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Artin-Schreier Curves
Let p be a prime.

Artin-Schreier curve over F ⊃ Fp:

C : yp − y = F (x) with F (x) ∈ F(x) non-constant .

Standard examples: elliptic and hyperelliptic curves for p = 2.

The extension F(x , y)/F(x) is cyclic Galois of degree p with Galois group
generated by the F(x)-automorphism

y −→ y + 1 .

So Artin-Schreier extensions are the wild analogues of (tame cyclic)
Kummer extensions F(x , y)/F(x) where µn ⊂ F and

yn = F (x) with p - n .
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Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

CR : yp − y = xR(x)

where R(x) is an additive polynomial, i.e. R(x + z) = R(x) + R(z).

Equivalently, all monomials appearing in R(x) are of the form xp
i
.

Most prominent example: Hermitian curve yp − y = xp+1 (R(x) = xp).

Another surprisingly important case: yp − y = mx2 (R(x) = mx).

CR has one point at infinity, denoted ∞.

The genus of CR is g(CR) =
deg(R)(p − 1)

2
.
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Why Study CR?

Why are these curves of interest?

Connection to weight enumerators of subcodes of Reed-Muller codes
(Case p = 2 in van der Geer & van der Vlugt, Comp. Math. 84, 1992)

Maximal over suitable fields and hence a good source for algebraic
geometry codes.

Other cool geometric and algebraic properties:

I Very large and interesting automorphism group.

I Supersingular family (Jacobian is isogenous to a product of
supersingular elliptic curves).
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Outline

For odd p, this is our protagonist’s story:

1 Point counts

2 Zeta function (almost)

3 Automorphism group, including fields of definition

4 Zeta function

5 Examples
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Two Magic Structures
Consider CR : yp − y = xR(x) with R(x) additive, and write

R(x) =
h∑

i=0

aix
pi .

Define an additive polynomial associated to R(x):

E (x) = R(x)p
h

+
h∑

i=0

(aix)p
h−i

.

Let

W its set of roots;

Fq its splitting field.

Remarks:

W is the kernel of the bilinear form TrFq/Fp
(xR(y) + yR(x)).

W is an Fp-vector space of dimension 2h.

We have a very explicit description of the elements of W (later).
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1 Point counts

2 Zeta function (almost)

3 Automorphism group, including fields of definition

4 Zeta function

5 Examples
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Point Counts

Proposition

Let
CR : yp − y = xR(x)

with R(x) ∈ Fq[x ] additive of degree ph. Then for any extension Fpn of
Fq, the number of Fpn -rational points is

#CR(Fpn) =

pn + 1 for n odd,

pn + 1± (p − 1)ph+n/2 for n even.

Corollary

CR is either maximal (+) or minimal (−) for n even.
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Idea of the Proof

(x , y) ∈ #CR(Fpn) ⇐⇒ TrFpn/Fp
(xR(x)) = 0 .

The zero locus of the quadratic form

TrFpn/Fp
(xR(x)) ,

projected down onto Fpn/W , is a smooth quadric whose cardinality Nn is
known (Joly, Enseignement Math. 19, 1973).

Now count:

Nn elements x ∈ Fpn/W with TrFpn/Fp
(xR(x)) = 0.

Each yields |W | = p2h values x ∈ Fpn with TrFpn/Fp
(xR(x)) = 0.

Each of those yields p values y ∈ Fpn with yp − y = xR(x).

One point at infinity ∞.

Total count: #CR(Fpn) = p2h+1Nn + 1.
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2 Zeta function (almost)

3 Automorphism group, including fields of definition

4 Zeta function

5 Examples
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Zeta Function
The zeta function of a curve C of genus g over a finite field Fq is

ZC (t) = exp

(∑
n∈N

#C (Fqn)

n
tn

)
.

Then the L-polynomial of C over Fqn is LC ,qn(t) = (1− t)(1− qnt)ZC (t).

It is a polynomial of degree 2g with integer coefficients.

If we write LC ,qn(t) =

2g∏
i=1

(1− αi t), then

2g∑
i=1

αi = #C (Fqn)− qn − 1.

Applying this to CR , we obtain for all i :

αi =

{
±qn when n is odd,

±qn/2 when n is even.
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tn

)
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L-Polynomial of CR (Almost)

Proposition

Let CR : yp − y = xR(x) with R(x) ∈ Fq[x ] additive of degree ph. Then
for any extension Fpn of Fq, we have

LCR ,pn(t) =

{
(1± pnt2)g when n is odd,

(1± pn/2t)2g when n is even.

Since all the slopes of the Newton polygon of the L-polynomial are equal
to 1/2, we obtain:

Corollary

The Jacobian of CR is isogenous to a product of supersingular elliptic
curves. So CR is supersingular.

Unfortunately, the “±” is surprisingly hard to resolve.
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1 Point counts

2 Zeta function (almost)

3 Automorphism group, including fields of definition

4 Zeta function

5 Examples
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Automorphism Group of CR

Follows Lehr & Matignon, Compositio Math. 141, 2005.

Proposition

Assume without loss of generality that R(x) is monic.

If R(x) = x , then Aut(CR) ∼= SL2(Fp).

If R(x) = xp, then Aut(CR) ∼= PGU3(Fp) (Hermitian case).

If R(x) /∈ {x , xp}, then every element of Aut(CR) fixes ∞.

It therefore suffices to compute the group

Aut∞(CR)

of automorphisms that fix ∞.
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The group Aut∞(CR)

We have the following commutative diagram:

CR
ϕ //

(x, y) 7→ x

��

CR

(x, y) 7→ x

��
P1 ϕ̃ // P1

As a result, all automorphisms in Aut∞(CR) have the form

ϕ(x , y) = (ax + c , dy + B(x))

with a, c , d ,B(x) live in some extension of Fp.

Structure of Aut∞(CR): We have Aut∞(CR) = P o H where

H is a boring group of dilations.

P is an interesting group of translations.
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The Group H in Aut∞(CR) = P o H

H consists of all the automorphisms of the form

τa,d(x , y) = (ax , dy)

where

d ∈ F∗p.

ap
i+1 = d whenever ai 6= 0.

H is cyclic, and its order can be easily determined from R(x).
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The group P in Aut∞(CR) = P o H
P consists of all the automorphisms of the form

σb,c(x , y) = (x + c , y + Bc(x) + b)

where

c ∈W , or equivalently, there exists a unique additive polynomial
Bc(x) ∈ Fq[x ] such that

Bc(x)p − Bc(x) = cR(x) + R(c)x .

b = Bc(c)/2 + i with i ∈ Fp.

Remarks:

All automorphisms in P are defined over Fq.

σ1,0 is the Artin-Schreier operator (x , y) 7→ (x , y + 1).

Every pair (c , b) is a point on CR .
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Structure of P

Wow, what a group!

P is normal in Aut∞(CR).

The centre of P is Z (P) = 〈σ1,0〉.

P is the unique Sylow p-subgroup of Aut∞(CR).

P has exponent p and order p2h+1.

P is extraspecial (so its structure is completely understood).

The map P →W via σb,c 7→ c is a homomorphism with kernel
Z (P) = 〈σ1,0〉.
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Strategy for Resolving ± in LCR ,pn(t)

Find a large subgroup A of Aut∞(CR) such that the L-polynomial of the
quotient curve CR/A is easily computable and is related to LCR ,Fpn

(t).

Avoid groups with σ1,0 ∈ A as CR/A ∼= P1 (no help there).

Road map:

The map ε(c , c ′) = Bc(c ′)− Bc ′(c) is a symplectic pairing on W .
Under the homomorphism σb,c 7→ c , every maximal abelian subgroup
M of P is the pre-image of a maximal isotropic subspace WM ⊂W .
We have M ∼= (Z/pZ)h+1 and σ1,0 ∈ M.
Any such M is the union of Z (P) and p subgroups Ai

∼= (Z/pZ)h,
and all these p + 1 subgroups intersect trivially. Chose A as any Ai .
The curves CR/Ai are all isomorphic and are Fq-isomorphic to
CmMx : yp − y = mMx2 with mM ∈ Fq. We have a formula for mM

that depends only on ah and WM , not on any Ai .
This yields Jac(CR) ∼Fq Jac(CR/A)p

h
, so LCR ,Fpn

(t) = LCR/A,Fpn
(t)p

h

(Kani & Rosen, Math. Ann. 284, 1989)
Compute LCR/A,Fpn

(t) directly.
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This yields Jac(CR) ∼Fq Jac(CR/A)p
h
, so LCR ,Fpn

(t) = LCR/A,Fpn
(t)p

h

(Kani & Rosen, Math. Ann. 284, 1989)
Compute LCR/A,Fpn

(t) directly.
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Resolving ± in LCR ,pn(t)

Theorem

Let m = ah if h = 0 and m = mM when h > 0.

If p ≡ 1 (mod 4), then

LCR ,Fpn
(t) =


(1− pnt2)g when n is odd,

(1− pn/2t)2g when n is even and mM = 2 in Fpn ,

(1 + pn/2t)2g when n is even and mM 6= 2 in Fpn .

If p ≡ 3 (mod 4), then

LCR ,Fpn
(t) =



(1 + pnt2)g when n is odd,

(1− pn/2t)2g when n ≡ 0 (mod 4) and mM = 2 in Fpn

or n ≡ 2 (mod 4) and mM 6= 2 in Fpn ,

(1 + pn/2t)2g when n ≡ 0 (mod 4) and mM 6= 2 in Fpn

or n ≡ 2 (mod 4) and mM = 2 in Fpn ,
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Some Examples

Examples with h = 0, i.e. R(x) = mx

The following two maximal curves are additions to the database
www.manYPoints.org:

The genus 5 curve y11 − y = mx2, with m a nonsquare in F114 , is
maximal over F114 .

The genus 9 curve y19 − y = mx2, with m a nonsquare in F194 , is
maximal over F194 .

The main difficulty of finding examples of minimal or maximal curves with
h > 0 is to construct suitable elements m = mM .

Families of examples with h > 0 and R(x) = mxp
h

The curve yp − y = xp
h

is minimal over Fq = Fp4h .

The curve yp − y = mxp
h

defined over Fp2h , with mph−1 = −1, is
maximal over Fq = Fp2h (an example of unusually small genus).
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Thank You! 
Questions?
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