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Weight Conjecture

G a finite group, r a prime, B an r -block of G .

A
:::::::
weight of G is a pair (R ; '), where

R is an r -subgroup of G ,

' 2 (NG (R)=R)_0 , i.e., ' is an irreducible character of

NG (R)=R in an r -block of defect 0. So R is a
::::::
radical

r -subgroup of G , i.e., R = Or (NG (R)).

(R ; ') is a
:::::::::
B-weight if the block b of NG (R) containing '

induces B in the sense of Brauer.
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Weight Conjecture

Let XB = firreducible Brauer characters in Bg.

Let YB = fB-weights of Gg=�G .

The Alperin Weight Conjecture

jXB j = jYB j

Alperin wrote in 1986 regarding the symmetric group Sn

“: : : the proof is an elaborate determination and count of the weights

and that the result coincides
:::::::
without

::::
any

::::::::::
apparent

::::::
direct

:::::::::::
connection

with the known results for the number of simple modules.”

But in fact, XB and YB for Sn are encoded by the same labels.
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Symmetric Groups

Nakayama: A block B of Sn is labeled by an r -core partition �,

where n = j�j+ wr and the r -weight w � 0. By James we may view

XB = f
::::::::
r -regular

::::::::::
partitions

:
� of n with r -core �g,

i.e., � = 1m12m2 � � � kmk with all mi < r . For the characters in XB are

characters of heads of certain Specht modules reduced modulo r ,

namely those labeled by r -regular partitions with r -core �. Let

X0B = f(�1; �2; : : : ; �r�1) : �i partitions,
P

i j�i j = wg.

Then there are natural bijections

XB  ! X0B ; X0B  ! YB
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Symmetric Groups

XB  ! X0B is due to Lascoux, Leclerc, and Thibon using work of

Hayashi, Kac, Kashiwara, Kleshchev, Misra, and Miwa. Needed:

1) Kleshchev’s connected r -good graph Γr

Vertices are r -regular partitions of n for n � 0.

Directed edges are colored by I = f0; 1; : : : ; r � 1g. The edge

� �!i � exists if
::::::
adding

::
a
::::::
good

:::::::
i -node to � gives �.

A node  is an
:::::::
i -node for i 2 I if  is in row s, column t, and

t � s � i (mod r). Example: For r = 3

has i -nodes 10 1 2 0
22 0 1

1
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Symmetric Groups

Let � be a Young diagram. A node  2 � is
::::::::::
removable if �nfg is a

Young diagram. A node  62 � is an
:::::::
addable node of � if �[ fg is a

Young diagram.

Write the sequence of R’s and A’s for the removable and addable

i -nodes occurring from left to right in �. Remove any RA from the

sequence; repeat until no RA remains. The first R and the last A in

what remains are the good removable and addable i -nodes of �.

For r = 3 adding the good 1-node to 10
21

1

gives 0
1

1

since the sequence of relevant 1-nodes is A(RA).
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Symmetric Groups

2) The action of the Weyl group W of bsl r on vertices of Γr given

by Kashiwara. This requires the
:::::
Fock

::::::
space F (the Uq( bsl r )-module

L
�Q(q)� with partitions � as basis); the

:::::
basic

:::::::
module M(Λ0) of F ;

and a
:::::::
crystal

:::::
basis for M(Λ0).

The actual effect of W on Γr : The fundamental reflection si of W

reflects maximal strings of i -edges in Γr about their centers.

Example: Γ3 has maximal 1-string

�!1 �!1 �!1

So s1 : (2; 4) ! (1; 3; 5); (2; 5) ! (3; 5).
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Symmetric Groups

3) Let �, �0 be r -cores in Γr . Then a result of Kac implies

w�(;) = �, w�0(;) = �0 for some w�, w�0 in W .

w�0w
�1
� : f� in Γr with r -core � and r -weight wg

�
�! f�0 in Γr with r -core �0 and r -weight wg

The bijection is independent of the choice of w� and w�0 .

Take �0 = (1r�1; 2r�1; : : : ; k r�1) with k � w � 1. The form of

�0 implies the partitions �0 in the second set have r -quotients

(�00; �
0
1; : : : ; �

0
r�1) with �0j = ; for j � k ( mod r) using abacus

diagrams with mr beads for the r -quotients. So w�0w
�1
� induces

XB �! X0B
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Symmetric Groups

X0B �! YB requires the
:::::
r -core

:::::::
tower of a partition �.

Let � have r -core �0 and r -quotient (�0; �1; : : : ; �r�1).

Let �i have r -core �0
i and r -quotient (�i0; �i1; : : : ; �i ;r�1).

Let �ij have r -core �0
ij and r -quotient (�ij0; �ij1; : : : ; �ij ;r�1).

Let I = f0; 1; : : : ; r � 1g. The r -core tower of � is

f�0
ū : ū 2 I h; h � 0g:

Then j�j =
X
h�0

X
ū2I h

rhj�0
ūj.
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Symmetric Groups Basic Subgroups

Fix a Sylow r -subgroup A of Sr . A
:::::
basic r -group of Sr` has form

Ak = A � A � � � � � A (` factors; ` � 1);

where � 2 f
; og and 
’s are performed before o’s.

The
::::::::
signature �(Ak) is the (`� 1)-tuple of 
’s and o’s defining Ak

and characterizes Ak up to conjugacy in Sr` . The
::::::
length of Ak is `;

the
:::::
depth of Ak is one plus the number of o’s in �(Ak).

Example: A
 A o A o A
 A
 A has signature (
; o; o;
;
),

length 6, and depth 3.
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Symmetric Groups Weights

Theorem: Let (R ; ') be a weight of Sn. Then

n = n0 + n1 + � � �+ ns

R = R0 � R1 � � � � � Rs

R0 is the 1-subgroup of Sn0

Ri is a basic subgroup of Sni for i � 1.

To describe ' in (NSn(R)=R)_0 write

R = R0 �
Y
k

Ak
Ωk

where the Ak are different basic subgroups.
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Symmetric Groups Weights

Let Nk be the normalizer of Ak in its ambient symmetric group.

NSn(R)=R = Sn0 �
Y
k

(Nk=Ak) o S(Ωk)

' = '0 �
Y
k

'k ,

'0 2 (Sn0)_0 has label an r -core partition of n0.

'k 2 ((Nk=Ak) o S(Ωk))_0 . So 'k is given by an assignment

fk : (Nk=Ak)_0 ! fr -coresg;
X
 

jfk( )j = jΩk j

by the character theory of wreath products.
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Symmetric Groups Weights

Namely, partition Ωk =
a

 2(Nk=Ak )_0

Ωk with jΩk j = jfk( )j.

The assignment fk gives

Y
 

 Ωk , a character of the base group (Nk=Ak)Ωk which

extends canonically to its stabilizer T in (Nk=Ak) o S(Ωk).
Y
 

�fk ( ), a character of T=(Nk=Ak)Ωk '
Y
 

S(Ωk ).

Inducing the product of the two characters of T to (Nk=Ak) o S(Ωk)

then gives 'k .
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Symmetric Groups Weights

And (Nk=Ak)_0 ? If Ak has depth t and the numbers of 
’s

between successive o’s in �(Ak) are c1�1; c2�1; : : : ; ct�1, then

Nk=Ak = GL(c1; r)� GL(c2; r)� � � � � GL(ct ; r).

Example: If �(Ak) = (
; o; o;
;
), then

Nk=Ak = GL(2; r)� GL(1; r)� GL(3; r).

This is because

N(A
 � � � 
 A)=(A
 � � � 
 A) ' GL(c ; r) (c factors A),

N(X o Y )=(X o Y ) ' N(X )=X � N(Y )=Y ,

where normalizers are in the appropriate ambient symmetric groups.
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Symmetric Groups Weights

Thus

(Nk=Ak)_0 =
tY

i=1

GL(ci ; r)_0 .

Now

GL(c ; r)_0 = fSt1; St2; : : : ; Str�1g,

where Sti = St� (�i � det), St is the Steinberg character, and

� generates (F�r )_. Let I+ = f1; 2; : : : ; r � 1g. So I t+ labels the

characters in (Nk=Ak)_0 and we may view the assignment fk of 'k

as an assignment

fk : I t+ ! fr -coresg;
X
v̄2I t+

jfk(v̄)j = jΩk j.
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Symmetric Groups The Bijection

To define the bijection X0B ! YB , Λ 7! (RΛ; 'Λ), where

RΛ = R0 �
Y
k

AΩk
k ; 'Λ = '0 �

Y
k

'k ,

we need

The jΩk j’s.

The assignments fk ’s defining the 'k ’s.

n0 = j�j so '0 can be labeled by �.

Let Λ = (�1; : : : ; �r�1) 2 X0B and let f�0
i ;ū : ū 2 I h; h � 0g

be the r -core tower of �i . The
:::::::::
signature �(ū) of ū 2 I h is the

tuple gotten from ū by replacing zeros by 
 and non-zeros by o.
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Symmetric Groups The Bijection

Suppose Ak has length ` and depth t.

Take jΩk j =
r�1X
i=1

X
ū2I`�1

�(ū)=�(Ak )

j�0
i ;ūj.

If �(ū) = �(Ak), then ū has t � 1 non-zero entries.

Let ū+ be the (t � 1)-tuple of these non-zero entries.

Take fk : (i ; ū+) 7! �0
i ;ū for ū 2 I `�1, �(ū) = �(Ak).

Take '0 = ��. For n0 = j�j since
r�1X
i=1

j�i j = w .

Then (RΛ; 'Λ) is a weight. (RΛ; 'Λ) is even a B-weight by

a result of Marichal-Puig. This gives X0B �! YB .
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Symmetric Groups The Bijection

Let r = 3. Let B be the block of G = S6 labeled by � = ;. Let B 0 be

the block labeled of G 0 = S8 labeled by by �0 = (12).

(6) (1; 7) ((2); ;; ;)  1 7! (2);  2 7! ;

(12; 4) (22; 4) ((12); ;; ;)  1 7! (12);  2 7! ;

(1; 2; 3) (1; 22; 3) (;; ;; (12))  1 7! ;;  2 7! (12)

(1; 5) (2; 6) (;; ;; (2))  1 7! ;;  2 7! (2)

(32) (42) ((1); ;; (1))  1 7! (1);  2 7! (1)

B-weights have the form (A2; ') since A is the only basic subgroup

of G . ' is given by an assignment f : (N=A)_0 ! f3-coresg and

(N=A)_0 = GL(1; 3)_0 = f 1;  2g with  2 = 1.
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The General Linear Group

Let G = GL(n; q) and let

F = fmonic, irreducible polynomials Γ in Fq[x ]g.

The �s;� in G_ have Jordan labels (s; �), where

s is a semisimple element of G determined up to G -conjugacy.

s =
Y

Γ2F

sΓ, where sΓ is the Γ-primary component of s.

� =
Y

Γ2F

�Γ, where �Γ ` mΓ(s), the multiplicity of Γ in s.

Let B be an r -block of G , where r 6= 2 and (r ; q) = 1. The Brauer

characters in XB are not known, but
X
'2XB

Z' has a known basis.
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The General Linear Group

For Γ in F let

dΓ be the degree of Γ,

eΓ be the multiplicative order of qdΓ modulo r .

B has a Jordan label (s; �), where

s is a semisimple
::
r 0-element determined up to G -conjugacy.

� =
Y

Γ2F

�Γ, and �Γ is the eΓ-core of a partition of mΓ(s).

X
'2XB

Z' has basis

X0B = f�s;� 2 G_ : �Γ has eΓ-core �Γ for Γ 2 Fg
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The General Linear Group Basic Subgroups

The �s;� in X0B define B-weights (R ; ') in the manner for Sn with

additional elaboration.

R = R0 �
Q

k Ak
Ωk , where basic subgroups Ak = Zd 
 E o As̄

are composed of a cyclic Zd > 1, an extra-special E of order

r 2+1 and exponent r , and a basic subgroup As̄ of Sn with

signature s̄. Here Zd = Or (GL(1; qde)), where e is the order of

qd modulo r .

Each  in (Nk=Ak)_0 has a well-defined
::::
type Γ in F . So

(Nk=Ak)_0 =
a

Γ2F

(Nk=Ak)_0Γ

where (Nk=Ak)_0Γ is the subset of  ’s of type Γ.
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The General Linear Group Basic Subgroups

The type of  2 (Nk=Ak)_0 is gotten as follows:

Fix a � 2 (CkAk=Ak)_0 in  jCkAk=Ak
, where Ck = CGk

(Ak).

�jCk
is trivial on Z (Ak) = Ck \ Ak . So �jCk

is the
:::::::::
canonical

character of a block � of Ck with defect group Z (Ak).

Ak = Zd 
 E o As̄ implies Ck ' GL(u; qv ), where r divides

qv � 1. So � has Jordan label (s;�) with s 2 GL(u; qv ).

In the ambient GL(uv ; q) containing GL(u; qv ), s has primary

decomposition ΓeΓ for Γ 2 F . This Γ is the type of  .
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The General Linear Group Basic Subgroups

The type allows a Jordan decomposition
Y

Γ2F

(RΓ; 'Γ) of (R ; '):

(RΓ; 'Γ) is a BΓ-weight of GL(nΓ; q), where BΓ has label (sΓ; �Γ).

Basic groups Ak in RΓ have parameters (dΓ; ; s̄).

�(Ak) = (
;
; : : : ;
), (
;
; : : : ;
; o), or (
;
; : : : ;
; o)[ s̄.

Assignments fk for 'k in 'Γ have support in (Nk=Ak)_0Γ.

(Nk=Ak)_0Γ ' [1; eΓ]� I t+, where t is the depth of As̄ .

Suppose �sΓ;�Γ
2 X0BΓ

. The r -core towers f�0
Γi ;ūg of the

eΓ-quotient f�Γ1; �Γ2; : : : ; �ΓeΓ
g of �Γ define a BΓ-weight as in

the Sn case.
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