The Alperin Weight Conjecture for S_n and GL_n Revisited

Paul Fong

University of Illinois at Chicago

Banff, October 2017

Paul Fong (University of Illinois at Chicago) Weight Conjecture in S_n and GL_n

G a finite group, r a prime, B an r-block of G.

A weight of G is a pair (R, φ) , where

- R is an r-subgroup of G,
- φ ∈ (N_G(R)/R)[∨]₀, i.e., φ is an irreducible character of N_G(R)/R in an r-block of defect 0. So R is a radical r-subgroup of G, i.e., R = O_r(N_G(R)).

 (R, φ) is a <u>B-weight</u> if the block *b* of $N_G(R)$ containing φ induces *B* in the sense of Brauer.

Let $\mathfrak{X}_B = \{$ irreducible Brauer characters in $B \}$. Let $\mathfrak{Y}_B = \{B$ -weights of $G \}/\sim_G$.

THE ALPERIN WEIGHT CONJECTURE

 $|\mathfrak{X}_B| = |\mathfrak{Y}_B|$

Alperin wrote in 1986 regarding the symmetric group S_n

"... the proof is an elaborate determination and count of the weights and that the result coincides <u>without any apparent direct connection</u> with the known results for the number of simple modules."

But in fact, \mathfrak{X}_B and \mathfrak{Y}_B for S_n are encoded by the same labels.

Nakayama: A block B of S_n is labeled by an r-core partition κ , where $n = |\kappa| + wr$ and the r-weight $w \ge 0$. By James we may view

 $\mathfrak{X}_B = \{\underline{r}\text{-regular partitions } \lambda \text{ of } n \text{ with } r\text{-core } \kappa\},\$

i.e., $\lambda = 1^{m_1} 2^{m_2} \cdots k^{m_k}$ with all $m_i < r$. For the characters in \mathfrak{X}_B are characters of heads of certain Specht modules reduced modulo r, namely those labeled by r-regular partitions with r-core κ . Let

$$\mathfrak{X}'_B = \{(\lambda_1, \lambda_2, \dots, \lambda_{r-1}) : \lambda_i \text{ partitions, } \sum_i |\lambda_i| = w\}.$$

Then there are natural bijections

$$\mathfrak{X}_B \longleftrightarrow \mathfrak{X}'_B, \qquad \mathfrak{X}'_B \longleftrightarrow \mathfrak{Y}_B$$

 $\mathfrak{X}_B \longleftrightarrow \mathfrak{X}'_B$ is due to Lascoux, Leclerc, and Thibon using work of Hayashi, Kac, Kashiwara, Kleshchev, Misra, and Miwa. Needed:

- 1) Kleshchev's connected *r*-good graph Γ_r
 - Vertices are *r*-regular partitions of *n* for $n \ge 0$.
 - Directed edges are colored by *I* = {0, 1, ..., *r* − 1}. The edge λ →_i μ exists if adding a good *i*-node to λ gives μ.
- A node γ is an <u>*i*-node</u> for $i \in I$ if γ is in row *s*, column *t*, and $t s \equiv i \pmod{r}$. Example: For r = 3

Let λ be a Young diagram. A node $\gamma \in \lambda$ is removable if $\lambda \setminus \{\gamma\}$ is a Young diagram. A node $\gamma \notin \lambda$ is an addable node of λ if $\lambda \cup \{\gamma\}$ is a Young diagram.

Write the sequence of R's and A's for the removable and addable *i*-nodes occurring from left to right in λ . Remove any RA from the sequence; repeat until no RA remains. The first R and the last A in what remains are the good removable and addable *i*-nodes of λ .

2) The action of the Weyl group W of $\widehat{\mathfrak{sl}}_r$ on vertices of Γ_r given by Kashiwara. This requires the Fock space \mathcal{F} (the $U_q(\widehat{\mathfrak{sl}}_r)$ -module $\bigoplus_{\lambda} \mathbb{Q}(q)\lambda$ with partitions λ as basis); the basic module $M(\Lambda_0)$ of \mathcal{F} ; and a crystal basis for $M(\Lambda_0)$.

The actual effect of W on Γ_r : The fundamental reflection s_i of W reflects maximal strings of *i*-edges in Γ_r about their centers.

Example: Γ_3 has maximal 1-string

So $s_1 \colon (2,4) \longleftrightarrow (1,3,5), \quad (2,5) \longleftrightarrow (3,5).$

3) Let κ , κ' be *r*-cores in Γ_r . Then a result of Kac implies

•
$$w_{\kappa}(\emptyset) = \kappa$$
, $w_{\kappa'}(\emptyset) = \kappa'$ for some w_{κ} , $w_{\kappa'}$ in W .

- $w_{\kappa'} w_{\kappa}^{-1}$: { λ in Γ_r with *r*-core κ and *r*-weight *w*} $\xrightarrow{\sim}$ { λ' in Γ_r with *r*-core κ' and *r*-weight *w*}
- The bijection is independent of the choice of w_{κ} and $w_{\kappa'}$.

Take $\kappa' = (1^{r-1}, 2^{r-1}, \dots, k^{r-1})$ with $k \ge w - 1$. The form of κ' implies the partitions λ' in the second set have *r*-quotients $(\lambda'_0, \lambda'_1, \dots, \lambda'_{r-1})$ with $\lambda'_j = \emptyset$ for $j \equiv k \pmod{r}$ using abacus diagrams with *mr* beads for the *r*-quotients. So $w_{\kappa'} w_{\kappa}^{-1}$ induces

$$\mathfrak{X}_B \longrightarrow \mathfrak{X}'_B$$

 $\mathfrak{X}'_B \longrightarrow \mathfrak{Y}_B$ requires the <u>*r*-core tower</u> of a partition λ .

- Let λ have *r*-core λ^0 and *r*-quotient $(\lambda_0, \lambda_1, \ldots, \lambda_{r-1})$.
- Let λ_i have *r*-core λ_i^0 and *r*-quotient $(\lambda_{i0}, \lambda_{i1}, \ldots, \lambda_{i,r-1})$.
- Let λ_{ij} have *r*-core λ_{ij}^0 and *r*-quotient $(\lambda_{ij0}, \lambda_{ij1}, \dots, \lambda_{ij,r-1})$.

Let $I = \{0, 1, \dots, r-1\}$. The *r*-core tower of λ is

 $\{\lambda^0_{\bar{u}}: \bar{u} \in I^h, h \ge 0\}.$

Then $|\lambda| = \sum_{h \ge 0} \sum_{\bar{u} \in I^h} r^h |\lambda_{\bar{u}}^0|.$

Paul Fong (University of Illinois at Chicago)

Fix a Sylow r-subgroup A of S_r. A basic r-group of $S_{r^{\ell}}$ has form

$$A_k = A * A * \cdots * A$$
 (ℓ factors, $\ell \geq 1$),

where $* \in \{\otimes, \wr\}$ and \otimes 's are performed before \wr 's.

The signature $\sigma(A_k)$ is the $(\ell - 1)$ -tuple of \otimes 's and \wr 's defining A_k and characterizes A_k up to conjugacy in $S_{r^{\ell}}$. The length of A_k is ℓ ; the depth of A_k is one plus the number of \wr 's in $\sigma(A_k)$.

Example: $A \otimes A \wr A \wr A \otimes A \otimes A$ has signature $(\otimes, \wr, \wr, \otimes, \otimes)$, length 6, and depth 3. Theorem: Let (R, φ) be a weight of S_n . Then

$$n = n_0 + n_1 + \dots + n_s$$
$$R = R_0 \times R_1 \times \dots \times R_s$$

- R_0 is the 1-subgroup of S_{n_0}
- R_i is a basic subgroup of S_{n_i} for $i \ge 1$.

To describe φ in $(N_{S_n}(R)/R)_0^{\vee}$ write

$$R = R_0 imes \prod_k A_k^{\Omega_k}$$

where the A_k are different basic subgroups.

Let N_k be the normalizer of A_k in its ambient symmetric group.

$$N_{S_n}(R)/R = S_{n_0} \times \prod_k (N_k/A_k) \wr S(\Omega_k)$$

$$\varphi = \varphi_0 \times \prod_k \varphi_k,$$

• $\varphi_0 \in (\mathsf{S}_{n_0})_0^{\vee}$ has label an *r*-core partition of n_0 .

• $\varphi_k \in ((N_k/A_k) \wr \mathsf{S}(\Omega_k))_0^{\lor}$. So φ_k is given by an assignment

$$f_k \colon (N_k/A_k)_0^{ee} o \{r ext{-cores}\}, \quad \sum_{\psi} |f_k(\psi)| = |\Omega_k|$$

by the character theory of wreath products.

Namely, partition $\Omega_k = \coprod_{\psi \in (N_k/A_k)_0^{\vee}} \Omega_{k\psi}$ with $|\Omega_{k\psi}| = |f_k(\psi)|$. The assignment f_k gives

• $\prod_{\psi} \psi^{\Omega_{k\psi}}$, a character of the base group $(N_k/A_k)^{\Omega_k}$ which extends canonically to its stabilizer T in $(N_k/A_k) \wr S(\Omega_k)$.

•
$$\prod_{\psi} \chi_{f_k(\psi)}$$
, a character of $T/(N_k/A_k)^{\Omega_k} \simeq \prod_{\psi} S(\Omega_{k\psi})$.

Inducing the product of the two characters of T to $(N_k/A_k) \wr S(\Omega_k)$ then gives φ_k . And $(N_k/A_k)_0^{\vee}$? If A_k has depth t and the numbers of \otimes 's between successive \wr 's in $\sigma(A_k)$ are $c_1-1, c_2-1, \ldots, c_t-1$, then

$$N_k/A_k = \operatorname{GL}(c_1, r) \times \operatorname{GL}(c_2, r) \times \cdots \times \operatorname{GL}(c_t, r)$$

Example: If $\sigma(A_k) = (\otimes, \wr, \wr, \otimes, \otimes)$, then

$$N_k/A_k = \operatorname{GL}(2, r) \times \operatorname{GL}(1, r) \times \operatorname{GL}(3, r).$$

This is because

$$N(A \otimes \cdots \otimes A)/(A \otimes \cdots \otimes A) \simeq \operatorname{GL}(c, r)$$
 (c factors A),
 $N(X \wr Y)/(X \wr Y) \simeq N(X)/X \times N(Y)/Y$,

where normalizers are in the appropriate ambient symmetric groups.

Thus

$$(N_k/A_k)_0^{\vee} = \prod_{i=1}^t \operatorname{GL}(c_i, r)_0^{\vee}.$$

Now

$$\mathsf{GL}(c,r)_0^{\vee} = \{\mathsf{St}_1,\mathsf{St}_2,\ldots,\mathsf{St}_{r-1}\},\$$

where $St_i = St \times (\xi^i \circ det)$, St is the Steinberg character, and ξ generates $(\mathbf{F}_r^{\times})^{\vee}$. Let $I_+ = \{1, 2, ..., r-1\}$. So I_+^t labels the characters in $(N_k/A_k)_0^{\vee}$ and we may view the assignment f_k of φ_k as an assignment

$$f_k\colon I^t_+ o \{ extrm{r-cores}\}, \quad \sum_{ar{v}\in I^t_+}|f_k(ar{v})|=|\Omega_k|.$$

To define the bijection $\mathfrak{X}'_B o \mathfrak{Y}_B$, $\Lambda \mapsto (R_\Lambda, \varphi_\Lambda)$, where

$$R_{\Lambda} = R_0 imes \prod_k A_k^{\Omega_k}, \quad \varphi_{\Lambda} = \varphi_0 imes \prod_k \varphi_k,$$

we need

• The $|\Omega_k|$'s.

• The assignments f_k 's defining the φ_k 's.

•
$$n_0 = |\kappa|$$
 so φ_0 can be labeled by κ .

Let $\Lambda = (\lambda_1, \dots, \lambda_{r-1}) \in \mathfrak{X}'_B$ and let $\{\lambda^0_{i;\bar{u}} : \bar{u} \in I^h, h \ge 0\}$ be the *r*-core tower of λ_i . The signature $\sigma(\bar{u})$ of $\bar{u} \in I^h$ is the tuple gotten from \bar{u} by replacing zeros by \otimes and non-zeros by \wr . Suppose A_k has length ℓ and depth t.

• Take
$$|\Omega_k| = \sum_{i=1}^{r-1} \sum_{\substack{ar{u} \in l^{\ell-1} \\ \sigma(ar{u}) = \sigma(A_k)}} |\lambda_{i;ar{u}}^0|.$$

If $\sigma(\bar{u}) = \sigma(A_k)$, then \bar{u} has t - 1 non-zero entries. Let \bar{u}_+ be the (t - 1)-tuple of these non-zero entries.

• Take
$$f_k : (i; \bar{u}_+) \mapsto \lambda^0_{i;\bar{u}}$$
 for $\bar{u} \in l^{\ell-1}$, $\sigma(\bar{u}) = \sigma(A_k)$.
• Take $\varphi_0 = \chi_{\kappa}$. For $n_0 = |\kappa|$ since $\sum_{i=1}^{r-1} |\lambda_i| = w$.

Then $(R_{\Lambda}, \varphi_{\Lambda})$ is a weight. $(R_{\Lambda}, \varphi_{\Lambda})$ is even a *B*-weight by a result of Marichal-Puig. This gives $\mathfrak{X}'_B \longrightarrow \mathfrak{Y}_B$. Let r = 3. Let B be the block of $G = S_6$ labeled by $\kappa = \emptyset$. Let B' be the block labeled of $G' = S_8$ labeled by by $\kappa' = (1^2)$.

B-weights have the form (A^2, φ) since *A* is the only basic subgroup of *G*. φ is given by an assignment $f: (N/A)_0^{\vee} \to \{3\text{-cores}\}$ and $(N/A)_0^{\vee} = \operatorname{GL}(1,3)_0^{\vee} = \{\psi_1, \psi_2\}$ with $\psi_2 = 1$. Let G = GL(n, q) and let

 $\mathcal{F} = \{ \text{monic, irreducible polynomials } \Gamma \text{ in } \mathbf{F}_q[x] \}.$

The $\chi_{s,\lambda}$ in G^{\vee} have Jordan labels (s,λ) , where

• s is a semisimple element of G determined up to G-conjugacy.

$$s = \prod_{\Gamma \in \mathcal{F}} s_{\Gamma}$$
, where s_{Γ} is the Γ -primary component of s

•
$$\lambda = \prod_{\Gamma \in \mathcal{F}} \lambda_{\Gamma}$$
, where $\lambda_{\Gamma} \vdash m_{\Gamma}(s)$, the multiplicity of Γ in s .

Let *B* be an *r*-block of *G*, where $r \neq 2$ and (r, q) = 1. The Brauer characters in \mathfrak{X}_B are not known, but $\sum_{\varphi \in \mathfrak{X}_B} \mathbf{Z}\varphi$ has a known basis.

For Γ in ${\mathcal F}$ let

- d_{Γ} be the degree of Γ ,
- e_{Γ} be the multiplicative order of $q^{d_{\Gamma}}$ modulo r.

B has a Jordan label (s, κ) , where

- s is a semisimple $\underline{r'}$ -element determined up to G-conjugacy.
- $\kappa = \prod_{\Gamma \in \mathcal{F}} \kappa_{\Gamma}$, and κ_{Γ} is the e_{Γ} -core of a partition of $m_{\Gamma}(s)$.

 $\sum_{arphi\in\mathfrak{X}_B} \mathsf{Z}arphi$ has basis

$$\mathfrak{X}'_B = \{\chi_{s,\lambda} \in G^{\vee} : \lambda_{\Gamma} \text{ has } e_{\Gamma}\text{-core } \kappa_{\Gamma} \text{ for } \Gamma \in \mathcal{F} \}$$

The $\chi_{s,\lambda}$ in \mathfrak{X}'_B define *B*-weights (R, φ) in the manner for S_n with additional elaboration.

- $R = R_0 \times \prod_k A_k^{\Omega_k}$, where basic subgroups $A_k = Z_d \otimes E_\gamma \wr A_{\bar{s}}$ are composed of a cyclic $Z_d > 1$, an extra-special E_γ of order $r^{2\gamma+1}$ and exponent r, and a basic subgroup $A_{\bar{s}}$ of S_n with signature \bar{s} . Here $Z_d = O_r(\operatorname{GL}(1, q^{de}))$, where e is the order of q^d modulo r.
- Each ψ in $(N_k/A_k)_0^{\vee}$ has a well-defined type Γ in \mathcal{F} . So

$$(N_k/A_k)_0^ee = \coprod_{\Gamma\in\mathcal{F}} (N_k/A_k)_{0\Gamma}^ee$$

where $(N_k/A_k)_{0\Gamma}^{\vee}$ is the subset of ψ 's of type Γ .

The type of $\psi \in (N_k/A_k)_0^{\vee}$ is gotten as follows:

- Fix a $\theta \in (C_k A_k / A_k)_0^{\lor}$ in $\psi|_{C_k A_k / A_k}$, where $C_k = C_{G_k}(A_k)$.
- $\theta|_{C_k}$ is trivial on $Z(A_k) = C_k \cap A_k$. So $\theta|_{C_k}$ is the <u>canonical</u> character of a block β of C_k with defect group $Z(A_k)$.
- $A_k = Z_d \otimes E_{\gamma} \wr A_{\overline{s}}$ implies $C_k \simeq GL(u, q^v)$, where r divides $q^v 1$. So β has Jordan label (s, -) with $s \in GL(u, q^v)$.
- In the ambient GL(uv, q) containing GL(u, q^v), s has primary decomposition Γ^{e_Γ} for Γ ∈ F. This Γ is the type of ψ.

The type allows a Jordan decomposition $\prod_{\Gamma \in \mathcal{F}} (R_{\Gamma}, \varphi_{\Gamma})$ of (R, φ) :

- (R_Γ, φ_Γ) is a B_Γ-weight of GL(n_Γ, q), where B_Γ has label (s_Γ, κ_Γ). Basic groups A_k in R_Γ have parameters (d_Γ, γ, s̄). σ(A_k) = (⊗, ⊗, ..., ⊗), (⊗, ⊗, ..., ⊗, ≀), or (⊗, ⊗, ..., ⊗, ≀) ∪ s̄.
- Assignments f_k for φ_k in φ_{Γ} have support in $(N_k/A_k)_{0\Gamma}^{\vee}$.
- $(N_k/A_k)_{0\Gamma}^{\vee} \simeq [1, e_{\Gamma}] \times I_+^t$, where t is the depth of $A_{\bar{s}}$.
- Suppose χ_{s_Γ,λ_Γ} ∈ ℋ'_{B_Γ}. The *r*-core towers {λ⁰_{Γi;ū}} of the *e*_Γ-quotient {λ_{Γ1}, λ_{Γ2},..., λ_{Γe_Γ}} of λ_Γ define a *B*_Γ-weight as in the *S_n* case.