A Class of Artin-Schreier Curves With Many Automorphisms

Renate Scheidler

Joint work with Irene Bouw, Wei Ho, Beth Malmskog, Padmavathi Srinivasan and Christelle Vincent

In Directions in Number Theory - Proceedings of the 2014 WIN3 Workshop, AWM Series, vol. 3, Springer 2016, 87-124
Thanks to WIN3 - $3^{\text {rd }}$ Women in Numbers, BIRS, April 20-24, 2014

Alberta Number Theory Days
March 19, 2017
Banff International Research Station

Artin-Schreier Curves

Let p be a prime.

Artin-Schreier Curves

Let p be a prime.
Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_{p}$:

$$
C: y^{p}-y=F(x) \text { with } F(x) \in \mathbb{F}(x) \text { non-constant }
$$

Artin-Schreier Curves

Let p be a prime.
Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_{p}$:

$$
C: y^{p}-y=F(x) \text { with } F(x) \in \mathbb{F}(x) \text { non-constant }
$$

Standard examples: elliptic and hyperelliptic curves for $p=2$.

Artin-Schreier Curves

Let p be a prime.
Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_{p}$:

$$
C: y^{p}-y=F(x) \text { with } F(x) \in \mathbb{F}(x) \text { non-constant } .
$$

Standard examples: elliptic and hyperelliptic curves for $p=2$.

The extension $\mathbb{F}(x, y) / \mathbb{F}(x)$ is cyclic Galois of degree p with Galois group generated by the $\mathbb{F}(x)$-automorphism

$$
y \longrightarrow y+1
$$

Artin-Schreier Curves

Let p be a prime.
Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_{p}$:

$$
C: y^{p}-y=F(x) \text { with } F(x) \in \mathbb{F}(x) \text { non-constant }
$$

Standard examples: elliptic and hyperelliptic curves for $p=2$.

The extension $\mathbb{F}(x, y) / \mathbb{F}(x)$ is cyclic Galois of degree p with Galois group generated by the $\mathbb{F}(x)$-automorphism

$$
y \longrightarrow y+1
$$

So Artin-Schreier extensions are the wild analogues of (tame cyclic) Kummer extensions $\mathbb{F}(x, y) / \mathbb{F}(x)$ where $\mu_{n} \subset \mathbb{F}$ and

$$
y^{n}=F(x) \text { with } p \nmid n .
$$

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$$
C_{R}: y^{p}-y=x R(x)
$$

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$$
C_{R}: y^{p}-y=x R(x)
$$

where $R(x)$ is an additive polynomial, i.e. $R(x+z)=R(x)+R(z)$.

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$$
C_{R}: y^{p}-y=x R(x)
$$

where $R(x)$ is an additive polynomial, i.e. $R(x+z)=R(x)+R(z)$.
Equivalently, all monomials appearing in $R(x)$ are of the form $x^{p^{i}}$.

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$$
C_{R}: y^{p}-y=x R(x)
$$

where $R(x)$ is an additive polynomial, i.e. $R(x+z)=R(x)+R(z)$. Equivalently, all monomials appearing in $R(x)$ are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^{p}-y=x^{p+1} \quad\left(R(x)=x^{p}\right)$.

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$$
C_{R}: y^{p}-y=x R(x)
$$

where $R(x)$ is an additive polynomial, i.e. $R(x+z)=R(x)+R(z)$.
Equivalently, all monomials appearing in $R(x)$ are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^{p}-y=x^{p+1} \quad\left(R(x)=x^{p}\right)$. Another surprisingly important case: $y^{p}-y=m x^{2} \quad(R(x)=m x)$.

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$$
C_{R}: y^{p}-y=x R(x)
$$

where $R(x)$ is an additive polynomial, i.e. $R(x+z)=R(x)+R(z)$.
Equivalently, all monomials appearing in $R(x)$ are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^{p}-y=x^{p+1} \quad\left(R(x)=x^{p}\right)$. Another surprisingly important case: $y^{p}-y=m x^{2} \quad(R(x)=m x)$.
C_{R} has one point at infinity, denoted ∞.

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$$
C_{R}: y^{p}-y=x R(x)
$$

where $R(x)$ is an additive polynomial, i.e. $R(x+z)=R(x)+R(z)$.
Equivalently, all monomials appearing in $R(x)$ are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^{p}-y=x^{p+1} \quad\left(R(x)=x^{p}\right)$.
Another surprisingly important case: $y^{p}-y=m x^{2} \quad(R(x)=m x)$.
C_{R} has one point at infinity, denoted ∞.
The genus of C_{R} is $g\left(C_{R}\right)=\frac{\operatorname{deg}(R)(p-1)}{2}$.

Why Study C_{R} ?

Why are these curves of interest?

Why Study C_{R} ?

Why are these curves of interest?

- Connection to weight enumerators of subcodes of Reed-Muller codes (Case $p=2$ in van der Geer \& van der Vlugt, Comp. Math. 84, 1992)

Why Study C_{R} ?

Why are these curves of interest?

- Connection to weight enumerators of subcodes of Reed-Muller codes (Case $p=2$ in van der Geer \& van der Vlugt, Comp. Math. 84, 1992)
- Maximal over suitable fields and hence a good source for algebraic geometry codes.

Why Study C_{R} ?

Why are these curves of interest?

- Connection to weight enumerators of subcodes of Reed-Muller codes (Case $p=2$ in van der Geer \& van der Vlugt, Comp. Math. 84, 1992)
- Maximal over suitable fields and hence a good source for algebraic geometry codes.
- Other cool geometric and algebraic properties:
- Very large and interesting automorphism group.
- Supersingular family (Jacobian is isogenous to a product of supersingular elliptic curves).

Outline

For odd p, this is our protagonist's story:
(1) Point counts
(2) Zeta function (almost)
(3) Automorphism group, including fields of definition
(4) Zeta function
(5) Examples

Two Magic Structures

Consider $C_{R}: y^{p}-y=x R(x)$ with $R(x)$ additive, and write

$$
R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}}
$$

Two Magic Structures

Consider $C_{R}: y^{p}-y=x R(x)$ with $R(x)$ additive, and write

$$
R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}} .
$$

Define an additive polynomial associated to $R(x)$:

$$
E(x)=R(x)^{p^{h}}+\sum_{i=0}^{h}\left(a_{i} x\right)^{p^{h-i}} .
$$

Two Magic Structures

Consider $C_{R}: y^{p}-y=x R(x)$ with $R(x)$ additive, and write

$$
R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}}
$$

Define an additive polynomial associated to $R(x)$:

$$
E(x)=R(x)^{p^{h}}+\sum_{i=0}^{h}\left(a_{i} x\right)^{p^{h-i}} .
$$

Let

- W its set of roots;

Two Magic Structures

Consider $C_{R}: y^{p}-y=x R(x)$ with $R(x)$ additive, and write

$$
R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}} .
$$

Define an additive polynomial associated to $R(x)$:

$$
E(x)=R(x)^{p^{h}}+\sum_{i=0}^{h}\left(a_{i} x\right)^{p^{h-i}} .
$$

Let

- W its set of roots;
- \mathbb{F}_{q} its splitting field.

Two Magic Structures

Consider $C_{R}: y^{p}-y=x R(x)$ with $R(x)$ additive, and write

$$
R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}}
$$

Define an additive polynomial associated to $R(x)$:

$$
E(x)=R(x)^{p^{h}}+\sum_{i=0}^{h}\left(a_{i} x\right)^{p^{h-i}} .
$$

Let

- W its set of roots;
- \mathbb{F}_{q} its splitting field.

Remarks:

- W is the kernel of the bilinear form $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}(x R(y)+y R(x))$.

Two Magic Structures

Consider $C_{R}: y^{p}-y=x R(x)$ with $R(x)$ additive, and write

$$
R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}}
$$

Define an additive polynomial associated to $R(x)$:

$$
E(x)=R(x)^{p^{h}}+\sum_{i=0}^{h}\left(a_{i} x\right)^{p^{h-i}} .
$$

Let

- W its set of roots;
- \mathbb{F}_{q} its splitting field.

Remarks:

- W is the kernel of the bilinear form $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}(x R(y)+y R(x))$.
- W is an \mathbb{F}_{p}-vector space of dimension $2 h$.

Two Magic Structures

Consider $C_{R}: y^{p}-y=x R(x)$ with $R(x)$ additive, and write

$$
R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}}
$$

Define an additive polynomial associated to $R(x)$:

$$
E(x)=R(x)^{p^{h}}+\sum_{i=0}^{h}\left(a_{i} x\right)^{p^{h-i}}
$$

Let

- W its set of roots;
- \mathbb{F}_{q} its splitting field.

Remarks:

- W is the kernel of the bilinear form $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}(x R(y)+y R(x))$.
- W is an \mathbb{F}_{p}-vector space of dimension $2 h$.
- We have a very explicit description of the elements of W (later).
(1) Point counts
(2) Zeta function (almost)
(3) Automorphism group, including fields of definition

4 Zeta function
(5) Examples

Point Counts

Proposition

Let

$$
C_{R}: y^{p}-y=x R(x)
$$

with $R(x) \in \mathbb{F}_{q}[x]$ additive of degree p^{h}. Then for any extension $\mathbb{F}_{p^{n}}$ of \mathbb{F}_{q}, the number of $\mathbb{F}_{p^{n}}$-rational points is

$$
\# C_{R}\left(\mathbb{F}_{p^{n}}\right)= \begin{cases}p^{n}+1 & \text { for } n \text { odd } \\ p^{n}+1 \pm(p-1) p^{h+n / 2} & \text { for } n \text { even }\end{cases}
$$

Point Counts

Proposition

Let

$$
C_{R}: y^{p}-y=x R(x)
$$

with $R(x) \in \mathbb{F}_{q}[x]$ additive of degree p^{h}. Then for any extension $\mathbb{F}_{p^{n}}$ of \mathbb{F}_{q}, the number of $\mathbb{F}_{p^{n}}$-rational points is

$$
\# C_{R}\left(\mathbb{F}_{p^{n}}\right)= \begin{cases}p^{n}+1 & \text { for } n \text { odd } \\ p^{n}+1 \pm(p-1) p^{h+n / 2} & \text { for } n \text { even }\end{cases}
$$

Corollary

C_{R} is either maximal $(+)$ or minimal $(-)$ for n even.

Idea of the Proof

$$
(x, y) \in \# C_{R}\left(\mathbb{F}_{p^{n}}\right) \Longleftrightarrow \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0 .
$$

Idea of the Proof

$$
(x, y) \in \# C_{R}\left(\mathbb{F}_{p^{n}}\right) \Longleftrightarrow \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0
$$

The zero locus of the quadratic form

$$
\operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p}}}(x R(x)),
$$

projected down onto $\mathbb{F}_{p^{n}} / W$, is a smooth quadric whose cardinality N_{n} is known (Joly, Enseignement Math. 19, 1973).

Idea of the Proof

$$
(x, y) \in \# C_{R}\left(\mathbb{F}_{p^{n}}\right) \Longleftrightarrow \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0
$$

The zero locus of the quadratic form

$$
\operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p}}}(x R(x)),
$$

projected down onto $\mathbb{F}_{p^{n}} / W$, is a smooth quadric whose cardinality N_{n} is known (Joly, Enseignement Math. 19, 1973).

Now count:

- N_{n} elements $\bar{x} \in \mathbb{F}_{p^{n}} / W$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.

Idea of the Proof

$$
(x, y) \in \# C_{R}\left(\mathbb{F}_{p^{n}}\right) \Longleftrightarrow \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0 .
$$

The zero locus of the quadratic form

$$
\operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p}}}(x R(x)),
$$

projected down onto $\mathbb{F}_{p^{n}} / W$, is a smooth quadric whose cardinality N_{n} is known (Joly, Enseignement Math. 19, 1973).

Now count:

- N_{n} elements $\bar{x} \in \mathbb{F}_{p^{n}} / W$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.
- Each yields $|W|=p^{2 h}$ values $x \in F_{p^{n}}$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p}}}(x R(x))=0$.

Idea of the Proof

$$
(x, y) \in \# C_{R}\left(\mathbb{F}_{p^{n}}\right) \Longleftrightarrow \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0 .
$$

The zero locus of the quadratic form

$$
\operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p}}}(x R(x))
$$

projected down onto $\mathbb{F}_{p^{n}} / W$, is a smooth quadric whose cardinality N_{n} is known (Joly, Enseignement Math. 19, 1973).

Now count:

- N_{n} elements $\bar{x} \in \mathbb{F}_{p^{n}} / W$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.
- Each yields $|W|=p^{2 h}$ values $x \in F_{p^{n}}$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.
- Each of those yields p values $y \in \mathbb{F}_{p^{n}}$ with $y^{p}-y=x R(x)$.

Idea of the Proof

$$
(x, y) \in \# C_{R}\left(\mathbb{F}_{p^{n}}\right) \Longleftrightarrow \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0 .
$$

The zero locus of the quadratic form

$$
\operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p}}}(x R(x)),
$$

projected down onto $\mathbb{F}_{p^{n}} / W$, is a smooth quadric whose cardinality N_{n} is known (Joly, Enseignement Math. 19, 1973).

Now count:

- N_{n} elements $\bar{x} \in \mathbb{F}_{p^{n}} / W$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.
- Each yields $|W|=p^{2 h}$ values $x \in F_{p^{n}}$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.
- Each of those yields p values $y \in \mathbb{F}_{p^{n}}$ with $y^{p}-y=x R(x)$.
- One point at infinity ∞.

Idea of the Proof

$$
(x, y) \in \# C_{R}\left(\mathbb{F}_{p^{n}}\right) \Longleftrightarrow \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0 .
$$

The zero locus of the quadratic form

$$
\operatorname{Tr}_{\mathbb{F}_{p^{n} / \mathbb{F}_{p}}}(x R(x))
$$

projected down onto $\mathbb{F}_{p^{n}} / W$, is a smooth quadric whose cardinality N_{n} is known (Joly, Enseignement Math. 19, 1973).

Now count:

- N_{n} elements $\bar{x} \in \mathbb{F}_{p^{n}} / W$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.
- Each yields $|W|=p^{2 h}$ values $x \in F_{p^{n}}$ with $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$.
- Each of those yields p values $y \in \mathbb{F}_{p^{n}}$ with $y^{p}-y=x R(x)$.
- One point at infinity ∞.

Total count: $\# C_{R}\left(\mathbb{F}_{p^{n}}\right)=p^{2 h+1} N_{n}+1$.

(1) Point counts

(2) Zeta function (almost)

3 Automorphism group, including fields of definition

4 Zeta function
(5) Examples

Zeta Function

The zeta function of a curve C of genus g over a finite field \mathbb{F}_{q} is

$$
Z_{C}(t)=\exp \left(\sum_{n \in \mathbb{N}} \frac{\# C\left(\mathbb{F}_{q^{n}}\right)}{n} t^{n}\right)
$$

Zeta Function

The zeta function of a curve C of genus g over a finite field \mathbb{F}_{q} is

$$
Z_{C}(t)=\exp \left(\sum_{n \in \mathbb{N}} \frac{\# C\left(\mathbb{F}_{q^{n}}\right)}{n} t^{n}\right)
$$

Then the L-polynomial of C over $\mathbb{F}_{q^{n}}$ is $L_{C, q^{n}}(t)=(1-t)\left(1-q^{n} t\right) Z_{C}(t)$.

Zeta Function

The zeta function of a curve C of genus g over a finite field \mathbb{F}_{q} is

$$
Z_{C}(t)=\exp \left(\sum_{n \in \mathbb{N}} \frac{\# C\left(\mathbb{F}_{q^{n}}\right)}{n} t^{n}\right)
$$

Then the L-polynomial of C over $\mathbb{F}_{q^{n}}$ is $L_{C, q^{n}}(t)=(1-t)\left(1-q^{n} t\right) Z_{C}(t)$.
It is a polynomial of degree $2 g$ with integer coefficients.

Zeta Function

The zeta function of a curve C of genus g over a finite field \mathbb{F}_{q} is

$$
Z_{C}(t)=\exp \left(\sum_{n \in \mathbb{N}} \frac{\# C\left(\mathbb{F}_{q^{n}}\right)}{n} t^{n}\right)
$$

Then the L-polynomial of C over $\mathbb{F}_{q^{n}}$ is $L_{C, q^{n}}(t)=(1-t)\left(1-q^{n} t\right) Z_{C}(t)$.
It is a polynomial of degree $2 g$ with integer coefficients.
If we write $L_{C, q^{n}}(t)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right)$, then $\sum_{i=1}^{2 g} \alpha_{i}=\# C\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1$.

Zeta Function

The zeta function of a curve C of genus g over a finite field \mathbb{F}_{q} is

$$
Z_{C}(t)=\exp \left(\sum_{n \in \mathbb{N}} \frac{\# C\left(\mathbb{F}_{q^{n}}\right)}{n} t^{n}\right)
$$

Then the L-polynomial of C over $\mathbb{F}_{q^{n}}$ is $L_{C, q^{n}}(t)=(1-t)\left(1-q^{n} t\right) Z_{C}(t)$.
It is a polynomial of degree $2 g$ with integer coefficients.
If we write $L_{C, q^{n}}(t)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right)$, then $\sum_{i=1}^{2 g} \alpha_{i}=\# C\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1$.
Applying this to C_{R}, we obtain for all i :

$$
\alpha_{i}= \begin{cases} \pm q^{n} & \text { when } n \text { is odd } \\ \pm q^{n / 2} & \text { when } n \text { is even }\end{cases}
$$

L-Polynomial of C_{R} (Almost)

Proposition

Let $C_{R}: y^{p}-y=x R(x)$ with $R(x) \in \mathbb{F}_{q}[x]$ additive of degree p^{h}. Then for any extension $\mathbb{F}_{p^{n}}$ of \mathbb{F}_{q}, we have

$$
L_{C_{R, p^{n}}}(t)= \begin{cases}\left(1 \pm p^{n} t^{2}\right)^{g} & \text { when } n \text { is odd } \\ \left(1 \pm p^{n / 2} t\right)^{2 g} & \text { when } n \text { is even }\end{cases}
$$

L-Polynomial of C_{R} (Almost)

Proposition

Let $C_{R}: y^{p}-y=x R(x)$ with $R(x) \in \mathbb{F}_{q}[x]$ additive of degree p^{h}. Then for any extension $\mathbb{F}_{p^{n}}$ of \mathbb{F}_{q}, we have

$$
L_{C_{R, p}}(t)= \begin{cases}\left(1 \pm p^{n} t^{2}\right)^{g} & \text { when } n \text { is odd } \\ \left(1 \pm p^{n / 2} t\right)^{2 g} & \text { when } n \text { is even } .\end{cases}
$$

Since all the slopes of the Newton polygon of the L-polynomial are equal to $1 / 2$, we obtain:

Corollary

The Jacobian of C_{R} is isogenous to a product of supersingular elliptic curves. So C_{R} is supersingular.

L-Polynomial of C_{R} (Almost)

Proposition

Let $C_{R}: y^{p}-y=x R(x)$ with $R(x) \in \mathbb{F}_{q}[x]$ additive of degree p^{h}. Then for any extension $\mathbb{F}_{p^{n}}$ of \mathbb{F}_{q}, we have

$$
L_{C_{R, p^{n}}}(t)= \begin{cases}\left(1 \pm p^{n} t^{2}\right)^{g} & \text { when } n \text { is odd }, \\ \left(1 \pm p^{n / 2} t\right)^{2 g} & \text { when } n \text { is even. }\end{cases}
$$

Since all the slopes of the Newton polygon of the L-polynomial are equal to $1 / 2$, we obtain:

Corollary

The Jacobian of C_{R} is isogenous to a product of supersingular elliptic curves. So C_{R} is supersingular.

Unfortunately, the " \pm " is surprisingly hard to resolve.

(2) Zeta function (almost)

(3) Automorphism group, including fields of definition

Automorphism Group of C_{R}

Follows Lehr \& Matignon, Compositio Math. 141, 2005.

Automorphism Group of C_{R}

Follows Lehr \& Matignon, Compositio Math. 141, 2005.

Proposition

Assume without loss of generality that $R(x)$ is monic.

- If $R(x)=x$, then $\operatorname{Aut}\left(C_{R}\right) \cong S L_{2}\left(\mathbb{F}_{p}\right)$.
- If $R(x)=x^{p}$, then $\operatorname{Aut}\left(C_{R}\right) \cong P G U_{3}\left(\mathbb{F}_{p}\right)$ (Hermitian case).
- If $R(x) \notin\left\{x, x^{p}\right\}$, then every element of $\operatorname{Aut}\left(C_{R}\right)$ fixes ∞.

Automorphism Group of C_{R}

Follows Lehr \& Matignon, Compositio Math. 141, 2005.

Proposition

Assume without loss of generality that $R(x)$ is monic.

- If $R(x)=x$, then $\operatorname{Aut}\left(C_{R}\right) \cong S L_{2}\left(\mathbb{F}_{p}\right)$.
- If $R(x)=x^{p}$, then $\operatorname{Aut}\left(C_{R}\right) \cong P G U_{3}\left(\mathbb{F}_{p}\right)$ (Hermitian case).
- If $R(x) \notin\left\{x, x^{p}\right\}$, then every element of $\operatorname{Aut}\left(C_{R}\right)$ fixes ∞.

It therefore suffices to compute the group

$$
\operatorname{Aut}^{\infty}\left(C_{R}\right)
$$

of automorphisms that fix ∞.

The group Aut ${ }^{\infty}\left(C_{R}\right)$

We have the following commutative diagram:

$$
\begin{aligned}
& C_{R} \xrightarrow{\varphi} C_{R} \\
&(x, y) \mapsto x \mid \\
& \downarrow \\
&\left.\mathbb{P}^{1} \xrightarrow{\tilde{\varphi}}\right|^{(x, y) \mapsto x} \mathbb{P}^{1}
\end{aligned}
$$

The group Aut ${ }^{\infty}\left(C_{R}\right)$

We have the following commutative diagram:

$$
\begin{aligned}
C_{R} \xrightarrow{\varphi} & C_{R} \\
(x, y) \mapsto x \mid & \\
\downarrow & { }^{2}(x, y) \mapsto x \\
\mathbb{P}^{1} \xrightarrow{\tilde{\varphi}} & \mathbb{P}^{1}
\end{aligned}
$$

As a result, all automorphisms in Aut ${ }^{\infty}\left(C_{R}\right)$ have the form

$$
\varphi(x, y)=(a x+c, d y+B(x))
$$

with $a, c, d, B(x)$ live in some extension of \mathbb{F}_{p}.

The group Aut ${ }^{\infty}\left(C_{R}\right)$

We have the following commutative diagram:

As a result, all automorphisms in $\mathrm{Aut}^{\infty}\left(C_{R}\right)$ have the form

$$
\varphi(x, y)=(a x+c, d y+B(x))
$$

with $a, c, d, B(x)$ live in some extension of \mathbb{F}_{p}.
Structure of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$: We have $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$ where

- H is a boring group of dilations.
- P is an interesting group of translations.

The Group H in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

H consists of all the automorphisms of the form

$$
\tau_{a, d}(x, y)=(a x, d y)
$$

The Group H in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

H consists of all the automorphisms of the form

$$
\tau_{a, d}(x, y)=(a x, d y)
$$

where

- $d \in \mathbb{F}_{p}^{*}$.

The Group H in Aut $^{\infty}\left(C_{R}\right)=P \rtimes H$

H consists of all the automorphisms of the form

$$
\tau_{a, d}(x, y)=(a x, d y)
$$

where

- $d \in \mathbb{F}_{p}^{*}$.
- $a^{p^{i}+1}=d$ whenever $a_{i} \neq 0$.

The Group H in Aut $^{\infty}\left(C_{R}\right)=P \rtimes H$

H consists of all the automorphisms of the form

$$
\tau_{a, d}(x, y)=(a x, d y)
$$

where

- $d \in \mathbb{F}_{p}^{*}$.
- $a^{p^{i}+1}=d$ whenever $a_{i} \neq 0$.
H is cyclic, and its order can be easily determined from $R(x)$.

The group P in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

P consists of all the automorphisms of the form

$$
\sigma_{b, c}(x, y)=\left(x+c, y+B_{c}(x)+b\right)
$$

The group P in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

P consists of all the automorphisms of the form

$$
\sigma_{b, c}(x, y)=\left(x+c, y+B_{c}(x)+b\right)
$$

where

- $c \in W$

The group P in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

P consists of all the automorphisms of the form

$$
\sigma_{b, c}(x, y)=\left(x+c, y+B_{c}(x)+b\right)
$$

where

- $c \in W$, or equivalently, there exists a unique additive polynomial $B_{c}(x) \in \mathbb{F}_{q}[x]$ such that

$$
B_{c}(x)^{p}-B_{c}(x)=c R(x)+R(c) x .
$$

The group P in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

P consists of all the automorphisms of the form

$$
\sigma_{b, c}(x, y)=\left(x+c, y+B_{c}(x)+b\right)
$$

where

- $c \in W$, or equivalently, there exists a unique additive polynomial $B_{c}(x) \in \mathbb{F}_{q}[x]$ such that

$$
B_{c}(x)^{p}-B_{c}(x)=c R(x)+R(c) x .
$$

- $b=B_{c}(c) / 2+i$ with $i \in \mathbb{F}_{p}$.

The group P in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

P consists of all the automorphisms of the form

$$
\sigma_{b, c}(x, y)=\left(x+c, y+B_{c}(x)+b\right)
$$

where

- $c \in W$, or equivalently, there exists a unique additive polynomial $B_{c}(x) \in \mathbb{F}_{q}[x]$ such that

$$
B_{c}(x)^{p}-B_{c}(x)=c R(x)+R(c) x .
$$

- $b=B_{c}(c) / 2+i$ with $i \in \mathbb{F}_{p}$.

Remarks:

- All automorphisms in P are defined over \mathbb{F}_{q}.

The group P in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

P consists of all the automorphisms of the form

$$
\sigma_{b, c}(x, y)=\left(x+c, y+B_{c}(x)+b\right)
$$

where

- $c \in W$, or equivalently, there exists a unique additive polynomial $B_{c}(x) \in \mathbb{F}_{q}[x]$ such that

$$
B_{c}(x)^{p}-B_{c}(x)=c R(x)+R(c) x .
$$

- $b=B_{c}(c) / 2+i$ with $i \in \mathbb{F}_{p}$.

Remarks:

- All automorphisms in P are defined over \mathbb{F}_{q}.
- $\sigma_{1,0}$ is the Artin-Schreier operator $(x, y) \mapsto(x, y+1)$.

The group P in $\operatorname{Aut}^{\infty}\left(C_{R}\right)=P \rtimes H$

P consists of all the automorphisms of the form

$$
\sigma_{b, c}(x, y)=\left(x+c, y+B_{c}(x)+b\right)
$$

where

- $c \in W$, or equivalently, there exists a unique additive polynomial $B_{c}(x) \in \mathbb{F}_{q}[x]$ such that

$$
B_{c}(x)^{p}-B_{c}(x)=c R(x)+R(c) x .
$$

- $b=B_{c}(c) / 2+i$ with $i \in \mathbb{F}_{p}$.

Remarks:

- All automorphisms in P are defined over \mathbb{F}_{q}.
- $\sigma_{1,0}$ is the Artin-Schreier operator $(x, y) \mapsto(x, y+1)$.
- Every pair (c, b) is a point on C_{R}.

Structure of P

Wow, what a group!

Structure of P

Wow, what a group!

- P is normal in Aut $^{\infty}\left(C_{R}\right)$.

Structure of P

Wow, what a group!

- P is normal in $\operatorname{Aut}^{\infty}\left(C_{R}\right)$.
- The centre of P is $Z(P)=\left\langle\sigma_{1,0}\right\rangle$.

Structure of P

Wow, what a group!

- P is normal in $\operatorname{Aut}^{\infty}\left(C_{R}\right)$.
- The centre of P is $Z(P)=\left\langle\sigma_{1,0}\right\rangle$.
- P is the unique Sylow p-subgroup of Aut $^{\infty}\left(C_{R}\right)$.

Structure of P

Wow, what a group!

- P is normal in $\operatorname{Aut}^{\infty}\left(C_{R}\right)$.
- The centre of P is $Z(P)=\left\langle\sigma_{1,0}\right\rangle$.
- P is the unique Sylow p-subgroup of Aut $^{\infty}\left(C_{R}\right)$.
- P has exponent p and order $p^{2 h+1}$.

Structure of P

Wow, what a group!

- P is normal in Aut $^{\infty}\left(C_{R}\right)$.
- The centre of P is $Z(P)=\left\langle\sigma_{1,0}\right\rangle$.
- P is the unique Sylow p-subgroup of Aut $^{\infty}\left(C_{R}\right)$.
- P has exponent p and order $p^{2 h+1}$.
- P is extraspecial (so its structure is completely understood).

Structure of P

Wow, what a group!

- P is normal in Aut $^{\infty}\left(C_{R}\right)$.
- The centre of P is $Z(P)=\left\langle\sigma_{1,0}\right\rangle$.
- P is the unique Sylow p-subgroup of Aut ${ }^{\infty}\left(C_{R}\right)$.
- P has exponent p and order $p^{2 h+1}$.
- P is extraspecial (so its structure is completely understood).
- The map $P \rightarrow W$ via $\sigma_{b, c} \mapsto c$ is a homomorphism with kernel $Z(P)=\left\langle\sigma_{1,0}\right\rangle$.

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $A u t^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$.

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$. Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$. Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Road map:

- The map $\epsilon\left(c, c^{\prime}\right)=B_{c}\left(c^{\prime}\right)-B_{c^{\prime}}(c)$ is a symplectic pairing on W.

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$. Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Road map:

- The map $\epsilon\left(c, c^{\prime}\right)=B_{c}\left(c^{\prime}\right)-B_{c^{\prime}}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b, c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_{M} \subset W$. We have $M \cong(Z / p \mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$. Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Road map:

- The map $\epsilon\left(c, c^{\prime}\right)=B_{c}\left(c^{\prime}\right)-B_{c^{\prime}}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b, c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_{M} \subset W$. We have $M \cong(Z / p \mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of $Z(P)$ and p subgroups $A_{i} \cong(\mathbb{Z} / p \mathbb{Z})^{h}$, and all these $p+1$ subgroups intersect trivially. Chose A as any A_{i}.

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$. Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Road map:

- The map $\epsilon\left(c, c^{\prime}\right)=B_{c}\left(c^{\prime}\right)-B_{c^{\prime}}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b, c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_{M} \subset W$. We have $M \cong(Z / p \mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of $Z(P)$ and p subgroups $A_{i} \cong(\mathbb{Z} / p \mathbb{Z})^{h}$, and all these $p+1$ subgroups intersect trivially. Chose A as any A_{i}.
- The curves C_{R} / A_{i} are all isomorphic and are \mathbb{F}_{q}-isomorphic to $C_{m_{M} x}: y^{p}-y=m_{M} x^{2}$ with $m_{M} \in \mathbb{F}_{q}$.

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$. Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Road map:

- The map $\epsilon\left(c, c^{\prime}\right)=B_{c}\left(c^{\prime}\right)-B_{c^{\prime}}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b, c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_{M} \subset W$. We have $M \cong(Z / p \mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of $Z(P)$ and p subgroups $A_{i} \cong(\mathbb{Z} / p \mathbb{Z})^{h}$, and all these $p+1$ subgroups intersect trivially. Chose A as any A_{i}.
- The curves C_{R} / A_{i} are all isomorphic and are \mathbb{F}_{q}-isomorphic to $C_{m_{M x}}: y^{p}-y=m_{M} x^{2}$ with $m_{M} \in \mathbb{F}_{q}$. We have a formula for m_{M} that depends only on a_{h} and W_{M}, not on any A_{i}.

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$.
Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Road map:

- The map $\epsilon\left(c, c^{\prime}\right)=B_{c}\left(c^{\prime}\right)-B_{c^{\prime}}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b, c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_{M} \subset W$. We have $M \cong(Z / p \mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of $Z(P)$ and p subgroups $A_{i} \cong(\mathbb{Z} / p \mathbb{Z})^{h}$, and all these $p+1$ subgroups intersect trivially. Chose A as any A_{i}.
- The curves C_{R} / A_{i} are all isomorphic and are \mathbb{F}_{q}-isomorphic to $C_{m_{M x}}: y^{p}-y=m_{M} x^{2}$ with $m_{M} \in \mathbb{F}_{q}$. We have a formula for m_{M} that depends only on a_{h} and W_{M}, not on any A_{i}.
- This yields $\operatorname{Jac}\left(C_{R}\right) \sim_{\mathbb{F}_{q}} \operatorname{Jac}\left(C_{R} / A\right)^{p^{h}}$, so $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)=L_{C_{R} / A, \mathbb{F}_{p^{n}}}(t)^{p^{h}}$ (Kani \& Rosen, Math. Ann. 284, 1989)

Strategy for Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ such that the L-polynomial of the quotient curve C_{R} / A is easily computable and is related to $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)$. Avoid groups with $\sigma_{1,0} \in A$ as $C_{R} / A \cong \mathbb{P}^{1}$ (no help there).

Road map:

- The map $\epsilon\left(c, c^{\prime}\right)=B_{c}\left(c^{\prime}\right)-B_{c^{\prime}}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b, c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_{M} \subset W$. We have $M \cong(Z / p \mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of $Z(P)$ and p subgroups $A_{i} \cong(\mathbb{Z} / p \mathbb{Z})^{h}$, and all these $p+1$ subgroups intersect trivially. Chose A as any A_{i}.
- The curves C_{R} / A_{i} are all isomorphic and are \mathbb{F}_{q}-isomorphic to $C_{m_{M x}}: y^{p}-y=m_{M} x^{2}$ with $m_{M} \in \mathbb{F}_{q}$. We have a formula for m_{M} that depends only on a_{h} and W_{M}, not on any A_{i}.
- This yields $\operatorname{Jac}\left(C_{R}\right) \sim_{\mathbb{F}_{q}} \operatorname{Jac}\left(C_{R} / A\right)^{p^{h}}$, so $L_{C_{R}, \mathbb{F}_{p^{n}}}(t)=L_{C_{R} / A, \mathbb{F}_{p^{n}}}(t)^{p^{h}}$ (Kani \& Rosen, Math. Ann. 284, 1989)
- Compute $L_{C_{R} / A, \mathbb{F}_{p^{n}}}(t)$ directly.

(1) Point counts

(2) Zeta function (almost)
(3) Automorphism group, including fields of definition
(4) Zeta function

(5) Examples

Resolving \pm in $L_{C_{R}, p^{n}}(t)$

Theorem

Let $m=a_{h}$ if $h=0$ and $m=m_{M}$ when $h>0$. If $p \equiv 1(\bmod 4)$, then

$$
L_{C_{R}, \mathbb{F}_{p^{n}}}(t)= \begin{cases}\left(1-p^{n} t^{2}\right)^{g} & \text { when } n \text { is odd, } \\ \left(1-p^{n / 2} t\right)^{2 g} & \text { when } n \text { is even and } m_{M}=\square \text { in } \mathbb{F}_{p^{n}} \\ \left(1+p^{n / 2} t\right)^{2 g} & \text { when } n \text { is even and } m_{M} \neq \square \text { in } \mathbb{F}_{p^{n}}\end{cases}
$$

If $p \equiv 3(\bmod 4)$, then

$$
L_{C_{R}, \mathbb{F}_{p^{n}}}(t)= \begin{cases}\left(1+p^{n} t^{2}\right)^{g} & \text { when } n \text { is odd, } \\ \left(1-p^{n / 2} t\right)^{2 g} & \text { when } n \equiv 0(\bmod 4) \text { and } m_{M}=\square \text { in } \mathbb{F}_{p^{n}} \\ & \text { or } n \equiv 2(\bmod 4) \text { and } m_{M} \neq \square \text { in } \mathbb{F}_{p^{n}} \\ \left(1+p^{n / 2} t\right)^{2 g} & \text { when } n \equiv 0(\bmod 4) \text { and } m_{M} \neq \square \text { in } \mathbb{F}_{p^{n}} \\ & \text { or } n \equiv 2(\bmod 4) \text { and } m_{M}=\square \text { in } \mathbb{F}_{p^{n}},\end{cases}
$$

(1) Point counts

(2) Zeta function (almost)

(3) Automorphism group, including fields of definition

4 Zeta function

(5) Examples

Some Examples

Examples with $h=0$, i.e. $R(x)=m x$
The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{11^{4}}$, is maximal over $\mathbb{F}_{11^{4}}$.
- The genus 9 curve $y^{19}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{19^{4}}$, is maximal over \mathbb{F}_{194}.

Some Examples

Examples with $h=0$, i.e. $R(x)=m x$
The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{11^{4}}$, is maximal over $\mathbb{F}_{11^{4}}$.
- The genus 9 curve $y^{19}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{19^{4}}$, is maximal over $\mathbb{F}_{19^{4}}$.

The main difficulty of finding examples of minimal or maximal curves with $h>0$ is to construct suitable elements $m=m_{M}$.

Some Examples

Examples with $h=0$, i.e. $R(x)=m x$

The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{11^{4}}$, is maximal over $\mathbb{F}_{11^{4}}$.
- The genus 9 curve $y^{19}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{19^{4}}$, is maximal over $\mathbb{F}_{19^{4}}$.

The main difficulty of finding examples of minimal or maximal curves with $h>0$ is to construct suitable elements $m=m_{M}$.

Families of examples with $h>0$ and $R(x)=m x^{p^{h}}$

- The curve $y^{p}-y=x^{p^{h}}$ is minimal over $\mathbb{F}_{q}=\mathbb{F}_{p^{4 h}}$.

Some Examples

Examples with $h=0$, i.e. $R(x)=m x$

The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{11^{4}}$, is maximal over $\mathbb{F}_{11^{4}}$.
- The genus 9 curve $y^{19}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{19^{4}}$, is maximal over $\mathbb{F}_{19^{4}}$.

The main difficulty of finding examples of minimal or maximal curves with $h>0$ is to construct suitable elements $m=m_{M}$.

Families of examples with $h>0$ and $R(x)=m x^{p^{h}}$

- The curve $y^{p}-y=x^{p^{h}}$ is minimal over $\mathbb{F}_{q}=\mathbb{F}_{p^{4 h}}$.
- The curve $y^{p}-y=m x^{p^{h}}$ defined over $\mathbb{F}_{p^{2 h}}$, with $m^{p^{h}-1}=-1$, is maximal over $\mathbb{F}_{q}=\mathbb{F}_{p^{2 h}}$ (an example of unusually small genus).

Thank You! Questions?

