Fields of Character Values in Finite Groups

Dan Rossi
drossi@math.arizona.edu
University of Arizona
\section*{BIRS}
New Perspectives in Representation Theory of Finite Groups October 19, 2017

$$
\begin{aligned}
& \mathbb{F} \subseteq \mathbb{C}, G \text { a finite group } \\
& x \in G, \chi \in \operatorname{Irr}(G)
\end{aligned}
$$

Definition

If $\chi(x) \in \mathbb{F}$ for all $x \in G, \chi$ is an \mathbb{F}-character.
$\operatorname{Irr}_{\mathbb{F}}(G):=\{\chi \in \operatorname{Irr}(G): \chi$ is an \mathbb{F}-character $\}$.
$\mathbb{F} \subseteq \mathbb{C}, G$ a finite group
$x \in G, \chi \in \operatorname{Irr}(G)$.

Definition

If $\chi(x) \in \mathbb{F}$ for all $x \in G, \chi$ is an \mathbb{F}-character.
$\operatorname{Irr}_{\mathbb{F}}(G):=\{\chi \in \operatorname{Irr}(G): \chi$ is an \mathbb{F}-character $\}$.

Definition

If $\chi(x) \in \mathbb{F}$ for all $\chi \in \operatorname{Irr}(G)$, then x is an \mathbb{F}-element.
$\mathrm{Cl}_{\mathbb{F}}(G):=\left\{x^{G} \in \mathrm{Cl}(G): x\right.$ is an \mathbb{F}-element $\}$ (\mathbb{F}-classes).
Note: $x \in G$ is rational if and only if x and x^{t} are G-conjugate whenever $(t, o(x))=1$.

Motivation

Some classical results:

- (Thompson). If every non-linear $\chi \in \operatorname{Irr}(G)$ has degree divisible by p then G has a normal p-complement.
- (Ito-Michler). If $p \nmid \chi(1)$ for every $\chi \in \operatorname{Irr}(G)$ then G has a normal, abelian Sylow p-subgroup.
- If $\#\{\chi(1): \chi \in \operatorname{Irr}(G)\} \leq 3$ then G is solvable.

Motivation

"IF-versions" of classical results:

- (Navarro-Tiep). If every non-linear $\chi \in \operatorname{Irr}_{\mathbb{Q}_{p}}(G)$ has degree divisible by p then G has a normal p-complement.
- (Dolfi-N-T). If $2 \nmid \chi(1)$ for every $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$ then G has a normal, abelian Sylow 2-subgroup.
- (N-Sanus-T). If $\#\left\{\chi(1): \chi \in \operatorname{Irr}_{\mathbb{R}}(G)\right\} \leq 3$ then G is solvable.

Question: What is the relationship between $\operatorname{Irr}_{\mathbb{F}}(G)$ and $\mathrm{Cl}_{\mathbb{F}}(G)$?

Question: What is the relationship between $\operatorname{Irr}_{\mathbb{F}}(G)$ and $\mathrm{Cl}_{\mathbb{F}}(G)$?

- $\left|\operatorname{Irr}_{\mathbb{R}}(G)\right|=\left|\mathrm{Cl}_{\mathbb{R}}(G)\right|$.

Question: What is the relationship between $\operatorname{Irr}_{\mathbb{F}}(G)$ and $\mathrm{Cl}_{\mathbb{F}}(G)$?

- $\left|\operatorname{Irr}_{\mathbb{R}}(G)\right|=\left|\mathrm{Cl}_{\mathbb{R}}(G)\right|$.
- But for arbitrary \mathbb{F}, not much is known.

Question: What is the relationship between $\operatorname{Irr}_{\mathbb{F}}(G)$ and $\mathrm{Cl}_{\mathbb{F}}(G)$?

- $\left|\operatorname{Irr}_{\mathbb{R}}(G)\right|=\left|\mathrm{Cl}_{\mathbb{R}}(G)\right|$.
- But for arbitrary \mathbb{F}, not much is known.

Theorem (Navarro-Tiep, 2008)
Suppose G is a finite group. Then

- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=1$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=1$.
- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=2$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=2$.

Both parts require CFSG.

Question: What is the relationship between $\operatorname{Irr}_{\mathbb{F}}(G)$ and $\mathrm{Cl}_{\mathbb{F}}(G)$?

Theorem (Navarro-Tiep, 2008)
Suppose G is a finite group. Then

- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=1$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=1$.
- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=2$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=2$.

```
Conjecture
|rr
```

Question: What is the relationship between $\operatorname{Irr}_{\mathbb{F}}(G)$ and $\mathrm{Cl}_{\mathbb{F}}(G)$?

Theorem (Navarro-Tiep, 2008)
Suppose G is a finite group. Then

- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=1$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=1$.
- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=2$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=2$.

```
Conjecture (Navarro-Tiep)
\(\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3\) if and only if \(\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3\).
```

Question: What is the relationship between $\operatorname{Irr}_{\mathbb{F}}(G)$ and $\mathrm{Cl}_{\mathbb{F}}(G)$?

Theorem (Navarro-Tiep, 2008)
Suppose G is a finite group. Then

- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=1$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=1$.
- $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=2$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=2$.

Conjecture (Navarro-Tiep)

$\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$ if and only if $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$.
Remark: GAP SmallGroup $(672,128)$ has $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=4$ but $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=6$.

The Navarro-Tiep Conjecture

Theorem (R. 2017)
Let G be any finite group. If $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$ then $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$.

The Navarro-Tiep Conjecture

Theorem (R. 2017)
Let G be any finite group. If $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$ then $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$.
Proof outline:
(1) Assume G has no rational element of order 4 - Use Brauer's character table lemma.
(2) If G has a rational element of order 4, the structure of G can be very tightly controlled - Enough control to handle explicitly.

Galois action and Brauer's lemma

The setup:

- Assume $|G|=n, \sigma \in \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$, and $\zeta^{\sigma}=\zeta^{\text {s }}$.
- If $x \in G$, define $x^{\sigma}=x^{S}$ and $\left(x^{G}\right)^{\sigma}=\left(x^{\sigma}\right)^{G}$.
- If $\chi \in \operatorname{Irr}(G)$, define $\chi^{\sigma}=\sigma^{-1} \circ \chi$.

Galois action and Brauer's lemma

The setup:

- Assume $|G|=n, \sigma \in \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$, and $\zeta^{\sigma}=\zeta^{\text {s }}$.
- If $x \in G$, define $x^{\sigma}=x^{s}$ and $\left(x^{G}\right)^{\sigma}=\left(x^{\sigma}\right)^{G}$.
- If $\chi \in \operatorname{Irr}(G)$, define $\chi^{\sigma}=\sigma^{-1} \circ \chi$.

Lemma (Brauer)

Let $|G|=n$ and $\sigma \in \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$. Then σ fixes equal numbers of conjugacy classes and irreducible characters of G.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, No rational elements of order 4

- Let $|G|=n$ and $\mathcal{G}=\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$.
- $\mathcal{G}=\prod_{p \mid n} \mathcal{G}_{p}, \mathcal{G}_{p} \simeq \operatorname{Gal}\left(\mathbb{Q}_{n_{p}} / \mathbb{Q}\right)$, fixing p^{\prime}-roots of unity.
- Choose generators σ_{p} for \mathcal{G}_{p} when p odd and let $\mathcal{G}_{2}=\left\langle\sigma_{0}\right\rangle \times\left\langle\sigma_{2}\right\rangle$, where σ_{2} is complex-conjugation.
- $\sigma:=\prod_{p \mid n} \sigma_{p}$.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, No rational elements of order 4

- $\mathcal{G}_{p}=\left\langle\sigma_{p}\right\rangle$ if p odd; $\mathcal{G}_{2}=\left\langle\sigma_{0}\right\rangle \times\left\langle\sigma_{2}\right\rangle$, where σ_{2} is complex-conjugation.
- $\sigma:=\prod_{p \mid n} \sigma_{p}$.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, No rational elements of order 4

- $\mathcal{G}_{p}=\left\langle\sigma_{p}\right\rangle$ if p odd; $\mathcal{G}_{2}=\left\langle\sigma_{0}\right\rangle \times\left\langle\sigma_{2}\right\rangle$, where σ_{2} is complex-conjugation.
- $\sigma:=\prod_{p \mid n} \sigma_{p}$.
- If $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right| \geq 4$ then G has 4σ-fixed classes; three rational ones and another, y^{G}.
- Rational elements have orders $1,2, \ell$ (prime). Replacing y by some power, can assume that $o(y)$ is $4,2 \ell$, or a p-power (p odd), and still non-rational.
- If $o(y)$ is r^{\prime} then $y^{\sigma_{r}}=y \ldots$

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, No rational elements of order 4

- $\mathcal{G}_{p}=\left\langle\sigma_{p}\right\rangle$ if p odd; $\mathcal{G}_{2}=\left\langle\sigma_{0}\right\rangle \times\left\langle\sigma_{2}\right\rangle$, where σ_{2} is complex-conjugation.
- $\sigma:=\prod_{p \mid n} \sigma_{p}$.
- If $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right| \geq 4$ then G has 4σ-fixed classes; three rational ones and another, y^{G}.
- Rational elements have orders $1,2, \ell$ (prime). Replacing y by some power, can assume that $o(y)$ is $4,2 \ell$, or a p-power (p odd), and still non-rational.
- If $o(y)$ is r^{\prime} then $y^{\sigma_{r}}=y \ldots$ so $\left(y^{G}\right)^{\sigma}=y^{G}$ implies y is rational.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, No rational elements of order 4

- $\mathcal{G}_{p}=\left\langle\sigma_{p}\right\rangle$ if p odd; $\mathcal{G}_{2}=\left\langle\sigma_{0}\right\rangle \times\left\langle\sigma_{2}\right\rangle$, where σ_{2} is complex-conjugation.
- $\sigma:=\prod_{p \mid n} \sigma_{p}$.
- If $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right| \geq 4$ then G has 4σ-fixed classes; three rational ones and another, y^{G}.
- Rational elements have orders $1,2, \ell$ (prime). Replacing y by some power, can assume that $o(y)$ is $4,2 \ell$, or a p-power (p odd), and still non-rational.
- If $o(y)$ is r^{\prime} then $y^{\sigma_{r}}=y \ldots$ so $\left(y^{G}\right)^{\sigma}=y^{G}$ implies y is rational.
- E.g. if $o(y)=4$ then $y^{G}=\left(y^{G}\right)^{\sigma}=\left(y^{\sigma}\right)^{G}=\left(y^{\sigma_{2}}\right)^{G}=\left(y^{-1}\right)^{G}$.
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order $1,2,4$

If G is non-solvable, study $F^{*}(G)=E(G) F(G)$

- $E(G)$ is the layer (product of subnormal, quasisimple subgroups), $F(G)$ the Fitting subgroup.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order 1,2,4

If G is non-solvable, study $F^{*}(G)=E(G) F(G)$

- $E(G)$ is the layer (product of subnormal, quasisimple subgroups), $F(G)$ the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2^{\prime}}(G)=1$.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order 1,2,4

If G is non-solvable, study $F^{*}(G)=E(G) F(G)$

- $E(G)$ is the layer (product of subnormal, quasisimple subgroups), $F(G)$ the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2^{\prime}}(G)=1$.
- If $E(G)>1$, show that $S:=E(G)=\operatorname{PSL}_{2}\left(3^{2 f+1}\right)$ or $\mathrm{SL}_{2}\left(3^{2 f+1}\right)$.
- Any other quasisimple group has a rational element of order 3 or 5 .
- If more than one factor, get non-conjugate rational elements of order 2 or 4 .

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order $1,2,4$

If G is non-solvable, study $F^{*}(G)=E(G) F(G)$

- $E(G)$ is the layer (product of subnormal, quasisimple subgroups), $F(G)$ the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2^{\prime}}(G)=1$.
- If $E(G)>1$, show that $S:=E(G)=\operatorname{PSL}_{2}\left(3^{2 f+1}\right)$ or $\mathrm{SL}_{2}\left(3^{2 f+1}\right)$.
- Any other quasisimple group has a rational element of order 3 or 5 .
- If more than one factor, get non-conjugate rational elements of order 2 or 4.
- In either case, $C:=C_{G}(S)=Z(S)$ and $|G: C S|=|G: S|$ is odd.
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order $1,2,4$

If G is non-solvable, study $F^{*}(G)=E(G) F(G)$

- $E(G)$ is the layer (product of subnormal, quasisimple subgroups), $F(G)$ the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2^{\prime}}(G)=1$.
- If $E(G)>1$, show that $S:=E(G)=\operatorname{PSL}_{2}\left(3^{2 f+1}\right)$ or $\mathrm{SL}_{2}\left(3^{2 f+1}\right)$.
- Any other quasisimple group has a rational element of order 3 or 5 .
- If more than one factor, get non-conjugate rational elements of order 2 or 4.
- In either case, $C:=C_{G}(S)=Z(S)$ and $|G: C S|=|G: S|$ is odd.

Lemma

If $S=\mathrm{SL}_{2}(q)$ or $\mathrm{PSL}_{2}(q), S \triangleleft G$, and $|G: S|$ is odd then $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|$.

The non-solvable case (cont.)

- If $E(G)=1$, then $F:=F^{*}(G)=O_{2}(G)$ and $G / Z(F) \leq \operatorname{Aut}(F)$ is non-solvable - so F has more than one involution.

The non-solvable case (cont.)

- If $E(G)=1$, then $F:=F^{*}(G)=O_{2}(G)$ and $G / Z(F) \leq \operatorname{Aut}(F)$ is non-solvable - so F has more than one involution.
- F is a 2-automorphic 2-group - these are classified (Gross, Bryukhanova, Wilkins, ...)

The non-solvable case (cont.)

- If $E(G)=1$, then $F:=F^{*}(G)=O_{2}(G)$ and $G / Z(F) \leq \operatorname{Aut}(F)$ is non-solvable - so F has more than one involution.
- F is a 2-automorphic 2-group - these are classified (Gross, Bryukhanova, Wilkins, ...)
- $F / \Phi(F) \rtimes G / F$ is a (non-solvable) doubly transitive affine permutation group.

The non-solvable case (cont.)

- If $E(G)=1$, then $F:=F^{*}(G)=O_{2}(G)$ and $G / Z(F) \leq \operatorname{Aut}(F)$ is non-solvable - so F has more than one involution.
- F is a 2-automorphic 2-group - these are classified (Gross, Bryukhanova, Wilkins, ...)
- $F / \Phi(F) \rtimes G / F$ is a (non-solvable) doubly transitive affine permutation group.
- Hering's classification: G / F has a rational element of order 3.
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order $1,2,4$

If G is solvable, can still assume $O_{2^{\prime}}(G)=1$

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G\left(P \in \operatorname{Syl}_{2}(G)\right)$
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order $1,2,4$

If G is solvable, can still assume $O_{2^{\prime}}(G)=1$

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G\left(P \in \operatorname{Syl}_{2}(G)\right)$
- Every real element of G lies in P, and is real in P.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order $1,2,4$

If G is solvable, can still assume $O_{2^{\prime}}(G)=1$

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G\left(P \in \operatorname{Syl}_{2}(G)\right)$
- Every real element of G lies in P, and is real in P.
- If $\exp (P)=4$ then $\mathrm{Cl}_{\mathbb{Q}}(G)=\mathrm{Cl}_{\mathbb{R}}(G)$ and $\operatorname{Irr}_{\mathbb{Q}}(G)=\operatorname{Irr}_{\mathbb{R}}(G)$; in particular, $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|$.

$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order 1,2,4

If G is solvable, can still assume $O_{2^{\prime}}(G)=1$

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G\left(P \in \operatorname{Syl}_{2}(G)\right)$
- Every real element of G lies in P, and is real in P.
- If $\exp (P)=4$ then $\mathrm{Cl}_{\mathbb{Q}}(G)=\mathrm{Cl}_{\mathbb{R}}(G)$ and $\operatorname{Irr}_{\mathbb{Q}}(G)=\operatorname{Irr}_{\mathbb{R}}(G)$; in particular, $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|$.
- If P has a unique involution:
- P cyclic - No
- P generalized quaternion - all the order 4 elements are conjugate in G, so a 2-complement acts non-trivially. So $P=Q_{8}$.
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, Rational elements with order $1,2,4$

If G is solvable, can still assume $O_{2^{\prime}}(G)=1$

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G\left(P \in \operatorname{Syl}_{2}(G)\right)$
- Every real element of G lies in P, and is real in P.
- If $\exp (P)=4$ then $\mathrm{Cl}_{\mathbb{Q}}(G)=\mathrm{Cl}_{\mathbb{R}}(G)$ and $\operatorname{Irr}_{\mathbb{Q}}(G)=\operatorname{Irr}_{\mathbb{R}}(G)$; in particular, $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|$.
- If P has a unique involution:
- P cyclic - No
- P generalized quaternion - all the order 4 elements are conjugate in G, so a 2-complement acts non-trivially. So $P=Q_{8}$.
- Otherwise (Thompson):
- P homocyclic - No
- P a Suzuki 2-group $-\exp (P)=4$.

Assuming that $O_{2^{\prime}}(G)=1$

Theorem (Isaacs-Navarro)
If $N \triangleleft G$ and N is \mathbb{Q}-free in G then
(i) $\operatorname{Irr}_{\mathbb{Q}}(G)=\operatorname{Irr}_{\mathbb{Q}}(G / N)$
(ii) The map $x \mapsto x N$ induces a bijection $\mathrm{Cl}_{\mathbb{Q}}(G) \rightarrow \mathrm{Cl}_{\mathbb{Q}}(G / N)$.

The \mathbb{F}-free Theorem

$\mathbb{F} \subseteq \mathbb{C}$ any field.
Theorem (Isaacs-Navarro)
If $N \triangleleft G$ and N is \mathbb{F}-free in G then
(i) $\operatorname{Irr}_{\mathbb{F}}(G)=\operatorname{Irr}_{\mathbb{F}}(G / N)$
(ii) The map $x \mapsto x N$ induces a bijection $\mathrm{Cl}_{\mathbb{F}}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}(G / N)$.

The \mathbb{F}-free Theorem

$\mathbb{F} \subseteq \mathbb{C}$ any field.
Theorem (Isaacs-Navarro)
If $N \triangleleft G$ and N is \mathbb{F}-free in G then
(i) $\operatorname{Irr}_{\mathbb{F}}(G)=\operatorname{Irr}_{\mathbb{F}}(G / N)$
(ii) The map $x \mapsto x N$ induces a bijection $\mathrm{Cl}_{\mathbb{F}}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}(G / N)$.

Theorem (R. 2017)

Fix a prime p. If $N \triangleleft G$ contains no non-trivial p-regular \mathbb{F}-elements of G then
(i) $\operatorname{IBr}_{\mathbb{F}}(G)=\operatorname{IBr}_{\mathbb{F}}(G / N)$
(ii) The map $x \mapsto x N$ induces a bijection $\mathrm{Cl}_{\mathbb{F}}^{\circ}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}^{\circ}(G / N)$.

Here, $\mathrm{Cl}^{\circ}(G)$ is the set of p-regular classes.

The Strategy

Theorem

Fix a prime p. If $N \triangleleft G$ contains no non-trivial p-regular \mathbb{F}-elements of G then
(i) $\operatorname{IBr}_{\mathbb{F}}(G)=\operatorname{IBr}_{\mathbb{F}}(G / N)$
(ii) The map $x \mapsto x N$ induces a bijection $\mathrm{Cl}_{\mathbb{F}}^{\circ}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}^{\circ}(G / N)$.
(1) If (G, N) is a minimal counterexample, show that N is minimal-normal.
(2) If N is solvable, everything basically follows from Isaacs-Navarro.
(3) If N is non-solvable, $N=S_{1} \times \cdots \times S_{n} \simeq S^{n}$. S contains (rational) involutions and, unless $S=\operatorname{PSL}_{2}\left(3^{2 f+1}\right)$, rational elements of order 3 or 5 .

The Strategy

Theorem

Fix a prime p. If $N \triangleleft G$ contains no non-trivial p-regular \mathbb{F}-elements of G then
(i) $\operatorname{IBr}_{\mathbb{F}}(G)=\operatorname{IBr}_{\mathbb{F}}(G / N)$
(ii) The map $x \mapsto x N$ induces a bijection $\mathrm{Cl}_{\mathbb{F}}^{\circ}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}^{\circ}(G / N)$.
(1) If (G, N) is a minimal counterexample, show that N is minimal-normal.
(2) If N is solvable, everything basically follows from Isaacs-Navarro.
(3) If N is non-solvable, $N=S_{1} \times \cdots \times S_{n} \simeq S^{n}$. S contains (rational) involutions and, unless $S=\operatorname{PSL}_{2}\left(3^{2 f+1}\right)$, rational elements of order 3 or 5 .
(9) The critical case, then, is $p=2$ and $N \simeq S^{n}, S=\mathrm{PSL}_{2}\left(3^{2 f+1}\right)$.

$\mathrm{Cl}_{\mathbb{F}}^{\circ}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}^{\circ}(G / N)$ is injective

- Need to show: If $x N=y N \in G / N$ are p-regular \mathbb{F}-elements, then $x^{G}=y^{G}$.
- Assume (G, N, x, y) is a minimal counterexample with $p=2$ and $N=S_{1} \times \cdots \times S_{n}=S^{n}, S \simeq \operatorname{PSL}_{2}\left(3^{2 f+1}\right)$.

$\mathrm{Cl}_{\mathbb{F}}^{\circ}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}^{\circ}(G / N)$ is injective

- Need to show: If $x N=y N \in G / N$ are p-regular \mathbb{F}-elements, then $x^{G}=y^{G}$.
- Assume (G, N, x, y) is a minimal counterexample with $p=2$ and $N=S_{1} \times \cdots \times S_{n}=S^{n}, S \simeq \operatorname{PSL}_{2}\left(3^{2 f+1}\right)$.

Lemma

If $N \triangleleft G \leq \operatorname{Aut}(N), \ell$ is a prime dividing $|N|$, and some $g \in G$ has an orbit of length $t:=\left|\mathbb{Q}_{\ell}:\left(\mathbb{Q}_{\ell} \cap \mathbb{F}\right)\right|$ on the factors of N, then N has an \mathbb{F}-element of order ℓ.

$\mathrm{Cl}_{\mathbb{F}}^{\circ}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}^{\circ}(G / N)$ is injective

- Need to show: If $x N=y N \in G / N$ are p-regular \mathbb{F}-elements, then $x^{G}=y^{G}$.
- Assume (G, N, x, y) is a minimal counterexample with $p=2$ and $N=S_{1} \times \cdots \times S_{n}=S^{n}, S \simeq \operatorname{PSL}_{2}\left(3^{2 f+1}\right)$.

Lemma

If $N \triangleleft G \leq \operatorname{Aut}(N), \ell$ is a prime dividing $|N|$, and some $g \in G$ has an orbit of length $t:=\left|\mathbb{Q}_{\ell}:\left(\mathbb{Q}_{\ell} \cap \mathbb{F}\right)\right|$ on the factors of N, then N has an \mathbb{F}-element of order ℓ.

- Choose $x \in S$ with order ℓ.
- Construct an element $v=\left(v_{1}, \ldots, v_{n}\right)$ of N where:
- $v_{1}=x$;
- v_{i} is either 1 , or a power of x twisted by outer automorphisms, depending on action of g.

$\mathrm{Cl}_{\mathbb{F}}^{\circ}(G) \rightarrow \mathrm{Cl}_{\mathbb{F}}^{\circ}(G / N)$ is injective

Lemma

Assume $N \triangleleft G \leq \operatorname{Aut}(N)$ that N° is \mathbb{F}-free in G but that G° contains an \mathbb{F}-element of prime order ℓ. Then some $g \in G$ has an orbit of length $t=\left|\mathbb{Q}_{\ell}:\left(\mathbb{Q}_{\ell} \cap \mathbb{F}\right)\right|$ on the factors of N.

- $\operatorname{Aut}(N)=\operatorname{Aut}(S) \imath \operatorname{Sym}(n)-$ the key case is when the \mathbb{F}-element has non-trivial image in $\operatorname{Sym}(n)$.
- In $\operatorname{Sym}(n)$, if x is an \mathbb{F}-element of order ℓ and $x^{g}=x^{a}$ then explicitly compare the cycle decompositions of x^{g} and x^{a}.

Lemma

If $N \triangleleft G \leq \operatorname{Aut}(N), \ell$ is a prime dividing $|N|$, and some $g \in G$ has an orbit of length $t:=\left|\mathbb{Q}_{\ell}:\left(\mathbb{Q}_{\ell} \cap \mathbb{F}\right)\right|$ on the factors of N, then N has an \mathbb{F}-element of order ℓ.

Lemma

Assume $N \triangleleft G \leq \operatorname{Aut}(N)$ that N° is \mathbb{F}-free in G but that G° contains an \mathbb{F}-element of prime order ℓ. Then some $g \in G$ has an orbit of length $t=\left|\mathbb{Q}_{\ell}:\left(\mathbb{Q}_{\ell} \cap \mathbb{F}\right)\right|$ on the factors of N.

- $x, y \in G$ are p-regular \mathbb{F}-elements, N° is \mathbb{F}-free in G, $x N=y N \in G / N$.
- Let $\pi=\pi(N)$. Then $x_{\pi}, y_{\pi} \in C_{G}(N)$. In fact, can show that $x_{\pi}=y_{\pi}$.
- Schur-Zassenhaus: $x_{\pi^{\prime}}$ and $y_{\pi^{\prime}}$ are N-conjugate.
- Conclude that $x^{G}=y^{G}$.

What about the other half of Navarro-Tiep Conjecture?

Conjecture (Navarro-Tiep)
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$ if and only if $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$.

What about the other half of Navarro-Tiep Conjecture?

Conjecture (Navarro-Tiep)
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$ if and only if $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$.
Theorem (R. 2017)
Let G be a finite non-solvable group and assume that $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$. Let $M:=O^{2^{\prime}}(G)$ and let $N:=O_{2^{\prime}}(M)$. Then $M / N=: S$ is quasisimple, and $\left|\operatorname{Irr}_{\mathbb{Q}}(S)\right| \leq 3$.

What about the other half of Navarro-Tiep Conjecture?

Conjecture (Navarro-Tiep)
$\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$ if and only if $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$.

Theorem (R. 2017)

Let G be a finite non-solvable group and assume that $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$. Let $M:=O^{2^{\prime}}(G)$ and let $N:=O_{2^{\prime}}(M)$. Then $M / N=: S$ is quasisimple, and $\left|\operatorname{Irre}_{\mathbb{Q}}(S)\right| \leq 3$.

Remarks:
(1) The possibilities for S are:

- $P S L_{2}\left(3^{2 f+1}\right)$
- $\mathrm{SL}_{2}\left(3^{2 f+1}\right)$
- $\mathrm{SL}_{2}\left(2^{n}\right)$
- $\operatorname{PSL}_{2}(q), q \equiv \pm 5(\bmod 24)$
- ${ }^{2} B_{2}\left(2^{2 n+1}\right)$
(2) If G is solvable with $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$ then G has 2-length one (Tent).

What about groups with $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$?

Theorem (R. 2017)

Let G be a finite non-solvable group and assume that $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$. Let $M:=O^{2^{\prime}}(G)$ and let $N:=O_{2^{\prime}}(M)$. Then $M / N=: S$ is quasisimple, and $\left|\operatorname{Irr}_{\mathbb{Q}}(S)\right| \leq 3$.

Theorem (R. 2017)

Assume G is non-solvable and $\left|\operatorname{Irr}_{\mathbb{Q}}(G)\right|=3$. With the previous notation, $\left|\mathrm{Cl}_{\mathbb{Q}}(G)\right|=3$, except possibly when $S=\mathrm{PSL}_{2}\left(3^{2 f+1}\right)$.

What would it take to finish the N-T Conjecture?

(1) G non-solvable: $M / N=\mathrm{PSL}_{2}\left(3^{2 f+1}\right)$

- Assume N contains non-trivial rational elements.
- Can handle the case when N is minimal-normal in M.
- In other cases, need stronger tools to relate rational elements of G with those in quotients by subgroups of N.

What would it take to finish the N-T Conjecture?

(1) G non-solvable: $M / N=\mathrm{PSL}_{2}\left(3^{2 f+1}\right)$

- Assume N contains non-trivial rational elements.
- Can handle the case when N is minimal-normal in M.
- In other cases, need stronger tools to relate rational elements of G with those in quotients by subgroups of N.
(2) G solvable:
- If $O_{2^{\prime}}(G)$ contains non-trivial rational elements, have similar problems.
- Even if $O_{2^{\prime}}(G)=1$ (so $P \triangleleft G$) need a way to control the number of classes of involutions in P.

Thank you!

