There is no clear winner that consistently requires the smallest expected sample sizes



Motivation

• A single arm two-stage phase II trial to see the effect of head 

and neck cancer (HNC) on the incidence of obstructive sleep 

apnea (OSA). 

• The maximum incidence rate of snoring and sleep apnea on 

healthy patients is 16.5% (i.e., p0 = 0.165). 

• Neither historical nor preliminary data available, except that the 

incidence rate of OSA will be higher in HNC patients.

• An empirical range of the target response rates, from 24.38% 

to 39.00%. 

• Simon’s two-stage design (80% power and 5% level)  the 

required sample sizes range from 30 to 197

• Due to wide range of the target response rates, Lin and Shih’s 

approach will not be able to cover the great uncertainty. 
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Obstructive sleep apnea (OSA)

• To assess the effect of HNC on the incidence of OSA 

compared to healthy patients. 

• p0 = 16.50%, p1 = 24.38%, p2 = 31.69%, p3 = 39.00%

• β1 = 0.20, β2 = 0.15, β3 = 0.10
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Obstructive sleep apnea (OSA)

• To assess the effect of HNC on the incidence of OSA 

compared to healthy patients. 

• p0 = 16.50%, p1 = 24.38%, p2 = 31.69%, p3 = 39.00%

• β1 = 0.20, β2 = 0.15, β3 = 0.10

It can cover the wide variation of the total sample size (35~188)
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Phase II study: BREAK-2

• A multicenter, international, single-arm, phase II study (BREAK-2) 
was carried out to assess the overall response rate of dabrafenib from 
patients with BRAFV 600E mutationpositive metastatic melanoma 
(Ascierto et al. (2013)). 

• The null hypothesis was set at p0 = 0.25 and the alternative 
hypothesis was set at p1 = 0.40. The trial wanted to recruit at least 85
patients and the plan was to declare the treatment a success if at 
least 29 patients responded. 

• The efficacy results show that 76 patients with BRAFV 600E 
mutationpositive metastatic melanoma were enrolled and 45 patients 
(59%) had a confirmed response. 

• Although its parent phase I study (Falchook et al. (2012)) showed the 
same type of patients had a response rate of 50%, this phase II study 
chose the response rate of 40% as an alternative hypothesis by 
lowering the response rate of phase I study. 

• However, based on the phase I study, it would be of benefit if the 
higher response rate was explored in addition to 40% because the 
final response rate of the phase II study was 59%. 
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• p0 = 0.25, p1 = 0.40, p2 = 0.50, and p3 = 0.55 

• β1 = 0.15, β2 = 0.10, and β3 = 0.05
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• p0 = 0.25, p1 = 0.40, p2 = 0.50, and p3 = 0.55 

• β1 = 0.15, β2 = 0.10, and β3 = 0.05

Two-stage single-arm phase 2 clinical trial designs

• The total sample sizes at p1 = 0.4 is less than 85 (BREAK-2)

• The total sample size at p3 = 0.55 is 31~39, which is at least 46 patients 

less than 85 (BREAK-2)



Summary

• A novel and effective nature-inspired stochastic 

population-based algorithm called discrete particle swarm 

optimization (DPSO) to find extended two-stage adaptive 

designs. 

• Algorithms based on a greedy search invariably failed to 

find extended two-stage adaptive designs and an 

improved version of DPSO, called D-DPSO finds the 

optimum. 

• When the problem is simplified to one or two target 

response rates, D-DPSO outperformed their peers by a 

wide margin.
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Thank you for being patient!





EM Algorithms
• Expectation (E) step

• Use current parameters to estimate the missing data

• Maximization (M) step

• Use estimated missing data to perform ML/MAP parameter estimation

• Repeat EM steps, until convergence
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• Maximization (M) step

• Use estimated missing data to perform ML/MAP parameter estimation

• Repeat EM steps, until convergence



EM Algorithms: some limitations
• Its limiting position can strongly depend on its starting position

• Its speed of convergence can be slow

• It can converge to local maxima or saddle points

• Either E-step or M-step is intractable (no closed form available)

• Pharmacokinetics/pharmacodynamics (PK/PD) models have nonlinear differential 

equations

• …


