Fields of Character Values in Finite Groups

Dan Rossi drossi@math.arizona.edu

University of Arizona

BIRS

New Perspectives in Representation Theory of Finite Groups October 19, 2017

 $\mathbb{F} \subseteq \mathbb{C}$, *G* a finite group $x \in G$, $\chi \in Irr(G)$.

Definition

If $\chi(x) \in \mathbb{F}$ for all $x \in G$, χ is an \mathbb{F} -character.

 $\operatorname{Irr}_{\mathbb{F}}(G) := \{ \chi \in \operatorname{Irr}(G) : \chi \text{ is an } \mathbb{F}\text{-character} \}.$

 $\mathbb{F} \subseteq \mathbb{C}, \ G$ a finite group $x \in G, \ \chi \in \operatorname{Irr}(G).$

Definition

If $\chi(x) \in \mathbb{F}$ for all $x \in G$, χ is an \mathbb{F} -character.

 $\operatorname{Irr}_{\mathbb{F}}(G) := \{ \chi \in \operatorname{Irr}(G) : \chi \text{ is an } \mathbb{F}\text{-character} \}.$

Definition

If $\chi(x) \in \mathbb{F}$ for all $\chi \in Irr(G)$, then x is an \mathbb{F} -element.

 $\operatorname{Cl}_{\mathbb{F}}(G) := \{ x^{G} \in \operatorname{Cl}(G) : x \text{ is an } \mathbb{F}\text{-element} \} \ (\mathbb{F}\text{-classes}).$

Note: $x \in G$ is rational if and only if x and x^t are G-conjugate whenever (t, o(x)) = 1.

Some classical results:

- (Thompson). If every non-linear χ ∈ Irr(G) has degree divisible by p then G has a normal p-complement.
- (Ito-Michler). If $p \nmid \chi(1)$ for every $\chi \in Irr(G)$ then G has a normal, abelian Sylow p-subgroup.
- If $\#\{\chi(1): \chi \in \operatorname{Irr}(G)\} \leq 3$ then G is solvable.

"F-versions" of classical results:

- (Navarro-Tiep). If every non-linear χ ∈ Irr_{Q_p}(G) has degree divisible by p then G has a normal p-complement.
- (Dolfi-N-T). If $2 \nmid \chi(1)$ for every $\chi \in Irr_{\mathbb{R}}(G)$ then G has a normal, abelian Sylow 2-subgroup.
- (N-Sanus-T). If $\#\{\chi(1) : \chi \in \operatorname{Irr}_{\mathbb{R}}(G)\} \leq 3$ then G is solvable.

• $|\operatorname{Irr}_{\mathbb{R}}(G)| = |\operatorname{Cl}_{\mathbb{R}}(G)|.$

- $|\operatorname{Irr}_{\mathbb{R}}(G)| = |\operatorname{Cl}_{\mathbb{R}}(G)|.$
- But for arbitrary $\mathbb F,$ not much is known.

- $|\operatorname{Irr}_{\mathbb{R}}(G)| = |\operatorname{Cl}_{\mathbb{R}}(G)|.$
- But for arbitrary \mathbb{F} , not much is known.

```
Theorem (Navarro-Tiep, 2008)
Suppose G is a finite group. Then
• |Irr_{\mathbb{Q}}(G)| = 1 if and only if |Cl_{\mathbb{Q}}(G)| = 1.
```

• $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 2$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 2$.

Both parts require CFSG.

Theorem (Navarro-Tiep, 2008)

Suppose G is a finite group. Then

- $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 1$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 1$.
- $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 2$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 2$.

Conjecture

 $|\operatorname{Irr}_{\mathbb{Q}}(G)| = |\operatorname{Cl}_{\mathbb{Q}}(G)|$?

Theorem (Navarro-Tiep, 2008)

Suppose G is a finite group. Then

- $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 1$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 1$.
- $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 2$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 2$.

Conjecture (Navarro-Tiep)

 $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 3$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 3$.

Theorem (Navarro-Tiep, 2008)

Suppose G is a finite group. Then

- $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 1$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 1$.
- $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 2$ if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 2$.

Conjecture (Navarro-Tiep)

$$|\operatorname{Irr}_{\mathbb{Q}}(G)| = 3$$
 if and only if $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 3$.

 $\text{Remark: GAP SmallGroup(672, 128) has } |\operatorname{Irr}_{\mathbb{Q}}(G)| = 4 \text{ but } |\operatorname{Cl}_{\mathbb{Q}}(G)| = 6.$

The Navarro-Tiep Conjecture

Theorem (R. 2017)

Let G be any finite group. If $|Cl_{\mathbb{Q}}(G)| = 3$ then $|Irr_{\mathbb{Q}}(G)| = 3$.

Theorem (R. 2017)

Let G be any finite group. If $|Cl_{\mathbb{Q}}(G)| = 3$ then $|Irr_{\mathbb{Q}}(G)| = 3$.

Proof outline:

- Assume G has no rational element of order 4 Use Brauer's character table lemma.
- If G has a rational element of order 4, the structure of G can be very tightly controlled Enough control to handle explicitly.

Galois action and Brauer's lemma

The setup:

- Assume |G| = n, $\sigma \in \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})$, and $\zeta^{\sigma} = \zeta^{s}$.
- If $x \in G$, define $x^{\sigma} = x^{s}$ and $(x^{G})^{\sigma} = (x^{\sigma})^{G}$.

• If
$$\chi \in Irr(G)$$
, define $\chi^{\sigma} = \sigma^{-1} \circ \chi$.

Galois action and Brauer's lemma

The setup:

- Assume |G| = n, $\sigma \in \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})$, and $\zeta^{\sigma} = \zeta^s$.
- If $x \in G$, define $x^{\sigma} = x^{s}$ and $(x^{G})^{\sigma} = (x^{\sigma})^{G}$.

• If
$$\chi \in Irr(G)$$
, define $\chi^{\sigma} = \sigma^{-1} \circ \chi$.

Lemma (Brauer)

Let |G| = n and $\sigma \in Gal(\mathbb{Q}_n/\mathbb{Q})$. Then σ fixes equal numbers of conjugacy classes and irreducible characters of G.

- Let |G| = n and $\mathcal{G} = \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})$.
- $\mathcal{G} = \prod_{p|n} \mathcal{G}_p$, $\mathcal{G}_p \simeq \operatorname{Gal}(\mathbb{Q}_{n_p}/\mathbb{Q})$, fixing p'-roots of unity.
- Choose generators σ_p for \mathcal{G}_p when p odd and let $\mathcal{G}_2 = \langle \sigma_0 \rangle \times \langle \sigma_2 \rangle$, where σ_2 is complex-conjugation.
- $\sigma := \prod_{p|n} \sigma_p$.

- $\mathcal{G}_p = \langle \sigma_p \rangle$ if p odd; $\mathcal{G}_2 = \langle \sigma_0 \rangle \times \langle \sigma_2 \rangle$, where σ_2 is complex-conjugation.
- $\sigma := \prod_{p|n} \sigma_p$.

- $\mathcal{G}_p = \langle \sigma_p \rangle$ if p odd; $\mathcal{G}_2 = \langle \sigma_0 \rangle \times \langle \sigma_2 \rangle$, where σ_2 is complex-conjugation.
- $\sigma := \prod_{p|n} \sigma_p$.
- If |Irr_Q(G)| ≥ 4 then G has 4 σ-fixed classes; three rational ones and another, y^G.
- Rational elements have orders 1, 2, ℓ (prime). Replacing y by some power, can assume that o(y) is 4, 2ℓ, or a p-power (p odd), and still non-rational.
- If o(y) is r' then $y^{\sigma_r} = y \dots$

- $\mathcal{G}_p = \langle \sigma_p \rangle$ if p odd; $\mathcal{G}_2 = \langle \sigma_0 \rangle \times \langle \sigma_2 \rangle$, where σ_2 is complex-conjugation.
- $\sigma := \prod_{p|n} \sigma_p$.
- If |Irr_Q(G)| ≥ 4 then G has 4 σ-fixed classes; three rational ones and another, y^G.
- Rational elements have orders 1, 2, ℓ (prime). Replacing y by some power, can assume that o(y) is 4, 2ℓ, or a p-power (p odd), and still non-rational.
- If o(y) is r' then $y^{\sigma_r} = y \dots$ so $(y^G)^{\sigma} = y^G$ implies y is rational.

- $\mathcal{G}_p = \langle \sigma_p \rangle$ if p odd; $\mathcal{G}_2 = \langle \sigma_0 \rangle \times \langle \sigma_2 \rangle$, where σ_2 is complex-conjugation.
- $\sigma := \prod_{p|n} \sigma_p$.
- If |Irr_Q(G)| ≥ 4 then G has 4 σ-fixed classes; three rational ones and another, y^G.
- Rational elements have orders 1, 2, ℓ (prime). Replacing y by some power, can assume that o(y) is 4, 2ℓ, or a p-power (p odd), and still non-rational.
- If o(y) is r' then $y^{\sigma_r} = y \dots$ so $(y^G)^{\sigma} = y^G$ implies y is rational.

• E.g. if
$$o(y) = 4$$
 then $y^G = (y^G)^\sigma = (y^\sigma)^G = (y^{\sigma_2})^G = (y^{-1})^G$.

If G is non-solvable, study $F^*(G) = E(G)F(G)$

• *E*(*G*) is the **layer** (product of subnormal, quasisimple subgroups), *F*(*G*) the Fitting subgroup.

If G is non-solvable, study $F^*(G) = E(G)F(G)$

- *E*(*G*) is the **layer** (product of subnormal, quasisimple subgroups), *F*(*G*) the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2'}(G) = 1$.

If G is non-solvable, study $F^*(G) = E(G)F(G)$

- *E*(*G*) is the **layer** (product of subnormal, quasisimple subgroups), *F*(*G*) the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2'}(G) = 1$.
- If E(G) > 1, show that $S := E(G) = PSL_2(3^{2f+1})$ or $SL_2(3^{2f+1})$.
 - Any other quasisimple group has a rational element of order 3 or 5.
 - If more than one factor, get non-conjugate rational elements of order 2 or 4.

If G is non-solvable, study $F^*(G) = E(G)F(G)$

- *E*(*G*) is the **layer** (product of subnormal, quasisimple subgroups), *F*(*G*) the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2'}(G) = 1$.
- If E(G) > 1, show that $S := E(G) = PSL_2(3^{2f+1})$ or $SL_2(3^{2f+1})$.
 - Any other quasisimple group has a rational element of order 3 or 5.
 - If more than one factor, get non-conjugate rational elements of order 2 or 4.
- In either case, $C := C_G(S) = Z(S)$ and |G : CS| = |G : S| is odd.

$|Cl_Q(G)| = 3$, Rational elements with order 1, 2, 4

If G is non-solvable, study $F^*(G) = E(G)F(G)$

- *E*(*G*) is the **layer** (product of subnormal, quasisimple subgroups), *F*(*G*) the Fitting subgroup.
- No odd-order rational elements, so we can assume $O_{2'}(G) = 1$.
- If E(G) > 1, show that $S := E(G) = PSL_2(3^{2f+1})$ or $SL_2(3^{2f+1})$.
 - Any other quasisimple group has a rational element of order 3 or 5.
 - If more than one factor, get non-conjugate rational elements of order 2 or 4.
- In either case, $C := C_G(S) = Z(S)$ and |G : CS| = |G : S| is odd.

Lemma

If
$$S = SL_2(q)$$
 or $PSL_2(q)$, $S \triangleleft G$, and $|G : S|$ is odd then $|Irr_{\mathbb{Q}}(G)| = |Cl_{\mathbb{Q}}(G)|$.

 If E(G) = 1, then F := F*(G) = O₂(G) and G/Z(F) ≤ Aut(F) is non-solvable – so F has more than one involution.

- If E(G) = 1, then F := F*(G) = O₂(G) and G/Z(F) ≤ Aut(F) is non-solvable – so F has more than one involution.
- *F* is a 2-**automorphic** 2-**group** these are classified (Gross, Bryukhanova, Wilkins, ...)

- If E(G) = 1, then F := F*(G) = O₂(G) and G/Z(F) ≤ Aut(F) is non-solvable – so F has more than one involution.
- *F* is a 2-**automorphic** 2-**group** these are classified (Gross, Bryukhanova, Wilkins, ...)
- F/Φ(F) ⋊ G/F is a (non-solvable) doubly transitive affine permutation group.

- If E(G) = 1, then F := F*(G) = O₂(G) and G/Z(F) ≤ Aut(F) is non-solvable – so F has more than one involution.
- *F* is a 2-**automorphic** 2-**group** these are classified (Gross, Bryukhanova, Wilkins, ...)
- F/Φ(F) × G/F is a (non-solvable) doubly transitive affine permutation group.
- Hering's classification: G/F has a rational element of order 3.

If G is solvable, can still assume $O_{2'}(G) = 1$

• G has 2-length one (Isaacs-Navarro), so $P \triangleleft G \ (P \in Syl_2(G))$

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G \ (P \in Syl_2(G))$
- Every real element of G lies in P, and is real in P.

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G$ ($P \in Syl_2(G)$)
- Every real element of G lies in P, and is real in P.
- If $\exp(P) = 4$ then $\operatorname{Cl}_{\mathbb{Q}}(G) = \operatorname{Cl}_{\mathbb{R}}(G)$ and $\operatorname{Irr}_{\mathbb{Q}}(G) = \operatorname{Irr}_{\mathbb{R}}(G)$; in particular, $|\operatorname{Cl}_{\mathbb{Q}}(G)| = |\operatorname{Irr}_{\mathbb{Q}}(G)|$.

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G \ (P \in Syl_2(G))$
- Every real element of G lies in P, and is real in P.
- If $\exp(P) = 4$ then $\operatorname{Cl}_{\mathbb{Q}}(G) = \operatorname{Cl}_{\mathbb{R}}(G)$ and $\operatorname{Irr}_{\mathbb{Q}}(G) = \operatorname{Irr}_{\mathbb{R}}(G)$; in particular, $|\operatorname{Cl}_{\mathbb{Q}}(G)| = |\operatorname{Irr}_{\mathbb{Q}}(G)|$.
- If P has a unique involution:
 - P cyclic No
 - ▶ P generalized quaternion all the order 4 elements are conjugate in G, so a 2-complement acts non-trivially. So P = Q₈.

- G has 2-length one (Isaacs-Navarro), so $P \triangleleft G \ (P \in Syl_2(G))$
- Every real element of G lies in P, and is real in P.
- If $\exp(P) = 4$ then $\operatorname{Cl}_{\mathbb{Q}}(G) = \operatorname{Cl}_{\mathbb{R}}(G)$ and $\operatorname{Irr}_{\mathbb{Q}}(G) = \operatorname{Irr}_{\mathbb{R}}(G)$; in particular, $|\operatorname{Cl}_{\mathbb{Q}}(G)| = |\operatorname{Irr}_{\mathbb{Q}}(G)|$.
- If P has a unique involution:
 - P cyclic No
 - P generalized quaternion all the order 4 elements are conjugate in G, so a 2-complement acts non-trivially. So P = Q₈.
- Otherwise (Thompson):
 - P homocyclic No
 - P a **Suzuki** 2-group $-\exp(P) = 4$.

Assuming that $O_{2'}(G) = 1$

Theorem (Isaacs-Navarro) If $N \triangleleft G$ and N is \mathbb{Q} -free in G then (i) $\operatorname{Irr}_{\mathbb{Q}}(G) = \operatorname{Irr}_{\mathbb{Q}}(G/N)$ (ii) The map $x \mapsto xN$ induces a bijection $\operatorname{Cl}_{\mathbb{Q}}(G) \to \operatorname{Cl}_{\mathbb{Q}}(G/N)$.

The $\mathbb F\text{-}\mathsf{free}$ Theorem

 $\mathbb{F}\subseteq\mathbb{C}$ any field.

```
Theorem (Isaacs-Navarro)

If N \triangleleft G and N is \mathbb{F}-free in G then

(i) \operatorname{Irr}_{\mathbb{F}}(G) = \operatorname{Irr}_{\mathbb{F}}(G/N)

(ii) The map x \mapsto xN induces a bijection \operatorname{Cl}_{\mathbb{F}}(G) \to \operatorname{Cl}_{\mathbb{F}}(G/N).
```

The $\mathbb F\text{-}\mathsf{free}$ Theorem

 $\mathbb{F} \subseteq \mathbb{C}$ any field.

Theorem (Isaacs-Navarro) If $N \triangleleft G$ and N is \mathbb{F} -free in G then (i) $\operatorname{Irr}_{\mathbb{F}}(G) = \operatorname{Irr}_{\mathbb{F}}(G/N)$ (ii) The map $x \mapsto xN$ induces a bijection $\operatorname{Cl}_{\mathbb{F}}(G) \to \operatorname{Cl}_{\mathbb{F}}(G/N)$.

Theorem (R. 2017)

Fix a prime p. If $N \triangleleft G$ contains no non-trivial p-regular $\mathbb F\text{-elements}$ of G then

(i) $\operatorname{IBr}_{\mathbb{F}}(G) = \operatorname{IBr}_{\mathbb{F}}(G/N)$

(ii) The map $x \mapsto xN$ induces a bijection $\operatorname{Cl}^{\circ}_{\mathbb{F}}(G) \to \operatorname{Cl}^{\circ}_{\mathbb{F}}(G/N)$.

Here, $Cl^{\circ}(G)$ is the set of *p*-regular classes.

The Strategy

Theorem

Fix a prime p. If $N \triangleleft G$ contains no non-trivial p-regular \mathbb{F} -elements of G then

(i) $\operatorname{IBr}_{\mathbb{F}}(G) = \operatorname{IBr}_{\mathbb{F}}(G/N)$

(ii) The map $x \mapsto xN$ induces a bijection $\operatorname{Cl}^{\circ}_{\mathbb{F}}(G) \to \operatorname{Cl}^{\circ}_{\mathbb{F}}(G/N)$.

- If (G, N) is a minimal counterexample, show that N is minimal-normal.
- **2** If N is solvable, everything basically follows from Isaacs-Navarro.
- If N is non-solvable, N = S₁ × ··· × S_n ≃ Sⁿ. S contains (rational) involutions and, unless S = PSL₂(3^{2f+1}), rational elements of order 3 or 5.

The Strategy

Theorem

Fix a prime p. If $N \triangleleft G$ contains no non-trivial p-regular \mathbb{F} -elements of G then

(i) $\operatorname{IBr}_{\mathbb{F}}(G) = \operatorname{IBr}_{\mathbb{F}}(G/N)$

(ii) The map $x \mapsto xN$ induces a bijection $\operatorname{Cl}^{\circ}_{\mathbb{F}}(G) \to \operatorname{Cl}^{\circ}_{\mathbb{F}}(G/N)$.

- If (G, N) is a minimal counterexample, show that N is minimal-normal.
- **2** If N is solvable, everything basically follows from Isaacs-Navarro.
- If N is non-solvable, N = S₁ × ··· × S_n ≃ Sⁿ. S contains (rational) involutions and, unless S = PSL₂(3^{2f+1}), rational elements of order 3 or 5.
- The critical case, then, is p = 2 and $N \simeq S^n$, $S = PSL_2(3^{2f+1})$.

${\rm Cl}^\circ_{\mathbb F}({\sf G}) o {\rm Cl}^\circ_{\mathbb F}({\sf G}/{\sf N})$ is injective

- Need to show: If $xN = yN \in G/N$ are *p*-regular \mathbb{F} -elements, then $x^G = y^G$.
- Assume (G, N, x, y) is a minimal counterexample with p = 2 and $N = S_1 \times \cdots \times S_n = S^n$, $S \simeq PSL_2(3^{2f+1})$.

$\operatorname{Cl}^{\circ}_{\mathbb{F}}(G) \to \operatorname{Cl}^{\circ}_{\mathbb{F}}(G/N)$ is injective

- Need to show: If $xN = yN \in G/N$ are *p*-regular \mathbb{F} -elements, then $x^G = y^G$.
- Assume (G, N, x, y) is a minimal counterexample with p = 2 and $N = S_1 \times \cdots \times S_n = S^n$, $S \simeq PSL_2(3^{2f+1})$.

Lemma

If $N \triangleleft G \leq \operatorname{Aut}(N)$, ℓ is a prime dividing |N|, and some $g \in G$ has an orbit of length $t := |\mathbb{Q}_{\ell} : (\mathbb{Q}_{\ell} \cap \mathbb{F})|$ on the factors of N, then N has an \mathbb{F} -element of order ℓ .

${\rm Cl}^\circ_{\mathbb F}({\sf G}) o {\rm Cl}^\circ_{\mathbb F}({\sf G}/{\sf N})$ is injective

- Need to show: If $xN = yN \in G/N$ are *p*-regular \mathbb{F} -elements, then $x^G = y^G$.
- Assume (G, N, x, y) is a minimal counterexample with p = 2 and $N = S_1 \times \cdots \times S_n = S^n$, $S \simeq PSL_2(3^{2f+1})$.

Lemma

If $N \triangleleft G \leq \operatorname{Aut}(N)$, ℓ is a prime dividing |N|, and some $g \in G$ has an orbit of length $t := |\mathbb{Q}_{\ell} : (\mathbb{Q}_{\ell} \cap \mathbb{F})|$ on the factors of N, then N has an \mathbb{F} -element of order ℓ .

- Choose $x \in S$ with order ℓ .
- Construct an element $v = (v_1, \ldots, v_n)$ of N where:
 - ▶ $v_1 = x;$
 - v_i is either 1, or a power of x twisted by outer automorphisms, depending on action of g.

${\rm Cl}^\circ_{\mathbb F}({\mathcal G}) o {\rm Cl}^\circ_{\mathbb F}({\mathcal G}/{\mathcal N})$ is injective

Lemma

Assume $N \triangleleft G \leq \operatorname{Aut}(N)$ that N° is \mathbb{F} -free in G but that G° contains an \mathbb{F} -element of prime order ℓ . Then some $g \in G$ has an orbit of length $t = |\mathbb{Q}_{\ell} : (\mathbb{Q}_{\ell} \cap \mathbb{F})|$ on the factors of N.

- Aut(N) = Aut(S) ≥ Sym(n) the key case is when the F-element has non-trivial image in Sym(n).
- In Sym(n), if x is an 𝔽-element of order ℓ and x^g = x^a then explicitly compare the cycle decompositions of x^g and x^a.

Lemma

If $N \triangleleft G \leq \operatorname{Aut}(N)$, ℓ is a prime dividing |N|, and some $g \in G$ has an orbit of length $t := |\mathbb{Q}_{\ell} : (\mathbb{Q}_{\ell} \cap \mathbb{F})|$ on the factors of N, then N has an \mathbb{F} -element of order ℓ .

Lemma

Assume $N \triangleleft G \leq \operatorname{Aut}(N)$ that N° is \mathbb{F} -free in G but that G° contains an \mathbb{F} -element of prime order ℓ . Then some $g \in G$ has an orbit of length $t = |\mathbb{Q}_{\ell} : (\mathbb{Q}_{\ell} \cap \mathbb{F})|$ on the factors of N.

- $x, y \in G$ are *p*-regular \mathbb{F} -elements, N° is \mathbb{F} -free in *G*, $xN = yN \in G/N$.
- Let $\pi = \pi(N)$. Then $x_{\pi}, y_{\pi} \in C_G(N)$. In fact, can show that $x_{\pi} = y_{\pi}$.
- Schur-Zassenhaus: $x_{\pi'}$ and $y_{\pi'}$ are *N*-conjugate.
- Conclude that $x^G = y^G$.

What about the other half of Navarro-Tiep Conjecture?

Conjecture (Navarro-Tiep)

 $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 3$ if and only if $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 3$.

What about the other half of Navarro-Tiep Conjecture?

Conjecture (Navarro-Tiep)

 $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 3$ if and only if $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 3$.

Theorem (R. 2017)

Let G be a finite non-solvable group and assume that $|\text{Irr}_{\mathbb{Q}}(G)| = 3$. Let $M := O^{2'}(G)$ and let $N := O_{2'}(M)$. Then M/N =: S is quasisimple, and $|\text{Irr}_{\mathbb{Q}}(S)| \leq 3$.

What about the other half of Navarro-Tiep Conjecture?

Conjecture (Navarro-Tiep)

 $|\operatorname{Cl}_{\mathbb{Q}}(G)| = 3$ if and only if $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 3$.

Theorem (R. 2017)

Let G be a finite non-solvable group and assume that $|\operatorname{Irr}_{\mathbb{Q}}(G)| = 3$. Let $M := O^{2'}(G)$ and let $N := O_{2'}(M)$. Then M/N =: S is quasisimple, and $|\operatorname{Irr}_{\mathbb{Q}}(S)| \leq 3$.

Remarks:

The possibilities for S are: $PSL_2(3^{2f+1})$ $SL_2(3^{2f+1})$ $SL_2(2^n)$ $PSL_2(q), q \equiv \pm 5 \pmod{24}$ ${}^{2}B_2(2^{2n+1})$ If G is solvable with $|Irr_{\mathbb{Q}}(G)| = 3$ then G has 2-length one (Tent).

Theorem (R. 2017)

Let G be a finite non-solvable group and assume that $|Irr_{\mathbb{Q}}(G)| = 3$. Let $M := O^{2'}(G)$ and let $N := O_{2'}(M)$. Then M/N =: S is quasisimple, and $|Irr_{\mathbb{Q}}(S)| \leq 3$.

Theorem (R. 2017)

Assume G is non-solvable and $|Irr_{\mathbb{Q}}(G)| = 3$. With the previous notation, $|Cl_{\mathbb{Q}}(G)| = 3$, except possibly when $S = PSL_2(3^{2f+1})$.

What would it take to finish the N-T Conjecture?

• G non-solvable: $M/N = PSL_2(3^{2f+1})$

- ► Assume *N* contains non-trivial rational elements.
- Can handle the case when N is minimal-normal in M.
- ▶ In other cases, need stronger tools to relate rational elements of *G* with those in quotients by subgroups of *N*.

What would it take to finish the N-T Conjecture?

• G non-solvable: $M/N = PSL_2(3^{2f+1})$

- Assume N contains non-trivial rational elements.
- Can handle the case when N is minimal-normal in M.
- ▶ In other cases, need stronger tools to relate rational elements of *G* with those in quotients by subgroups of *N*.

a *G* solvable:

- If $O_{2'}(G)$ contains non-trivial rational elements, have similar problems.
- Even if O_{2'}(G) = 1 (so P ⊲ G) need a way to control the number of classes of involutions in P.

Thank you!