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F ⊆ C, G a finite group
x ∈ G , χ ∈ Irr(G ).

Definition

If χ(x) ∈ F for all x ∈ G , χ is an F-character.

IrrF(G ) := {χ ∈ Irr(G ) : χ is an F-character}.

Definition

If χ(x) ∈ F for all χ ∈ Irr(G ), then x is an F-element.

ClF(G ) := {xG ∈ Cl(G ) : x is an F-element} (F-classes).

Note: x ∈ G is rational if and only if x and x t are G -conjugate whenever
(t, o(x)) = 1.
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Motivation

Some classical results:

(Thompson). If every non-linear χ ∈ Irr(G ) has degree divisible by p
then G has a normal p-complement.

(Ito-Michler). If p - χ(1) for every χ ∈ Irr(G ) then G has a normal,
abelian Sylow p-subgroup.

If #{χ(1) : χ ∈ Irr(G )} ≤ 3 then G is solvable.
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Motivation

“F-versions” of classical results:

(Navarro-Tiep). If every non-linear χ ∈ IrrQp(G ) has degree divisible
by p then G has a normal p-complement.

(Dolfi-N-T). If 2 - χ(1) for every χ ∈ IrrR(G ) then G has a normal,
abelian Sylow 2-subgroup.

(N-Sanus-T). If #{χ(1) : χ ∈ IrrR(G )} ≤ 3 then G is solvable.
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Question: What is the relationship between IrrF(G ) and ClF(G )?

|IrrR(G )| = |ClR(G )|.
But for arbitrary F, not much is known.

Theorem (Navarro-Tiep, 2008)

Suppose G is a finite group. Then

|IrrQ(G )| = 1 if and only if |ClQ(G )| = 1.

|IrrQ(G )| = 2 if and only if |ClQ(G )| = 2.

Both parts require CFSG.
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Theorem (Navarro-Tiep, 2008)

Suppose G is a finite group. Then

|IrrQ(G )| = 1 if and only if |ClQ(G )| = 1.

|IrrQ(G )| = 2 if and only if |ClQ(G )| = 2.

Conjecture

|IrrQ(G )| = |ClQ(G )|?
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Remark: GAP SmallGroup(672, 128) has |IrrQ(G )| = 4 but |ClQ(G )| = 6.
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The Navarro-Tiep Conjecture

Theorem (R. 2017)

Let G be any finite group. If |ClQ(G )| = 3 then |IrrQ(G )| = 3.

Proof outline:

1 Assume G has no rational element of order 4 – Use Brauer’s
character table lemma.

2 If G has a rational element of order 4, the structure of G can be very
tightly controlled – Enough control to handle explicitly.
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Galois action and Brauer’s lemma

The setup:

Assume |G | = n, σ ∈ Gal(Qn/Q), and ζσ = ζs .

If x ∈ G , define xσ = x s and (xG )σ = (xσ)G .

If χ ∈ Irr(G ), define χσ = σ−1 ◦ χ.

Lemma (Brauer)

Let |G | = n and σ ∈ Gal(Qn/Q). Then σ fixes equal numbers of
conjugacy classes and irreducible characters of G .
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|ClQ(G )| = 3, No rational elements of order 4

Let |G | = n and G = Gal(Qn/Q).

G =
∏

p|n Gp, Gp ' Gal(Qnp/Q), fixing p′-roots of unity.

Choose generators σp for Gp when p odd and let G2 = 〈σ0〉 × 〈σ2〉,
where σ2 is complex-conjugation.

σ :=
∏

p|n σp.
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|ClQ(G )| = 3, No rational elements of order 4

Gp = 〈σp〉 if p odd; G2 = 〈σ0〉 × 〈σ2〉, where σ2 is
complex-conjugation.

σ :=
∏

p|n σp.

If |IrrQ(G )| ≥ 4 then G has 4 σ-fixed classes; three rational ones and
another, yG .

Rational elements have orders 1, 2, ` (prime). Replacing y by some
power, can assume that o(y) is 4, 2`, or a p-power (p odd), and still
non-rational.

If o(y) is r ′ then yσr = y . . . so (yG )σ = yG implies y is rational.

I E.g. if o(y) = 4 then yG = (yG )σ = (yσ)G = (yσ2)G = (y−1)G .
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|ClQ(G )| = 3, Rational elements with order 1, 2, 4

If G is non-solvable, study F ∗(G ) = E (G )F (G )

E (G ) is the layer (product of subnormal, quasisimple subgroups),
F (G ) the Fitting subgroup.

No odd-order rational elements, so we can assume O2′(G ) = 1.

If E (G ) > 1, show that S := E (G ) = PSL2(32f+1) or SL2(32f+1).
I Any other quasisimple group has a rational element of order 3 or 5.
I If more than one factor, get non-conjugate rational elements of order 2

or 4.

In either case, C := CG (S) = Z (S) and |G : CS | = |G : S | is odd.

Lemma

If S = SL2(q) or PSL2(q), S / G , and |G : S | is odd then
|IrrQ(G )| = |ClQ(G )|.
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The non-solvable case (cont.)

If E (G ) = 1, then F := F ∗(G ) = O2(G ) and G/Z (F ) ≤ Aut(F ) is
non-solvable – so F has more than one involution.

F is a 2-automorphic 2-group – these are classified (Gross,
Bryukhanova, Wilkins, ...)

F/Φ(F ) o G/F is a (non-solvable) doubly transitive affine
permutation group.

Hering’s classification: G/F has a rational element of order 3.
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|ClQ(G )| = 3, Rational elements with order 1, 2, 4

If G is solvable, can still assume O2′(G ) = 1

G has 2-length one (Isaacs-Navarro), so P / G (P ∈ Syl2(G ))

Every real element of G lies in P, and is real in P.

If exp(P) = 4 then ClQ(G ) = ClR(G ) and IrrQ(G ) = IrrR(G ); in
particular, |ClQ(G )| = |IrrQ(G )|.
If P has a unique involution:

I P cyclic – No
I P generalized quaternion – all the order 4 elements are conjugate in G ,

so a 2-complement acts non-trivially. So P = Q8.

Otherwise (Thompson):
I P homocyclic – No
I P a Suzuki 2-group – exp(P) = 4.
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Assuming that O2′(G ) = 1

Theorem (Isaacs-Navarro)

If N / G and N is Q-free in G then

(i) IrrQ(G ) = IrrQ(G/N)

(ii) The map x 7→ xN induces a bijection ClQ(G )→ ClQ(G/N).
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The F-free Theorem

F ⊆ C any field.

Theorem (Isaacs-Navarro)

If N / G and N is F-free in G then

(i) IrrF(G ) = IrrF(G/N)

(ii) The map x 7→ xN induces a bijection ClF(G )→ ClF(G/N).

Theorem (R. 2017)

Fix a prime p. If N / G contains no non-trivial p-regular F-elements of G
then

(i) IBrF(G ) = IBrF(G/N)

(ii) The map x 7→ xN induces a bijection Cl◦F(G )→ Cl◦F(G/N).

Here, Cl◦(G ) is the set of p-regular classes.
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The Strategy

Theorem

Fix a prime p. If N / G contains no non-trivial p-regular F-elements of G
then

(i) IBrF(G ) = IBrF(G/N)

(ii) The map x 7→ xN induces a bijection Cl◦F(G )→ Cl◦F(G/N).

1 If (G ,N) is a minimal counterexample, show that N is
minimal-normal.

2 If N is solvable, everything basically follows from Isaacs-Navarro.

3 If N is non-solvable, N = S1 × · · · × Sn ' Sn. S contains (rational)
involutions and, unless S = PSL2(32f+1), rational elements of order 3
or 5.

4 The critical case, then, is p = 2 and N ' Sn, S = PSL2(32f+1).
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(ii) The map x 7→ xN induces a bijection Cl◦F(G )→ Cl◦F(G/N).

1 If (G ,N) is a minimal counterexample, show that N is
minimal-normal.

2 If N is solvable, everything basically follows from Isaacs-Navarro.

3 If N is non-solvable, N = S1 × · · · × Sn ' Sn. S contains (rational)
involutions and, unless S = PSL2(32f+1), rational elements of order 3
or 5.

4 The critical case, then, is p = 2 and N ' Sn, S = PSL2(32f+1).
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Cl◦F(G )→ Cl◦F(G/N) is injective

Need to show: If xN = yN ∈ G/N are p-regular F-elements, then
xG = yG .

Assume (G ,N, x , y) is a minimal counterexample with p = 2 and
N = S1 × · · · × Sn = Sn, S ' PSL2(32f+1).

Lemma

If N /G ≤ Aut(N), ` is a prime dividing |N|, and some g ∈ G has an orbit
of length t := |Q` : (Q` ∩ F)| on the factors of N, then N has an
F-element of order `.

Choose x ∈ S with order `.

Construct an element v = (v1, . . . , vn) of N where:
I v1 = x ;
I vi is either 1, or a power of x twisted by outer automorphisms,

depending on action of g .
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Cl◦F(G )→ Cl◦F(G/N) is injective

Lemma

Assume N / G ≤ Aut(N) that N◦ is F-free in G but that G ◦ contains an
F-element of prime order `. Then some g ∈ G has an orbit of length
t = |Q` : (Q` ∩ F)| on the factors of N.

Aut(N) = Aut(S) o Sym(n) – the key case is when the F-element has
non-trivial image in Sym(n).

In Sym(n), if x is an F-element of order ` and xg = xa then explicitly
compare the cycle decompositions of xg and xa.
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Lemma

If N /G ≤ Aut(N), ` is a prime dividing |N|, and some g ∈ G has an orbit
of length t := |Q` : (Q` ∩ F)| on the factors of N, then N has an
F-element of order `.

Lemma

Assume N / G ≤ Aut(N) that N◦ is F-free in G but that G ◦ contains an
F-element of prime order `. Then some g ∈ G has an orbit of length
t = |Q` : (Q` ∩ F)| on the factors of N.

x , y ∈ G are p-regular F-elements, N◦ is F-free in G ,
xN = yN ∈ G/N.

Let π = π(N). Then xπ, yπ ∈ CG (N). In fact, can show that xπ = yπ.

Schur-Zassenhaus: xπ′ and yπ′ are N-conjugate.

Conclude that xG = yG .
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What about the other half of Navarro-Tiep Conjecture?

Conjecture (Navarro-Tiep)

|ClQ(G )| = 3 if and only if |IrrQ(G )| = 3.

Theorem (R. 2017)

Let G be a finite non-solvable group and assume that |IrrQ(G )| = 3. Let
M := O2′(G ) and let N := O2′(M). Then M/N =: S is quasisimple, and
|IrrQ(S)| ≤ 3.

Remarks:
1 The possibilities for S are:

I PSL2(32f+1)
I SL2(32f+1)
I SL2(2n)
I PSL2(q), q ≡ ±5 (mod 24)
I 2B2(22n+1)

2 If G is solvable with |IrrQ(G )| = 3 then G has 2-length one (Tent).
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What about groups with |IrrQ(G )| = 3?

Theorem (R. 2017)

Let G be a finite non-solvable group and assume that |IrrQ(G )| = 3. Let
M := O2′(G ) and let N := O2′(M). Then M/N =: S is quasisimple, and
|IrrQ(S)| ≤ 3.

Theorem (R. 2017)

Assume G is non-solvable and |IrrQ(G )| = 3. With the previous notation,
|ClQ(G )| = 3, except possibly when S = PSL2(32f+1).
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What would it take to finish the N-T Conjecture?

1 G non-solvable: M/N = PSL2(32f+1)
I Assume N contains non-trivial rational elements.
I Can handle the case when N is minimal-normal in M.
I In other cases, need stronger tools to relate rational elements of G with

those in quotients by subgroups of N.

2 G solvable:
I If O2′(G ) contains non-trivial rational elements, have similar problems.
I Even if O2′(G ) = 1 (so P / G ) need a way to control the number of

classes of involutions in P.
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Thank you!
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