Some refinements of Dade's Projective

Conjecture

Alexandre Turull

University of Florida
October 17, 2017

New Perspectives in Representation Theory of Finite Groups

Banff International Research Station

Schur indices

- I. Schur
- R. Brauer
- W. Feit
$\chi \in \operatorname{lrr}(G)$
F a field of characteristic zero
$\bar{\chi}$ the sum of all Galois conjugates of χ over F
$m_{F}(\chi)$ is the smallest number such that some module over F affords $\mathrm{m}_{F}(\chi) \bar{\chi}$
$m_{F}(\chi)$ can be any positive integer (Brauer)
Feit's Question: If G is quasi-simple, is $m_{F}(\chi) \leq 2$?
If G is perfect, $m_{F}(\chi)$ can be any positive integer (Turull)

Local Schur indices

$m_{p}(\chi)=\mathrm{m}_{\mathrm{Q}_{p}}(\chi)$ local Schur index of χ
Local Schur indices are unbounded even on characters in block of cyclic defect

Brauer groups

If $F(\chi)=F$, then $\operatorname{End}_{F G}(M)$ determines a unique element $[\chi]_{F}$ of $\operatorname{Br}(F)$

These elements are of unbounded order, even among local fields F and χ in blocks of cyclic defect

Dade's Projective Conjecture

Notation

p a prime.
\mathbf{Q}_{p} field of p-adic numbers. $\overline{\mathbf{Q}_{p}}$ the algebraic closure of \mathbf{Q}_{p}.
G, H finite groups.
Z a p-subgroup of $Z(G)$.
$\mathcal{N}(G, Z)$ the set of all sets C of p-subgroups of G such that each element of C strictly contains Z, C is totally ordered by inclusion, and all elements of C are normal subgroups of the largest element of C. $\mathcal{N}(G, Z) / G$ a set of representatives of the orbits of G.

Let $\chi \in \operatorname{Irr}(H)$.
$\operatorname{codeg}(\chi)=|H| / \chi(1)$ the codegree of χ.
$\mathrm{d}(\chi)$ and $\mathrm{r}(\chi)$ the unique integers so that

$$
\operatorname{codeg}(\chi)=p^{\mathrm{d}(\chi)} \mathrm{r}(\chi)
$$

and p does not divide $r(\chi)$. We call $\mathrm{d}(\chi)$ the p-defect of χ, and we call $r(\chi)$ the p-residue of χ.

Let $\lambda \in \operatorname{Irr}(Z), B$ be a p-block of G, and let d be a non-negative integer. For H a subgroup of G with $Z \subseteq H$,

$$
k(H, B, \lambda, d)
$$

is the number of elements $\psi \in \operatorname{Irr}(H)$ such that $\mathrm{d}(\psi)=d, \psi$ is in a block that induces to B, and the restriction of ψ to Z contains λ as an irreducible constituent.

Dade Projective Conjecture

Let $\lambda \in \operatorname{Irr}(Z), B$ be a p-block of G, and let d be a non-negative integer. Assume that Z is not a defect group of B. Then

$$
\sum_{C \in \mathcal{N}(G, Z) / G}(-1)^{|C|} k\left(N_{G}(C), B, \lambda, d\right)=0 .
$$

Britta Späth recently published a reduction theorem for Dade's Projective Conjecture.

Refinements

Refining k

F a field with $\mathbf{Q}_{p} \subseteq F \subseteq \overline{\mathbf{Q}_{p}}$.
$r \in\{1, \ldots, p-1\}$.

$$
k(H, B, \lambda, d, r, F)
$$

the number of elements $\psi \in \operatorname{Irr}(H)$ such that ψ is in a p-block that induces to B, ψ has p-defect d, ψ has p-residue congruent to $\pm r$ modulo p, the restriction of ψ to Z contains λ as an irreducible constituent, and $\mathbf{Q}_{p}(\psi)=F$.

Refined Conjecture (Dade, Isaacs, Navarro, Uno). Under the assumptions of Dade's Projective Conjecture we should also have

$$
\sum_{C \in \mathcal{N}(G, Z) / G}(-1)^{|C|} k\left(\mathrm{~N}_{G}(C), B, \lambda, d, r, F\right)=0 .
$$

One then recovers the original Dade conjecture by addition over the new variables.

Conjecture (Boltje)

Let n be any integer. Assume that Z is not a defect group of B. Then

$$
\sum_{C \in \mathcal{N}(G, Z)_{\leq n / G}}(-1)^{n-|C|} k\left(N_{G}(C), B, \lambda, d, r, F\right) \geq 0 .
$$

Further refining k

Pick some $s \in \operatorname{Br}(F)$. Then

$$
k(H, B, \lambda, d, r, F, s)
$$

is the number of elements $\psi \in \operatorname{lrr}(H)$ as before which, in addition, satisfy

$$
[\psi]_{F}=s .
$$

In particular, all the relevant ψ have the same Schur index $m_{F}(\psi)$ over F.

Refined Conjecture

Let n be any integer. Assume that Z is not a defect group of B.
Then

$$
\sum_{C \in \mathcal{N}(G, Z)_{\leq n} / G}(-1)^{n-|C|} k\left(N_{G}(C), B, \lambda, d, r, F, s\right) \geq 0 .
$$

Theorem
 The Refined Conjecture holds whenever G is p-solvable.

Theorem
 The Refined Conjecture holds whenever G is p-solvable.

Corollary

All the other refinements of the Dade Projective Conjecture hold for all p-solvable groups.

Earlier work

G. R. Robinson $(2,000)$
A. Glesser $(2,007)$

Robinson's approach is indirect
It uses Külshammer-Puig on extensions of nilpotent blocks
Glesser uses a similar approach

The new proof

- Uses a direct approach via reduction theorems
- Does not use Külshammer-Puig on extensions of nilpotent blocks
- Does not assume special cases of the conjecture

Tools

Tools

A. Turull, Above the Glauberman correspondence (2008)

Tools

A. Turull, Above the Glauberman correspondence (2008)
A. Turull, Inverse Glauberman-Isaacs correspondence and subnormal subgroups (2015)

Tools

A. Turull, Above the Glauberman correspondence (2008)
A. Turull, Inverse Glauberman-Isaacs correspondence and subnormal subgroups (2015)

Character triple isomorphisms preserving rationality

Reduction theorems

Theorem

Let D be a defect group for B. Suppose that N is a normal p^{\prime}-subgroup of G. Then there exist $\theta_{0} \in \operatorname{lrr}_{D}(N), T=\tilde{I}_{G}\left(\theta_{0}, F\right)$, and $B_{0} \in \mathrm{Bl}_{p}\left(T \mid \theta_{0}\right)$ satisfying all the following.
(1) $B=B_{0}^{G}, B \in \mathrm{BI}_{p}\left(G \mid \theta_{0}\right)$, and D is a defect group of B_{0}.
(2) Let $C_{1} \in \mathcal{N}(G, Z)$, and let C_{1}^{G} be the set of G conjugates of C_{1}. Then

$$
\begin{aligned}
& k\left(\mathrm{~N}_{G}\left(C_{1}\right), B, \lambda, d, r, F, s\right)= \\
& \sum_{C \in\left(C_{1}^{G} \cap \mathcal{N}(T, z)\right) / T} k\left(\mathrm{~N}_{T}(C), B_{0}, \lambda, d, r, F, s\right) .
\end{aligned}
$$

Theorem

Let N be a normal p^{\prime}-subgroup of G, and let M be a normal subgroup of G such that $Z N \subseteq M$ and M / N is a p-group. Let P be a Sylow p-subgroup of M. Let $\theta \in \operatorname{Irr}(N)$ be P-invariant, and let $\eta \in \operatorname{Irr}\left(\mathrm{C}_{N}(P)\right)$ be the Glauberman correspondent of θ with respect to the action of P so that $\eta=\pi(P, N)(\theta)$. Assume that $G=\tilde{I}_{G}(\theta, F)$, and that there is a single p-block block B of G above θ, so that $\{B\}=\mathrm{BI}_{p}(G \mid \theta)$. Let $B_{0} \in \mathrm{BI}_{p}\left(\mathrm{~N}_{G}(P) \mid \eta\right)$. Then, $\left\{B_{0}\right\}=\mathrm{BI}_{p}\left(\mathrm{~N}_{G}(P) \mid \eta\right)$, every defect group of B_{0} is a defect group of $B, B_{0}^{G}=B$, and for every $C \in \mathcal{N}\left(\mathrm{~N}_{G}(P), Z\right)$, we have
(1) $k\left(\mathrm{~N}_{G}(C), B, \lambda, d, r, F, s\right)=k\left(\mathrm{~N}_{G}(C) \cap \mathrm{N}_{G}(P), B_{0}, \lambda, d, r, F, s\right)$.

Theorem

The Refined Conjecture holds whenever G is p-solvable.

