A Class of Artin-Schreier Curves With Many Automorphisms

Renate Scheidler

Joint work with Irene Bouw, Wei Ho, Beth Malmskog, Padmavathi Srinivasan and Christelle Vincent

In Directions in Number Theory - Proceedings of the 2014 WIN3 Workshop, AWM Series, vol. 3, Springer 2016, 87-124 Thanks to WIN3 — 3rd Women in Numbers, BIRS, April 20-24, 2014

Alberta Number Theory Days March 19, 2017 Banff International Research Station

Let p be a prime.

Let p be a prime.

Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_p$:

 $C: y^p - y = F(x)$ with $F(x) \in \mathbb{F}(x)$ non-constant.

Let p be a prime.

Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_p$:

 $C: y^p - y = F(x)$ with $F(x) \in \mathbb{F}(x)$ non-constant.

Standard examples: elliptic and hyperelliptic curves for p = 2.

Let p be a prime.

Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_p$:

 $C: y^p - y = F(x)$ with $F(x) \in \mathbb{F}(x)$ non-constant.

Standard examples: elliptic and hyperelliptic curves for p = 2.

The extension $\mathbb{F}(x, y)/\mathbb{F}(x)$ is cyclic Galois of degree p with Galois group generated by the $\mathbb{F}(x)$ -automorphism

 $y \longrightarrow y+1$.

Let p be a prime.

Artin-Schreier curve over $\mathbb{F} \supset \mathbb{F}_p$:

 $C: y^p - y = F(x)$ with $F(x) \in \mathbb{F}(x)$ non-constant.

Standard examples: elliptic and hyperelliptic curves for p = 2.

The extension $\mathbb{F}(x, y)/\mathbb{F}(x)$ is cyclic Galois of degree p with Galois group generated by the $\mathbb{F}(x)$ -automorphism

 $y \longrightarrow y+1$.

So Artin-Schreier extensions are the wild analogues of (tame cyclic) Kummer extensions $\mathbb{F}(x, y)/\mathbb{F}(x)$ where $\mu_n \subset \mathbb{F}$ and

$$y^n = F(x)$$
 with $p \nmid n$.

Our Main Protagonist

For p odd, we consider the family of Artin-Schreier curves

$C_R: y^p - y = xR(x)$

 $C_R: y^p - y = xR(x)$

where R(x) is an **additive** polynomial, i.e. R(x + z) = R(x) + R(z).

 $C_R: y^p - y = xR(x)$

where R(x) is an **additive** polynomial, i.e. R(x + z) = R(x) + R(z). Equivalently, all monomials appearing in R(x) are of the form x^{p^i} .

 $C_R: y^p - y = xR(x)$

where R(x) is an **additive** polynomial, i.e. R(x + z) = R(x) + R(z). Equivalently, all monomials appearing in R(x) are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^p - y = x^{p+1}$ $(R(x) = x^p)$.

 $C_R: y^p - y = xR(x)$

where R(x) is an **additive** polynomial, i.e. R(x + z) = R(x) + R(z). Equivalently, all monomials appearing in R(x) are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^p - y = x^{p+1}$ $(R(x) = x^p)$. Another surprisingly important case: $y^p - y = mx^2$ (R(x) = mx).

 $C_R: y^p - y = xR(x)$

where R(x) is an **additive** polynomial, i.e. R(x + z) = R(x) + R(z). Equivalently, all monomials appearing in R(x) are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^p - y = x^{p+1}$ $(R(x) = x^p)$. Another surprisingly important case: $y^p - y = mx^2$ (R(x) = mx).

 C_R has one point at infinity, denoted ∞ .

 $C_R: y^p - y = xR(x)$

where R(x) is an **additive** polynomial, i.e. R(x + z) = R(x) + R(z). Equivalently, all monomials appearing in R(x) are of the form $x^{p^{i}}$.

Most prominent example: Hermitian curve $y^p - y = x^{p+1}$ $(R(x) = x^p)$. Another surprisingly important case: $y^p - y = mx^2$ (R(x) = mx).

 C_R has one point at infinity, denoted ∞ .

The genus of C_R is $g(C_R) = \frac{\deg(R)(p-1)}{2}$.

Why Study C_R?

Why are these curves of interest?

Why Study C_R?

Why are these curves of interest?

 Connection to weight enumerators of subcodes of Reed-Muller codes (Case p = 2 in van der Geer & van der Vlugt, Comp. Math. 84, 1992)

Why are these curves of interest?

- Connection to weight enumerators of subcodes of Reed-Muller codes (Case p = 2 in van der Geer & van der Vlugt, Comp. Math. 84, 1992)
- Maximal over suitable fields and hence a good source for algebraic geometry codes.

Why are these curves of interest?

- Connection to weight enumerators of subcodes of Reed-Muller codes (Case p = 2 in van der Geer & van der Vlugt, Comp. Math. 84, 1992)
- Maximal over suitable fields and hence a good source for algebraic geometry codes.
- Other cool geometric and algebraic properties:
 - ► Very large and interesting automorphism group.
 - Supersingular family (Jacobian is isogenous to a product of supersingular elliptic curves).

Outline

For odd *p*, this is our protagonist's story:

- 2 Zeta function (almost)
- 3 Automorphism group, including fields of definition
 - 4 Zeta function

Consider $C_R: y^p - y = xR(x)$ with R(x) additive, and write

$$R(x) = \sum_{i=0}^{h} a_i x^{p^i} \; .$$

Consider $C_R: y^p - y = xR(x)$ with R(x) additive, and write

$$R(x) = \sum_{i=0}^{h} a_i x^{p^i}$$

Define an additive polynomial associated to R(x):

$$E(x) = R(x)^{p^{h}} + \sum_{i=0}^{h} (a_{i}x)^{p^{h-i}}$$

Consider $C_R: y^p - y = xR(x)$ with R(x) additive, and write

$$R(x) = \sum_{i=0}^{h} a_i x^{p^i}$$

Define an additive polynomial associated to R(x):

$$E(x) = R(x)^{p^{h}} + \sum_{i=0}^{h} (a_{i}x)^{p^{h-i}}$$

Let

• W its set of roots;

Consider $C_R: y^p - y = xR(x)$ with R(x) additive, and write

$$R(x) = \sum_{i=0}^{h} a_i x^{p^i}$$

Define an additive polynomial associated to R(x):

$$E(x) = R(x)^{p^{h}} + \sum_{i=0}^{h} (a_{i}x)^{p^{h-i}}$$

Let

- W its set of roots;
- \mathbb{F}_q its splitting field.

Consider $C_R: y^p - y = xR(x)$ with R(x) additive, and write

$$R(x) = \sum_{i=0}^{h} a_i x^{p^i}$$

Define an additive polynomial associated to R(x):

$$E(x) = R(x)^{p^{h}} + \sum_{i=0}^{h} (a_{i}x)^{p^{h-i}}$$

Let

• \mathbb{F}_q its splitting field.

Remarks:

• W is the kernel of the bilinear form $\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(xR(y) + yR(x))$.

Consider $C_R: y^p - y = xR(x)$ with R(x) additive, and write

$$R(x) = \sum_{i=0}^{h} a_i x^{p^i}$$

Define an additive polynomial associated to R(x):

$$E(x) = R(x)^{p^{h}} + \sum_{i=0}^{h} (a_{i}x)^{p^{h-i}}$$

Let

• \mathbb{F}_q its splitting field.

Remarks:

- W is the kernel of the bilinear form $\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(xR(y) + yR(x))$.
- W is an \mathbb{F}_p -vector space of dimension 2h.

Consider $C_R: y^p - y = xR(x)$ with R(x) additive, and write

$$R(x) = \sum_{i=0}^{h} a_i x^{p^i}$$

Define an additive polynomial associated to R(x):

$$E(x) = R(x)^{p^{h}} + \sum_{i=0}^{h} (a_{i}x)^{p^{h-i}}$$

Let

- W its set of roots;
- \mathbb{F}_q its splitting field.

Remarks:

- W is the kernel of the bilinear form $\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(xR(y) + yR(x))$.
- W is an \mathbb{F}_p -vector space of dimension 2h.
- We have a very explicit description of the elements of W (later).

Renate Scheidler (Calgary)

6 / 24

- Zeta function (almost)
- 3 Automorphism group, including fields of definition
- 4 Zeta function

Proposition

Let

$$C_R: y^p - y = xR(x)$$

with $R(x) \in \mathbb{F}_q[x]$ additive of degree p^h . Then for any extension \mathbb{F}_{p^n} of \mathbb{F}_q , the number of \mathbb{F}_{p^n} -rational points is

$$#C_R(\mathbb{F}_{p^n}) = \begin{cases} p^n + 1 & \text{for } n \text{ odd,} \\ p^n + 1 \pm (p-1)p^{h+n/2} & \text{for } n \text{ even.} \end{cases}$$

Proposition

Let

$$C_R: y^p - y = xR(x)$$

with $R(x) \in \mathbb{F}_q[x]$ additive of degree p^h . Then for any extension \mathbb{F}_{p^n} of \mathbb{F}_q , the number of \mathbb{F}_{p^n} -rational points is

$$#C_R(\mathbb{F}_{p^n}) = \begin{cases} p^n + 1 & \text{for } n \text{ odd,} \\ p^n + 1 \pm (p-1)p^{h+n/2} & \text{for } n \text{ even.} \end{cases}$$

Corollary

 C_R is either maximal (+) or minimal (-) for n even.

Idea of the Proof

 $(x,y) \in \#C_R(\mathbb{F}_{p^n}) \iff \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.

$$(x,y) \in \#C_R(\mathbb{F}_{p^n}) \iff \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$$

 $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$,

projected down onto \mathbb{F}_{p^n}/W , is a smooth quadric whose cardinality N_n is known (Joly, *Enseignement Math.* **19**, 1973).

$$(x,y) \in \#C_R(\mathbb{F}_{p^n}) \iff \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$$

 $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$,

projected down onto \mathbb{F}_{p^n}/W , is a smooth quadric whose cardinality N_n is known (Joly, *Enseignement Math.* **19**, 1973).

Now count:

• N_n elements $\overline{x} \in \mathbb{F}_{p^n}/W$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.

$$(x,y) \in \#C_R(\mathbb{F}_{p^n}) \iff \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$$

 $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$,

projected down onto \mathbb{F}_{p^n}/W , is a smooth quadric whose cardinality N_n is known (Joly, *Enseignement Math.* **19**, 1973).

Now count:

- N_n elements $\overline{x} \in \mathbb{F}_{p^n}/W$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.
- Each yields $|W| = p^{2h}$ values $x \in F_{p^n}$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.

$$(x,y) \in \#C_R(\mathbb{F}_{p^n}) \iff \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$$

 $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$,

projected down onto \mathbb{F}_{p^n}/W , is a smooth quadric whose cardinality N_n is known (Joly, *Enseignement Math.* **19**, 1973).

Now count:

- N_n elements $\overline{x} \in \mathbb{F}_{p^n}/W$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.
- Each yields $|W| = p^{2h}$ values $x \in F_{p^n}$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.
- Each of those yields p values $y \in \mathbb{F}_{p^n}$ with $y^p y = xR(x)$.

$$(x,y) \in \#C_R(\mathbb{F}_{p^n}) \iff \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$$

 $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$,

projected down onto \mathbb{F}_{p^n}/W , is a smooth quadric whose cardinality N_n is known (Joly, *Enseignement Math.* **19**, 1973).

Now count:

- N_n elements $\overline{x} \in \mathbb{F}_{p^n}/W$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.
- Each yields $|W| = p^{2h}$ values $x \in F_{p^n}$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.
- Each of those yields p values $y \in \mathbb{F}_{p^n}$ with $y^p y = xR(x)$.
- One point at infinity ∞ .

$$(x,y) \in \#C_R(\mathbb{F}_{p^n}) \iff \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$$

 $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$,

projected down onto \mathbb{F}_{p^n}/W , is a smooth quadric whose cardinality N_n is known (Joly, *Enseignement Math.* **19**, 1973).

Now count:

- N_n elements $\overline{x} \in \mathbb{F}_{p^n}/W$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.
- Each yields $|W| = p^{2h}$ values $x \in F_{p^n}$ with $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$.
- Each of those yields p values $y \in \mathbb{F}_{p^n}$ with $y^p y = xR(x)$.
- One point at infinity ∞ .

Total count: $\#C_R(\mathbb{F}_{p^n}) = p^{2h+1}N_n + 1.$

2 Zeta function (almost)

3 Automorphism group, including fields of definition

4 Zeta function

The zeta function of a curve C of genus g over a finite field \mathbb{F}_q is

$$Z_C(t) = \exp\left(\sum_{n\in\mathbb{N}} \frac{\#C(\mathbb{F}_{q^n})}{n} t^n\right)$$

•

The zeta function of a curve C of genus g over a finite field \mathbb{F}_q is

$$Z_C(t) = \exp\left(\sum_{n \in \mathbb{N}} \frac{\#C(\mathbb{F}_{q^n})}{n} t^n\right)$$

•

Then the *L*-polynomial of *C* over \mathbb{F}_{q^n} is $L_{C,q^n}(t) = (1-t)(1-q^n t)Z_C(t)$.

The zeta function of a curve C of genus g over a finite field \mathbb{F}_q is

$$Z_C(t) = \exp\left(\sum_{n \in \mathbb{N}} \frac{\#C(\mathbb{F}_{q^n})}{n} t^n\right)$$

Then the *L*-polynomial of *C* over \mathbb{F}_{q^n} is $L_{C,q^n}(t) = (1-t)(1-q^n t)Z_C(t)$.

It is a polynomial of degree 2g with integer coefficients.

The zeta function of a curve C of genus g over a finite field \mathbb{F}_q is

$$Z_C(t) = \exp\left(\sum_{n \in \mathbb{N}} \frac{\#C(\mathbb{F}_{q^n})}{n} t^n\right)$$

Then the *L*-polynomial of *C* over \mathbb{F}_{q^n} is $L_{C,q^n}(t) = (1-t)(1-q^n t)Z_C(t)$.

It is a polynomial of degree 2g with integer coefficients.

If we write
$$L_{C,q^n}(t) = \prod_{i=1}^{2g} (1 - \alpha_i t)$$
, then $\sum_{i=1}^{2g} \alpha_i = \#C(\mathbb{F}_{q^n}) - q^n - 1$.

The zeta function of a curve C of genus g over a finite field \mathbb{F}_q is

$$Z_C(t) = \exp\left(\sum_{n \in \mathbb{N}} \frac{\#C(\mathbb{F}_{q^n})}{n} t^n\right)$$

Then the *L*-polynomial of *C* over \mathbb{F}_{q^n} is $L_{C,q^n}(t) = (1-t)(1-q^n t)Z_C(t)$.

It is a polynomial of degree 2g with integer coefficients.

If we write
$$L_{C,q^n}(t) = \prod_{i=1}^{2g} (1 - \alpha_i t)$$
, then $\sum_{i=1}^{2g} \alpha_i = \#C(\mathbb{F}_{q^n}) - q^n - 1$.

Applying this to C_R , we obtain for all *i*:

$$\alpha_i = \begin{cases} \pm q^n & \text{when } n \text{ is odd,} \\ \pm q^{n/2} & \text{when } n \text{ is even.} \end{cases}$$

Proposition

Let $C_R : y^p - y = xR(x)$ with $R(x) \in \mathbb{F}_q[x]$ additive of degree p^h . Then for any extension \mathbb{F}_{p^n} of \mathbb{F}_q , we have

$$L_{C_R,p^n}(t) = \begin{cases} (1 \pm p^n t^2)^g & \text{when } n \text{ is odd,} \\ (1 \pm p^{n/2} t)^{2g} & \text{when } n \text{ is even.} \end{cases}$$

Proposition

Let $C_R : y^p - y = xR(x)$ with $R(x) \in \mathbb{F}_q[x]$ additive of degree p^h . Then for any extension \mathbb{F}_{p^n} of \mathbb{F}_q , we have

$$L_{C_R,p^n}(t) = \begin{cases} (1 \pm p^n t^2)^g & \text{when } n \text{ is odd,} \\ (1 \pm p^{n/2} t)^{2g} & \text{when } n \text{ is even.} \end{cases}$$

Since all the slopes of the Newton polygon of the *L*-polynomial are equal to 1/2, we obtain:

Corollary

The Jacobian of C_R is isogenous to a product of supersingular elliptic curves. So C_R is supersingular.

Proposition

Let $C_R : y^p - y = xR(x)$ with $R(x) \in \mathbb{F}_q[x]$ additive of degree p^h . Then for any extension \mathbb{F}_{p^n} of \mathbb{F}_q , we have

$$L_{C_R,p^n}(t) = \begin{cases} (1 \pm p^n t^2)^g & \text{when } n \text{ is odd,} \\ (1 \pm p^{n/2} t)^{2g} & \text{when } n \text{ is even.} \end{cases}$$

Since all the slopes of the Newton polygon of the *L*-polynomial are equal to 1/2, we obtain:

Corollary

The Jacobian of C_R is isogenous to a product of supersingular elliptic curves. So C_R is supersingular.

Unfortunately, the $`\pm"$ is surprisingly hard to resolve.

Renate Scheidler (Calgary)

Artin-Schreier curves

Zeta function (almost)

3 Automorphism group, including fields of definition

4 Zeta function

Automorphism Group of C_R

Follows Lehr & Matignon, Compositio Math. 141, 2005.

Automorphism Group of C_R

Follows Lehr & Matignon, Compositio Math. 141, 2005.

Proposition

Assume without loss of generality that R(x) is monic.

- If R(x) = x, then $\operatorname{Aut}(C_R) \cong SL_2(\mathbb{F}_p)$.
- If $R(x) = x^p$, then $Aut(C_R) \cong PGU_3(\mathbb{F}_p)$ (Hermitian case).
- If $R(x) \notin \{x, x^p\}$, then every element of $Aut(C_R)$ fixes ∞ .

Automorphism Group of C_R

Follows Lehr & Matignon, Compositio Math. 141, 2005.

Proposition

Assume without loss of generality that R(x) is monic.

- If R(x) = x, then $\operatorname{Aut}(C_R) \cong SL_2(\mathbb{F}_p)$.
- If $R(x) = x^p$, then $Aut(C_R) \cong PGU_3(\mathbb{F}_p)$ (Hermitian case).
- If $R(x) \notin \{x, x^p\}$, then every element of $Aut(C_R)$ fixes ∞ .

It therefore suffices to compute the group

 $\operatorname{Aut}^{\infty}(C_R)$

of automorphisms that fix ∞ .

The group $\operatorname{Aut}^{\infty}(C_R)$

We have the following commutative diagram:

The group $\operatorname{Aut}^{\infty}(C_R)$

We have the following commutative diagram:

As a result, all automorphisms in $\operatorname{Aut}^\infty(\mathcal{C}_R)$ have the form

$$\varphi(x,y) = (ax + c, dy + B(x))$$

with a, c, d, B(x) live in some extension of \mathbb{F}_p .

The group $\operatorname{Aut}^{\infty}(C_R)$

We have the following commutative diagram:

As a result, all automorphisms in $\operatorname{Aut}^\infty(\mathcal{C}_R)$ have the form

$$\varphi(x,y) = (ax + c, dy + B(x))$$

with a, c, d, B(x) live in some extension of \mathbb{F}_p .

Structure of Aut^{∞}(*C_R*): We have Aut^{∞}(*C_R*) = *P* \rtimes *H* where

- *H* is a boring group of dilations.
- *P* is an interesting group of translations.

 $\tau_{\mathsf{a},\mathsf{d}}(x,y)=(\mathsf{a} x,\mathsf{d} y)$

 $\tau_{\mathsf{a},\mathsf{d}}(x,y)=(\mathsf{a} x,\mathsf{d} y)$

where

• $d \in \mathbb{F}_p^*$.

 $\tau_{\mathsf{a},\mathsf{d}}(x,y)=(\mathsf{a} x,\mathsf{d} y)$

where

 $\tau_{\mathsf{a},\mathsf{d}}(x,y)=(\mathsf{a} x,\mathsf{d} y)$

where

H is cyclic, and its order can be easily determined from R(x).

The group *P* in $Aut^{\infty}(C_R) = P \rtimes H$

P consists of all the automorphisms of the form

$$\sigma_{b,c}(x,y) = (x+c, y+B_c(x)+b)$$

The group *P* in $Aut^{\infty}(C_R) = P \rtimes H$

P consists of all the automorphisms of the form

$$\sigma_{b,c}(x,y) = (x+c, y+B_c(x)+b)$$

where

● *c* ∈ *W*

P consists of all the automorphisms of the form

$$\sigma_{b,c}(x,y) = (x+c, y+B_c(x)+b)$$

where

• $c \in W$, or equivalently, there exists a unique additive polynomial $B_c(x) \in \mathbb{F}_q[x]$ such that

$$B_c(x)^p - B_c(x) = cR(x) + R(c)x .$$

P consists of all the automorphisms of the form

$$\sigma_{b,c}(x,y) = (x+c, y+B_c(x)+b)$$

where

• $c \in W$, or equivalently, there exists a unique additive polynomial $B_c(x) \in \mathbb{F}_q[x]$ such that

$$B_c(x)^p - B_c(x) = cR(x) + R(c)x .$$

• $b = B_c(c)/2 + i$ with $i \in \mathbb{F}_p$.

P consists of all the automorphisms of the form

$$\sigma_{b,c}(x,y) = (x+c, y+B_c(x)+b)$$

where

• $c \in W$, or equivalently, there exists a unique additive polynomial $B_c(x) \in \mathbb{F}_q[x]$ such that

$$B_c(x)^p - B_c(x) = cR(x) + R(c)x .$$

•
$$b = B_c(c)/2 + i$$
 with $i \in \mathbb{F}_p$.

Remarks:

• All automorphisms in P are defined over \mathbb{F}_q .

P consists of all the automorphisms of the form

$$\sigma_{b,c}(x,y) = (x+c, y+B_c(x)+b)$$

where

• $c \in W$, or equivalently, there exists a unique additive polynomial $B_c(x) \in \mathbb{F}_q[x]$ such that

$$B_c(x)^p - B_c(x) = cR(x) + R(c)x .$$

•
$$b = B_c(c)/2 + i$$
 with $i \in \mathbb{F}_p$.

Remarks:

- All automorphisms in P are defined over \mathbb{F}_q .
- $\sigma_{1,0}$ is the Artin-Schreier operator $(x, y) \mapsto (x, y+1)$.

P consists of all the automorphisms of the form

$$\sigma_{b,c}(x,y) = (x+c, y+B_c(x)+b)$$

where

• $c \in W$, or equivalently, there exists a unique additive polynomial $B_c(x) \in \mathbb{F}_q[x]$ such that

$$B_c(x)^p - B_c(x) = cR(x) + R(c)x .$$

• $b = B_c(c)/2 + i$ with $i \in \mathbb{F}_p$.

Remarks:

- All automorphisms in P are defined over \mathbb{F}_q .
- $\sigma_{1,0}$ is the Artin-Schreier operator $(x, y) \mapsto (x, y+1)$.
- Every pair (c, b) is a point on C_R .

Renate Scheidler (Calgary)

• *P* is normal in $\operatorname{Aut}^{\infty}(C_R)$.

- *P* is normal in $\operatorname{Aut}^{\infty}(C_R)$.
- The centre of *P* is $Z(P) = \langle \sigma_{1,0} \rangle$.

- *P* is normal in $\operatorname{Aut}^{\infty}(C_R)$.
- The centre of *P* is $Z(P) = \langle \sigma_{1,0} \rangle$.
- *P* is the unique Sylow *p*-subgroup of $\operatorname{Aut}^{\infty}(C_R)$.

- *P* is normal in $\operatorname{Aut}^{\infty}(C_R)$.
- The centre of *P* is $Z(P) = \langle \sigma_{1,0} \rangle$.
- *P* is the unique Sylow *p*-subgroup of $\operatorname{Aut}^{\infty}(C_R)$.
- P has exponent p and order p^{2h+1} .

- *P* is normal in $\operatorname{Aut}^{\infty}(C_R)$.
- The centre of *P* is $Z(P) = \langle \sigma_{1,0} \rangle$.
- *P* is the unique Sylow *p*-subgroup of $\operatorname{Aut}^{\infty}(C_R)$.
- P has exponent p and order p^{2h+1} .
- *P* is extraspecial (so its structure is completely understood).

- *P* is normal in $\operatorname{Aut}^{\infty}(C_R)$.
- The centre of *P* is $Z(P) = \langle \sigma_{1,0} \rangle$.
- *P* is the unique Sylow *p*-subgroup of $\operatorname{Aut}^{\infty}(C_R)$.
- P has exponent p and order p^{2h+1} .
- *P* is extraspecial (so its structure is completely understood).
- The map $P \to W$ via $\sigma_{b,c} \mapsto c$ is a homomorphism with kernel $Z(P) = \langle \sigma_{1,0} \rangle$.

Strategy for Resolving \pm in $L_{C_{R},p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Strategy for Resolving \pm in $L_{C_{R},p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

Strategy for Resolving \pm in $L_{C_{R},p^{n}}(t)$

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

Road map:

• The map $\epsilon(c, c') = B_c(c') - B_{c'}(c)$ is a symplectic pairing on W.

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

- The map $\epsilon(c, c') = B_c(c') B_{c'}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b,c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_M \subset W$. We have $M \cong (Z/p\mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

- The map $\epsilon(c, c') = B_c(c') B_{c'}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b,c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_M \subset W$. We have $M \cong (Z/p\mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of Z(P) and p subgroups A_i ≃ (ℤ/pℤ)^h, and all these p + 1 subgroups intersect trivially. Chose A as any A_i.

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

- The map $\epsilon(c, c') = B_c(c') B_{c'}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b,c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_M \subset W$. We have $M \cong (Z/p\mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of Z(P) and p subgroups A_i ≃ (ℤ/pℤ)^h, and all these p + 1 subgroups intersect trivially. Chose A as any A_i.
- The curves C_R/A_i are all isomorphic and are \mathbb{F}_q -isomorphic to $C_{m_M \times} : y^p y = m_M \times^2$ with $m_M \in \mathbb{F}_q$.

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

- The map $\epsilon(c, c') = B_c(c') B_{c'}(c)$ is a symplectic pairing on W.
- Under the homomorphism σ_{b,c} → c, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace W_M ⊂ W. We have M ≅ (Z/pZ)^{h+1} and σ_{1,0} ∈ M.
- Any such M is the union of Z(P) and p subgroups $A_i \cong (\mathbb{Z}/p\mathbb{Z})^h$, and all these p + 1 subgroups intersect trivially. Chose A as any A_i .
- The curves C_R/A_i are all isomorphic and are \mathbb{F}_{q^-} isomorphic to $C_{m_M x} : y^p y = m_M x^2$ with $m_M \in \mathbb{F}_q$. We have a formula for m_M that depends only on a_h and W_M , not on any A_i .

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

- The map $\epsilon(c, c') = B_c(c') B_{c'}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b,c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_M \subset W$. We have $M \cong (Z/p\mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of Z(P) and p subgroups A_i ≃ (ℤ/pℤ)^h, and all these p + 1 subgroups intersect trivially. Chose A as any A_i.
- The curves C_R/A_i are all isomorphic and are \mathbb{F}_{q^-} isomorphic to $C_{m_M \times} : y^p y = m_M \times^2$ with $m_M \in \mathbb{F}_q$. We have a formula for m_M that depends only on a_h and W_M , not on any A_i .
- This yields $\operatorname{Jac}(C_R) \sim_{\mathbb{F}_q} \operatorname{Jac}(C_R/A)^{p^h}$, so $L_{C_R,\mathbb{F}_{p^n}}(t) = L_{C_R/A,\mathbb{F}_{p^n}}(t)^{p^h}$ (Kani & Rosen, *Math. Ann.* **284**, 1989)

Find a large subgroup A of $\operatorname{Aut}^{\infty}(C_R)$ such that the L-polynomial of the quotient curve C_R/A is easily computable and is related to $L_{C_R,\mathbb{F}_{p^n}}(t)$.

Avoid groups with $\sigma_{1,0} \in A$ as $C_R/A \cong \mathbb{P}^1$ (no help there).

Road map:

- The map $\epsilon(c, c') = B_c(c') B_{c'}(c)$ is a symplectic pairing on W.
- Under the homomorphism $\sigma_{b,c} \mapsto c$, every maximal abelian subgroup M of P is the pre-image of a maximal isotropic subspace $W_M \subset W$. We have $M \cong (Z/p\mathbb{Z})^{h+1}$ and $\sigma_{1,0} \in M$.
- Any such M is the union of Z(P) and p subgroups $A_i \cong (\mathbb{Z}/p\mathbb{Z})^h$, and all these p + 1 subgroups intersect trivially. Chose A as any A_i .
- The curves C_R/A_i are all isomorphic and are \mathbb{F}_{q^-} isomorphic to $C_{m_M \times} : y^p y = m_M \times^2$ with $m_M \in \mathbb{F}_q$. We have a formula for m_M that depends only on a_h and W_M , not on any A_i .
- This yields $\operatorname{Jac}(C_R) \sim_{\mathbb{F}_q} \operatorname{Jac}(C_R/A)^{p^h}$, so $L_{C_R,\mathbb{F}_{p^n}}(t) = L_{C_R/A,\mathbb{F}_{p^n}}(t)^{p^h}$ (Kani & Rosen, Math. Ann. 284, 1989)

• Compute $L_{C_R/A, \mathbb{F}_{p^n}}(t)$ directly.

Zeta function (almost)

3 Automorphism group, including fields of definition

Theorem

Let
$$m = a_h$$
 if $h = 0$ and $m = m_M$ when $h > 0$.

If $p \equiv 1 \pmod{4}$, then

$$L_{C_{R},\mathbb{F}_{p^{n}}}(t) = \begin{cases} (1-p^{n}t^{2})^{g} & \text{when } t \\ (1-p^{n/2}t)^{2g} & \text{when } t \\ (1+p^{n/2}t)^{2g} & \text{when } t \end{cases}$$

when n is odd, when n is even and $m_M = \Box$ in \mathbb{F}_{p^n} , when n is even and $m_M \neq \Box$ in \mathbb{F}_{p^n} .

If $p \equiv 3 \pmod{4}$, then

$$L_{C_R,\mathbb{F}_{p^n}}(t) = egin{cases} (1+p^nt^2)^g\ (1-p^{n/2}t)^{2g}\ (1+p^{n/2}t)^{2g}\ (1+p^{n/2}t)^{2g} \end{cases}$$

 $\begin{array}{ll} (m^{2})^{g} & \text{when } n \text{ is odd,} \\ (m^{2}t)^{2g} & \text{when } n \equiv 0 \pmod{4} \text{ and } m_{M} = \Box \text{ in } \mathbb{F}_{p^{n}} \\ \text{or } n \equiv 2 \pmod{4} \text{ and } m_{M} \neq \Box \text{ in } \mathbb{F}_{p^{n}}, \\ (m^{2}t)^{2g} & \text{when } n \equiv 0 \pmod{4} \text{ and } m_{M} \neq \Box \text{ in } \mathbb{F}_{p^{n}} \\ \text{or } n \equiv 2 \pmod{4} \text{ and } m_{M} = \Box \text{ in } \mathbb{F}_{p^{n}}, \end{array}$

- Zeta function (almost)
- 3 Automorphism group, including fields of definition
- 4 Zeta function

Examples with h = 0, i.e. R(x) = mx

The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11} y = mx^2$, with m a nonsquare in \mathbb{F}_{11^4} , is maximal over \mathbb{F}_{11^4} .
- The genus 9 curve $y^{19} y = mx^2$, with m a nonsquare in \mathbb{F}_{19^4} , is maximal over \mathbb{F}_{19^4} .

Examples with h = 0, i.e. R(x) = mx

The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11} y = mx^2$, with m a nonsquare in \mathbb{F}_{11^4} , is maximal over \mathbb{F}_{11^4} .
- The genus 9 curve $y^{19} y = mx^2$, with m a nonsquare in \mathbb{F}_{19^4} , is maximal over \mathbb{F}_{19^4} .

The main difficulty of finding examples of minimal or maximal curves with h > 0 is to construct suitable elements $m = m_M$.

Examples with h = 0, i.e. R(x) = mx

The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11} y = mx^2$, with m a nonsquare in \mathbb{F}_{11^4} , is maximal over \mathbb{F}_{11^4} .
- The genus 9 curve $y^{19} y = mx^2$, with m a nonsquare in \mathbb{F}_{19^4} , is maximal over \mathbb{F}_{19^4} .

The main difficulty of finding examples of minimal or maximal curves with h > 0 is to construct suitable elements $m = m_M$.

Families of examples with h > 0 and $R(x) = mx^{p^h}$

• The curve
$$y^p - y = x^{p^h}$$
 is minimal over $\mathbb{F}_q = \mathbb{F}_{p^{4h}}$.

Examples with h = 0, i.e. R(x) = mx

The following two maximal curves are additions to the database www.manYPoints.org:

- The genus 5 curve $y^{11} y = mx^2$, with m a nonsquare in \mathbb{F}_{11^4} , is maximal over \mathbb{F}_{11^4} .
- The genus 9 curve $y^{19} y = mx^2$, with m a nonsquare in \mathbb{F}_{19^4} , is maximal over \mathbb{F}_{19^4} .

The main difficulty of finding examples of minimal or maximal curves with h > 0 is to construct suitable elements $m = m_M$.

Families of examples with h > 0 and $R(x) = mx^{p^h}$

- The curve $y^p y = x^{p^h}$ is minimal over $\mathbb{F}_q = \mathbb{F}_{p^{4h}}$.
- The curve $y^p y = mx^{p^h}$ defined over $\mathbb{F}_{p^{2h}}$, with $m^{p^h-1} = -1$, is maximal over $\mathbb{F}_q = \mathbb{F}_{p^{2h}}$ (an example of unusually small genus).

