Some refinements of Dade's Projective Conjecture

Alexandre Turull

University of Florida

October 17. 2017

New Perspectives in Representation Theory of Finite Groups

Banff International Research Station

Alexandre Turull (University of Florida)

Dade Projective Conjecture

200

<ロト <回ト < 回ト < 回ト

Schur indices

- I. Schur
- R. Brauer
- W. Feit

590

▲ロト ▲圖ト ▲屋ト ▲屋ト

- $\chi \in \operatorname{Irr}(G)$
- F a field of characteristic zero
- $\overline{\chi}$ the sum of all Galois conjugates of χ over F

 $m_F(\chi)$ is the smallest number such that some module over F affords $m_F(\chi)\overline{\chi}$

200

 $m_F(\chi)$ can be any positive integer (Brauer) Feit's Question: If G is quasi-simple, is $m_F(\chi) \le 2$? If G is perfect, $m_F(\chi)$ can be any positive integer (Turull)

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Local Schur indices

 $m_p(\chi) = m_{\mathbf{Q}_p}(\chi)$ local Schur index of χ

Local Schur indices are unbounded even on characters in block of cyclic defect

200

(日) (四) (三) (三) (三)

Brauer groups

If $F(\chi) = F$, then $\operatorname{End}_{FG}(M)$ determines a unique element $[\chi]_F$ of $\operatorname{Br}(F)$

These elements are of unbounded order, even among local fields F and χ in blocks of cyclic defect

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Dade's Projective Conjecture

590

イロト イヨト イヨト イヨト

Notation

p a prime.

- \mathbf{Q}_p field of *p*-adic numbers. $\overline{\mathbf{Q}_p}$ the algebraic closure of \mathbf{Q}_p .
- G, H finite groups.
- Z a p-subgroup of Z(G).

 $\mathcal{N}(G, Z)$ the set of all sets *C* of *p*-subgroups of *G* such that each element of *C* strictly contains *Z*, *C* is totally ordered by inclusion, and all elements of *C* are normal subgroups of the largest element of *C*. $\mathcal{N}(G, Z)/G$ a set of representatives of the orbits of *G*.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Let $\chi \in Irr(H)$. $codeg(\chi) = |H|/\chi(1)$ the <u>codegree</u> of χ . $d(\chi)$ and $r(\chi)$ the unique integers so that

$$\operatorname{codeg}(\chi) = p^{\operatorname{\mathsf{d}}(\chi)} \operatorname{\mathsf{r}}(\chi)$$

and p does not divide $r(\chi)$. We call $d(\chi)$ the p-<u>defect</u> of χ , and we call $r(\chi)$ the p-<u>residue</u> of χ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Let $\lambda \in Irr(Z)$, B be a p-block of G, and let d be a non-negative integer. For H a subgroup of G with $Z \subseteq H$,

 $k(H, B, \lambda, d)$

is the number of elements $\psi \in Irr(H)$ such that $d(\psi) = d$, ψ is in a block that induces to B, and the restriction of ψ to Z contains λ as an irreducible constituent.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

DADE PROJECTIVE CONJECTURE

Let $\lambda \in Irr(Z)$, B be a p-block of G, and let d be a non-negative integer. Assume that Z is not a defect group of B. Then

$$\sum_{C \in \mathcal{N}(G,Z)/G} (-1)^{|C|} k(\mathsf{N}_G(C), B, \lambda, d) = 0.$$

200

イロト イポト イヨト イヨト

Britta Späth recently published a reduction theorem for Dade's Projective Conjecture.

590

Refinements

5990

(日) (四) (注) (注) (三)

Refining k

F a field with $\mathbf{Q}_{p} \subseteq F \subseteq \overline{\mathbf{Q}_{p}}$. $r \in \{1, \dots, p-1\}$.

$k(H, B, \lambda, d, r, F)$

the number of elements $\psi \in Irr(H)$ such that ψ is in a *p*-block that induces to *B*, ψ has *p*-defect *d*, ψ has *p*-residue congruent to $\pm r$ modulo *p*, the restriction of ψ to *Z* contains λ as an irreducible constituent, and $\mathbf{Q}_p(\psi) = F$.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Refined Conjecture (Dade, Isaacs, Navarro, Uno). Under the assumptions of Dade's Projective Conjecture we should also have

$$\sum_{C\in\mathcal{N}(G,Z)/G} (-1)^{|C|} k(\mathsf{N}_G(C), B, \lambda, d, r, F) = 0.$$

One then recovers the original Dade conjecture by addition over the new variables.

200

イロト イポト イヨト イヨト

CONJECTURE (BOLTJE)

Let n be any integer. Assume that Z is not a defect group of B. Then

$$\sum_{C \in \mathcal{N}(G,Z)_{\leq n}/G} (-1)^{n-|C|} k(\mathsf{N}_G(C), B, \lambda, d, r, F) \geq 0$$

590

Further refining k

Pick some $s \in Br(F)$. Then

$$k(H, B, \lambda, d, r, F, s)$$

is the number of elements $\psi \in \operatorname{Irr}(H)$ as before which, in addition, satisfy

$$[\psi]_F = s.$$

In particular, all the relevant ψ have the same Schur index $m_F(\psi)$ over F.

Alexandre Turull (University of Florida)

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Refined Conjecture

Let n be any integer. Assume that Z is not a defect group of B. Then

$$\sum_{C\in\mathcal{N}(G,Z)\leq n/G}(-1)^{n-|C|}k(\mathsf{N}_G(C),B,\lambda,d,r,F,s)\geq 0.$$

<ロト <回ト < 三ト < 三ト

DQA

The Refined Conjecture holds whenever G is p-solvable.

COROLLARY

All the other refinements of the Dade Projective Conjecture hold for

all *p*-solvable groups.

The Refined Conjecture holds whenever G is p-solvable.

COROLLARY

All the other refinements of the Dade Projective Conjecture hold for

all *p*-solvable groups.

E

San

- 4 回 ト 4 ヨ ト 4 ヨ ト

Earlier work

G. R. Robinson (2,000)

A. Glesser (2,007)

590

イロト イヨト イヨト イヨト

Robinson's approach is indirect

It uses Külshammer-Puig on extensions of nilpotent blocks

Glesser uses a similar approach

200

The new proof

- Uses a direct approach via reduction theorems
- Does not use Külshammer-Puig on extensions of nilpotent blocks
- Does not assume special cases of the conjecture

na C

イロト イポト イヨト イヨト

A. Turull, Above the Glauberman correspondence (2008)

 A. Turull, Inverse Glauberman-Isaacs correspondence and subnormal subgroups (2015)

3

DQA

イロト イヨト イヨト

A. Turull, Above the Glauberman correspondence (2008)

San

Tools

A. Turull, Above the Glauberman correspondence (2008)

A. Turull, Inverse Glauberman-Isaacs correspondence and subnormal subgroups (2015)

Sac

イロト イポト イヨト イヨト

A. Turull, Above the Glauberman correspondence (2008)

A. Turull, Inverse Glauberman-Isaacs correspondence and subnormal subgroups (2015)

Character triple isomorphisms preserving rationality

200

イロト イポト イヨト イヨト

Reduction theorems

5990

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let D be a defect group for B. Suppose that N is a normal

p'-subgroup of G. Then there exist $\theta_0 \in \operatorname{Irr}_D(N)$, $T = \tilde{I}_G(\theta_0, F)$, and $B_0 \in \mathsf{Bl}_p(\mathcal{T}|\theta_0)$ satisfying all the following.

- $B = B_0^G$, $B \in Bl_p(G|\theta_0)$, and D is a defect group of B_0 .
- 2 Let $C_1 \in \mathcal{N}(G, Z)$, and let C_1^G be the set of G conjugates of C_1 . Then

$$k(\mathsf{N}_{G}(C_{1}), B, \lambda, d, r, F, s) = \sum_{C \in (C_{1}^{G} \cap \mathcal{N}(T, Z))/T} k(\mathsf{N}_{T}(C), B_{0}, \lambda, d, r, F, s).$$

590

Let N be a normal p'-subgroup of G, and let M be a normal subgroup of G such that $ZN \subset M$ and M/N is a p-group. Let P be a Sylow p-subgroup of M. Let $\theta \in Irr(N)$ be P-invariant, and let $\eta \in Irr(C_N(P))$ be the Glauberman correspondent of θ with respect to the action of P so that $\eta = \pi(P, N)(\theta)$. Assume that $G = I_G(\theta, F)$, and that there is a single p-block block B of G above θ , so that $\{B\} = Bl_p(G|\theta)$. Let $B_0 \in Bl_p(N_G(P)|\eta)$. Then, $\{B_0\} = Bl_p(N_G(P)|\eta)$, every defect group of B_0 is a defect group of B, $B_0^G = B$, and for every $C \in \mathcal{N}(N_G(P), Z)$, we have

(1) $k(N_G(C), B, \lambda, d, r, F, s) = k(N_G(C) \cap N_G(P), B_0, \lambda, d, r, F, s).$

3

500

The Refined Conjecture holds whenever G is p-solvable.

200

イロト イヨト イヨト