Clustering in Markov chains with subdominant eigenvalues close to one

Jane Breen
Joint work with Emanuele Crisostomi, Mahsa Faizrahnemoon, Steve Kirkland, and
Robert Shorten.

Dept. of Mathematics,
University of Manitoba
Special Western Canada Linear Algebra Meeting, BIRS 2017

Markov chains

- A discrete-time, time-homogeneous, finite Markov chain can be thought of as a system that undergoes transitions between states, over some finite state space $\left\{s_{1}, \ldots, s_{n}\right\}$, in discrete time steps.
- For each s_{i}, s_{j}, there is some transition probability $t_{i j}$ denoting the probability of the system moving from state i to state j in a single time step.
- In this way, the chain is memoryless; the movement of the chain depends only on the current state the system is in.

Markov chains

- A discrete-time, time-homogeneous, finite Markov chain can be thought of as a system that undergoes transitions between states, over some finite state space $\left\{s_{1}, \ldots, s_{n}\right\}$, in discrete time steps.
- For each s_{i}, s_{j}, there is some transition probability $t_{i j}$ denoting the probability of the system moving from state i to state j in a single time step.
- In this way, the chain is memoryless; the movement of the chain depends only on the current state the system is in.

Markov chains

- A discrete-time, time-homogeneous, finite Markov chain can be thought of as a system that undergoes transitions between states, over some finite state space $\left\{s_{1}, \ldots, s_{n}\right\}$, in discrete time steps.
- For each s_{i}, s_{j}, there is some transition probability $t_{i j}$ denoting the probability of the system moving from state i to state j in a single time step.
- In this way, the chain is memoryless; the movement of the chain depends only on the current state the system is in.

Markov chains

- A Markov chain can be represented entirely by the probability transition matrix $T=\left[t_{i j}\right]$, a nonnegative row-stochastic matrix.
- Given an initial probability distribution vector U_{0}^{\top}, the probability distribution after k time-steps is given by $u_{k}^{\top}=u_{0}^{\top} T^{k}$

Markov chains

- A Markov chain can be represented entirely by the probability transition matrix $T=\left[t_{i j}\right]$, a nonnegative row-stochastic matrix.
- Given an initial probability distribution vector u_{0}^{\top}, the probability distribution after k time-steps is given by $u_{k}^{\top}=u_{0}^{\top} T^{k}$.

Perron-Frobenius theorem

Theorem

Let T be a primitive row-stochastic matrix. Then:
(a) $\rho(T)=1$, and 1 is an eigenvalue of T.
(b) If $\lambda \neq 1$ is an eigenvalue of T, then $|\lambda|<1$.
(c) There is a positive left eigenvector w^{\top} of T corresponding to the eigenvalue 1.

Stationary vector

Definition

Given that a Markov chain with transition matrix T is ergodic (that is, T is primitive), the left eigenvector w^{\top} of T corresponding to the eigenvalue 1 is referred to as the stationary vector of the chain, and it catalogues the long-term behaviour of the chain.

Mean first passage times

Definition

For states i and j, the mean first passage time from i to j, denoted $m_{i, j}$, is the expected length of time it takes for the chain to reach state j for the first time, given that the chain starts in state i.

Road network model

固 Emanuele Crisostomi, Stephen Kirkland, and Robert Shorten. A Google-like model of road network dynamics and its application to regulation and control.
International Journal of Control, 84(3):633-651, 2011.

Clustering in Markov chains

Clustering behaviour is usually characterised by the existence of collections of states of the Markov chain for which the system, if starting in a state in a cluster, is unlikely to leave that collection of states in the short term. Also, the expected number of time-steps until the chain is in a state outside of that cluster is relatively large.

Clustering in Markov chains

Example

$\left[\begin{array}{cccccccccccc}0.0875 & 0.1158 & 0.2665 & 0.2820 & 0.2382 & 0 & 0.0059 & 0.0002 & 0.0022 & 0 & 0 & 0.0017 \\ 0.2885 & 0.2870 & 0.1245 & 0 & 0.2900 & 0 & 0.0071 & 0 & 0 & 0.0010 & 0 & 0.0019 \\ 0.0295 & 0.2473 & 0.3186 & 0.0610 & 0.3337 & 0.0021 & 0.0047 & 0 & 0.00018 & 0.0013 & 0.0001 & 0 \\ 0.3650 & 0.2060 & 0.3579 & 0.0611 & 0 & 0 & 0.0012 & 0.0016 & 0 & 0.0030 & 0.0018 & 0.0024 \\ 0.0681 & 0.2789 & 0.2432 & 0.3053 & 0.0946 & 0 & 0.0049 & 0 & 0.0051 & 0 & 0 & 0 \\ 0.0046 & 0.0062 & 0.0086 & 0.0006 & 0 & 0 & 0.2443 & 0.0713 & 0.0666 & 0.2911 & 0.2355 & 0.0711 \\ 0 & 0.0011 & 0.0052 & 0 & 0.0137 & 0.3158 & 0.1960 & 0.1266 & 0.1008 & 0.2318 & 0 & 0 \\ 0.0018 & 0.0133 & 0 & 0.0011 & 0.0037 & 0.1890 & 0.1562 & 0.1396 & 0.1138 & 0.0634 & 0.1436 & 0.1744 \\ 0.0024 & 0.0116 & 0.0060 & 0 & 0.0000 & 0.3355 & 0.1983 & 0 & 0.0853 & 0.0364 & 0.0730 & 0.2514 \\ 0.0104 & 0 & 0.0061 & 0 & 0.0036 & 0.2141 & 0.1702 & 0.0960 & 0 & 0.1272 & 0.2196 & 0.1529 \\ 0 & 0.0107 & 0 & 0.0046 & 0.0047 & 0.0639 & 0.0182 & 0.1455 & 0.2555 & 0.1268 & 0.1469 & 0.2232 \\ 0.0200 & 0 & 0 & 0 & 0 & 0.1941 & 0.1876 & 0.0491 & 0.2231 & 0 & 0.1052 & 0.2210\end{array}\right]$

Clustering in Markov chains

Example

$\left[\begin{array}{cccccccccccc}0.0875 & 0.1158 & 0.2665 & 0.2820 & 0.2382 & 0 & 0.0059 & 0.0002 & 0.0022 & 0 & 0 & 0.0017 \\ 0.2885 & 0.2870 & 0.1245 & 0 & 0.2900 & 0 & 0.0071 & 0 & 0 & 0.0010 & 0 & 0.0019 \\ 0.0295 & 0.2473 & 0.3186 & 0.0610 & 0.3337 & 0.0021 & 0.0047 & 0 & 0.0018 & 0.0013 & 0.0001 & 0 \\ 0.3650 & 0.2060 & 0.3579 & 0.0611 & 0 & 0 & 0.0012 & 0.0016 & 0 & 0.0030 & 0.0018 & 0.0024 \\ 0.0681 & 0.2789 & 0.2432 & 0.3053 & 0.0946 & 0 & 0.0049 & 0 & 0.0051 & 0 & 0 & 0 \\ 0.0046 & 0.0062 & 0.0086 & 0.0006 & 0 & 0 & 0.2443 & 0.0713 & 0.0666 & 0.2911 & 0.2355 & 0.0711 \\ 0 & 0.0011 & 0.0052 & 0 & 0.0137 & 0.3158 & 0.1960 & 0.1266 & 0.1098 & 0.2318 & 0 & 0 \\ 0.0018 & 0.0133 & 0 & 0.0011 & 0.0037 & 0.1890 & 0.1562 & 0.1396 & 0.1138 & 0.0634 & 0.1436 & 0.1744 \\ 0.0024 & 0.0116 & 0.0060 & 0 & 0.0000 & 0.3355 & 0.1983 & 0 & 0.0853 & 0.0364 & 0.0730 & 0.2514 \\ 0.0104 & 0 & 0.0061 & 0 & 0.0036 & 0.2141 & 0.1702 & 0.0960 & 0 & 0.1272 & 0.2196 & 0.1529 \\ 0 & 0.0107 & 0 & 0.0046 & 0.0047 & 0.0639 & 0.0182 & 0.1455 & 0.2555 & 0.1268 & 0.1469 & 0.2232 \\ 0.0200 & 0 & 0 & 0 & 0 & 0.1941 & 0.1876 & 0.0491 & 0.2231 & 0 & 0.1052 & 0.2210\end{array}\right]$

Clustering in Markov chains

Example

$\left[\begin{array}{cccccccccccc}9.5683 & 7.2856 & 5.9192 & 8.8386 & 6.1623 & 111.4516 & 108.3750 & 134.2927 & 119.9151 & 117.8051 & 123.5211 & 121.5733 \\ 7.8461 & 6.2463 & 7.0903 & 11.4373 & 5.5713 & 111.4553 & 108.3307 & 134.3028 & 119.9611 & 117.7897 & 123.5357 & 121.5815 \\ 10.4161 & 6.2682 & 5.8823 & 11.2735 & 5.2066 & 111.4228 & 108.3764 & 134.3090 & 119.9243 & 117.7744 & 123.5182 & 121.6233 \\ 7.3576 & 6.8711 & 5.5085 & 11.2142 & 7.2498 & 111.4637 & 108.4423 & 134.2491 & 119.9635 & 117.7652 & 123.4718 & 121.5431 \\ 9.4234 & 6.2587 & 6.1983 & 8.9797 & 6.9987 & 111.4499 & 108.3828 & 134.3059 & 119.8662 & 117.8042 & 123.5220 & 121.5991 \\ 56.4328 & 54.8813 & 55.0335 & 59.7105 & 54.6607 & 16.2745 & 16.3806 & 35.2123 & 24.9775 & 17.7940 & 20.6192 & 23.8023 \\ 56.4948 & 54.9064 & 55.0376 & 59.7083 & 54.5837 & 11.6313 & 16.3656 & 33.6425 & 25.2645 & 17.7810 & 25.2785 & 26.2237 \\ 56.4292 & 54.8265 & 55.0941 & 59.7095 & 54.6532 & 13.5774 & 17.3639 & 33.5737 & 23.4582 & 22.5940 & 22.7664 & 21.5933 \\ 56.4285 & 54.8526 & 55.0460 & 59.7299 & 54.6689 & 11.4165 & 16.2917 & 38.5797 & 24.4123 & 22.4132 & 24.2767 & 20.6083 \\ 56.3789 & 54.9226 & 55.0433 & 59.6940 & 54.6523 & 13.5906 & 17.4180 & 34.5322 & 26.1350 & 20.9484 & 20.6825 & 22.1686 \\ 56.4234 & 54.8407 & 55.0941 & 59.6727 & 54.6644 & 15.2224 & 19.7046 & 34.1128 & 19.7242 & 22.4636 & 22.7562 & 19.5144 \\ 56.2799 & 54.9319 & 55.0728 & 59.6880 & 54.6831 & 13.1262 & 16.5668 & 37.2585 & 20.8087 & 23.8979 & 24.0661 & 20.6803\end{array}\right]$

Clustering in Markov chains

Example

$\left[\begin{array}{cccccccccccc}9.5683 & 7.2856 & 5.9192 & 8.8386 & 6.1623 & 111.4516 & 108.3750 & 134.2927 & 119.9151 & 117.8051 & 123.5211 & 121.5733 \\ 7.8461 & 6.2463 & 7.0903 & 11.4373 & 5.5713 & 111.4553 & 108.3307 & 134.3028 & 119.9611 & 117.7897 & 123.5357 & 121.5815 \\ 10.4161 & 6.2682 & 5.8823 & 11.2735 & 5.2066 & 111.4228 & 108.3764 & 134.3090 & 119.9243 & 117.7744 & 123.5182 & 121.6233 \\ 7.3576 & 6.8711 & 5.5085 & 11.2142 & 7.2498 & 111.4637 & 108.4423 & 134.2491 & 119.9635 & 117.7652 & 123.4718 & 121.5431 \\ 9.4234 & 6.2587 & 6.1983 & 8.9797 & 6.9987 & 111.4499 & 108.3828 & 134.3059 & 119.8662 & 117.8042 & 123.5220 & 121.5991 \\ 56.4328 & 54.8813 & 55.0335 & 59.7105 & 54.6607 & 16.2745 & 16.3806 & 35.2123 & 24.9775 & 17.7940 & 20.6192 & 23.8023 \\ 56.4948 & 54.9064 & 55.0376 & 59.7083 & 54.5837 & 11.6313 & 16.3656 & 33.6425 & 25.2645 & 17.7810 & 25.2785 & 26.2237 \\ 56.4292 & 54.8265 & 55.0941 & 59.7095 & 54.6532 & 13.5774 & 17.3639 & 33.5737 & 23.4582 & 22.5940 & 22.7664 & 21.5933 \\ 56.4285 & 54.8526 & 55.0460 & 59.7299 & 54.6689 & 11.4165 & 16.2917 & 38.5797 & 24.4123 & 22.4132 & 24.2767 & 20.6083 \\ 56.3789 & 54.9226 & 55.0433 & 59.6940 & 54.6523 & 13.5906 & 17.4180 & 34.5322 & 26.1350 & 20.9484 & 20.6825 & 22.1686 \\ 56.4234 & 54.8407 & 55.0941 & 59.6727 & 54.6644 & 15.2224 & 19.7046 & 34.1128 & 19.7242 & 22.4636 & 22.7562 & 19.5144 \\ 56.2799 & 54.9319 & 55.0728 & 59.6880 & 54.6831 & 13.1262 & 16.5668 & 37.2585 & 20.8087 & 23.8979 & 24.0661 & 20.6803\end{array}\right]$

Result

Theorem (Crisostomi, Kirkland, Shorten, 2011)

Let T be an irreducible stochastic matrix and suppose that $\lambda \in \mathbb{R}$ is an eigenvalue of T. Let $v=\left[v_{1}^{\top}\left|-v_{2}^{\top}\right| 0^{\top}\right]^{\top}$ be a corresponding λ-eigenvector (with $v_{1}>0$ and $v_{2}>0$) and let us partition the matrix T conformally as

$$
\left[\begin{array}{c|c|c}
T_{11} & T_{12} & T_{13} \\
\hline T_{21} & T_{22} & T_{23} \\
\hline T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

and label the subsets of the partition as S_{1}, S_{2}, and S_{0} respectively. Then:
(a) $\rho\left(T_{11}\right)>\lambda$ and $\rho\left(T_{22}\right)>\lambda$.

Result

Theorem(ctd)

(b) There are subsets $\tilde{S}_{1} \subseteq S_{1}, \tilde{S}_{2} \subseteq S_{2}$, and positive vectors \tilde{w}_{1}^{\top}, \tilde{w}_{2}^{\top} with supports on $\tilde{S}_{1}, \tilde{S}_{2}$ respectively such that $\tilde{w}_{1}^{\top} \mathbb{1}=\tilde{w}_{2}^{\top} \mathbb{1}=1$ and

$$
\begin{equation*}
\sum_{i \in \tilde{S}_{1}} \tilde{w}_{1}(i) \sum_{j \notin \tilde{S}_{1}} t_{i j}=1-\rho\left(T_{11}\right) \leq 1-\lambda, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i \in \tilde{S}_{2}} \tilde{W}_{2}(i) \sum_{j \notin \tilde{S}_{2}} t_{i j}=1-\rho\left(T_{22}\right) \leq 1-\lambda . \tag{2}
\end{equation*}
$$

Result

Theorem(ctd)

(c) For any $j \in \tilde{S}_{2}$,

$$
\begin{equation*}
\sum_{i \in \tilde{S}_{1}} \tilde{w}_{1}(i) m_{i j} \geq \frac{1}{1-\rho\left(T_{11}\right)} \geq \frac{1}{1-\lambda} \tag{3}
\end{equation*}
$$

and for any $j \in \tilde{S}_{1}$,

$$
\begin{equation*}
\sum_{i \in \tilde{S}_{2}} \tilde{w}_{2}(i) m_{i j} \geq \frac{1}{1-\rho\left(T_{22}\right)} \geq \frac{1}{1-\lambda} \tag{4}
\end{equation*}
$$

where $m_{i j}$ are entries of the mean first passage matrix.

Explanation of result

The existence of a real eigenvalue λ that is 'close' to 1 indicates the existence of clustering behaviour in the Markov chain as follows:

Explanation of result

The existence of a real eigenvalue λ that is 'close' to 1 indicates the existence of clustering behaviour in the Markov chain as follows:

- There are two collections of states, S_{1} and S_{2}, indexed by where the entries of an eigenvector corresponding to λ are positive and negative.

Explanation of result

The existence of a real eigenvalue λ that is 'close' to 1 indicates the existence of clustering behaviour in the Markov chain as follows:

- There are two collections of states, S_{1} and S_{2}, indexed by where the entries of an eigenvector corresponding to λ are positive and negative.
- Some weighted average of the transition probabilities from states in S_{1} to states in S_{2} (and vice versa) is bounded above by $1-\lambda-$ i.e. the probability of transitioning from S_{1} to S_{2} is expected to be small if $\lambda \approx 1$.
- Some weighted average of the mean first passage times from states in S_{1} to states in S_{2} (and vice versa) is bounded below by

Explanation of result

The existence of a real eigenvalue λ that is 'close' to 1 indicates the existence of clustering behaviour in the Markov chain as follows:

- There are two collections of states, S_{1} and S_{2}, indexed by where the entries of an eigenvector corresponding to λ are positive and negative.
- Some weighted average of the transition probabilities from states in S_{1} to states in S_{2} (and vice versa) is bounded above by $1-\lambda-$ i.e. the probability of transitioning from S_{1} to S_{2} is expected to be small if $\lambda \approx 1$.
- Some weighted average of the mean first passage times from states in S_{1} to states in S_{2} (and vice versa) is bounded below by $\frac{1}{1-\lambda}$ i.e. MFP times from S_{1} to S_{2} are expected to be large if $\lambda \approx 1$.

Example

$\left[\begin{array}{cccccccccccc}0.0875 & 0.1158 & 0.2665 & 0.2820 & 0.2382 & 0 & 0.0059 & 0.0002 & 0.0022 & 0 & 0 & 0.0017 \\ 0.2885 & 0.2870 & 0.1245 & 0 & 0.2900 & 0 & 0.0071 & 0 & 0 & 0.0010 & 0 & 0.0019 \\ 0.0295 & 0.2473 & 0.3186 & 0.0610 & 0.3337 & 0.0021 & 0.0047 & 0 & 0.0018 & 0.0013 & 0.0001 & 0 \\ 0.3650 & 0.2060 & 0.3579 & 0.0611 & 0 & 0 & 0.0012 & 0.0016 & 0 & 0.0030 & 0.0018 & 0.0024 \\ 0.0681 & 0.2789 & 0.2432 & 0.3053 & 0.0946 & 0 & 0.0049 & 0 & 0.0051 & 0 & 0 & 0 \\ 0.0046 & 0.0062 & 0.0086 & 0.0006 & 0 & 0 & 0.2443 & 0.0713 & 0.0666 & 0.2911 & 0.2355 & 0.0711 \\ 0 & 0.0011 & 0.0052 & 0 & 0.0137 & 0.3158 & 0.1960 & 0.1266 & 0.1098 & 0.2318 & 0 & 0 \\ 0.0018 & 0.0133 & 0 & 0.0011 & 0.0037 & 0.1890 & 0.1562 & 0.1396 & 0.1138 & 0.0634 & 0.1436 & 0.1744 \\ 0.0024 & 0.0116 & 0.0060 & 0 & 0.0000 & 0.3355 & 0.1983 & 0 & 0.0853 & 0.0364 & 0.0730 & 0.2514 \\ 0.0104 & 0 & 0.0061 & 0 & 0.0036 & 0.2141 & 0.1702 & 0.0960 & 0 & 0.1272 & 0.2196 & 0.1529 \\ 0 & 0.0107 & 0 & 0.0046 & 0.0047 & 0.0639 & 0.0182 & 0.1455 & 0.2555 & 0.1268 & 0.1469 & 0.2232 \\ 0.0200 & 0 & 0 & 0 & 0 & 0.1941 & 0.1876 & 0.0491 & 0.2231 & 0 & 0.1052 & 0.2210\end{array}\right]$

- $\lambda=0.97$.
- $v^{\top}=\left[\begin{array}{llllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}\right]$

Example

$\left[\begin{array}{cccccccccccc}0.0875 & 0.1158 & 0.2665 & 0.2820 & 0.2382 & 0 & 0.0059 & 0.0002 & 0.0022 & 0 & 0 & 0.0017 \\ 0.2885 & 0.2870 & 0.1245 & 0 & 0.2900 & 0 & 0.0071 & 0 & 0 & 0.0010 & 0 & 0.0019 \\ 0.0295 & 0.2473 & 0.3186 & 0.0610 & 0.3337 & 0.0021 & 0.0047 & 0 & 0.0018 & 0.0013 & 0.0001 & 0 \\ 0.3650 & 0.2060 & 0.3579 & 0.0611 & 0 & 0 & 0.0012 & 0.0016 & 0 & 0.0030 & 0.0018 & 0.0024 \\ 0.0681 & 0.2789 & 0.2432 & 0.3053 & 0.0946 & 0 & 0.0049 & 0 & 0.0051 & 0 & 0 & 0 \\ 0.0046 & 0.0062 & 0.0086 & 0.0006 & 0 & 0 & 0.2443 & 0.0713 & 0.0666 & 0.2911 & 0.2355 & 0.0711 \\ 0 & 0.0011 & 0.0052 & 0 & 0.0137 & 0.3158 & 0.1960 & 0.1266 & 0.1098 & 0.2318 & 0 & 0 \\ 0.0018 & 0.0133 & 0 & 0.0011 & 0.0037 & 0.1890 & 0.1562 & 0.1396 & 0.1138 & 0.0634 & 0.1436 & 0.1744 \\ 0.0024 & 0.0116 & 0.0060 & 0 & 0.0000 & 0.3355 & 0.1983 & 0 & 0.0853 & 0.0364 & 0.0730 & 0.2514 \\ 0.0104 & 0 & 0.0061 & 0 & 0.0036 & 0.2141 & 0.1702 & 0.0960 & 0 & 0.1272 & 0.2196 & 0.1529 \\ 0 & 0.0107 & 0 & 0.0046 & 0.0047 & 0.0639 & 0.0182 & 0.1455 & 0.2555 & 0.1268 & 0.1469 & 0.2232 \\ 0.0200 & 0 & 0 & 0 & 0 & 0.1941 & 0.1876 & 0.0491 & 0.2231 & 0 & 0.1052 & 0.2210\end{array}\right]$

- $\lambda=0.97$.
- $v^{\top}=\left[\begin{array}{llllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}\right]$

Question: complex eigenvalues?

Can any clustering behaviour be determined from a complex eigenvalue?
That is, given $\lambda \in \mathbb{C}$ an eigenvalue of T where $\lambda=\alpha+i \beta$, can we:
> (a) define a conformal partition of a corresponding eigenvector for λ and the matrix T;
> (b) determine lower bounds for the spectral radii of T_{11} and T_{22} (the principal submatrices determined by the index set of this partition); and
> (c) conclude equivalent statements about the clustering properties of T as in parts (b) and (c) of the theorem.
> A brief examination of the proof of the above theorem will determine that (b) and (c) are proven independent of the fact that λ is real; moreover, given lower bounds for $\rho\left(T_{11}\right), \rho\left(T_{22}\right)$, these may be substituted for λ in (1), (2), (3) and (4).

Question: complex eigenvalues?

Can any clustering behaviour be determined from a complex eigenvalue?
That is, given $\lambda \in \mathbb{C}$ an eigenvalue of T where $\lambda=\alpha+i \beta$, can we:
(a) define a conformal partition of a corresponding eigenvector for λ and the matrix T;
> (b) determine lower bounds for the spectral radii of T_{11} and T_{22} (the principal submatrices determined by the index set of this partition); and
> (c) conclude equivalent statements about the clustering properties of T as in parts (b) and (c) of the theorem.

> A brief examination of the proof of the above theorem will determine that (b) and (c) are proven independent of the fact that λ is real; moreover, given lower bounds for $\rho\left(T_{11}\right), \rho\left(T_{22}\right)$, these may be substituted for λ in (1), (2), (3) and (4).

Question: complex eigenvalues?

Can any clustering behaviour be determined from a complex eigenvalue?
That is, given $\lambda \in \mathbb{C}$ an eigenvalue of T where $\lambda=\alpha+i \beta$, can we:
(a) define a conformal partition of a corresponding eigenvector for λ and the matrix T;
(b) determine lower bounds for the spectral radii of T_{11} and T_{22} (the principal submatrices determined by the index set of this partition);
and
(c) conclude equivalent statements about the clustering properties of T as in parts (b) and (c) of the theorem.
A brief examination of the proof of the above theorem will determine that (b) and (c) are proven independent of the fact that λ is real; moreover, given lower bounds for $\rho\left(T_{11}\right), \rho\left(T_{22}\right)$, these may be substituted for λ in (1), (2), (3) and (4).

Question: complex eigenvalues?

Can any clustering behaviour be determined from a complex eigenvalue?
That is, given $\lambda \in \mathbb{C}$ an eigenvalue of T where $\lambda=\alpha+i \beta$, can we:
(a) define a conformal partition of a corresponding eigenvector for λ and the matrix T;
(b) determine lower bounds for the spectral radii of T_{11} and T_{22} (the principal submatrices determined by the index set of this partition); and
(c) conclude equivalent statements about the clustering properties of T as in parts (b) and (c) of the theorem.
A brief examination of the proof of the above theorem will determine that (b) and (c) are proven independent of the fact that λ is real; moreover, given lower bounds for $\rho\left(T_{11}\right), \rho\left(T_{22}\right)$, these may be substituted for λ in (1), (2), (3) and (4).

Question: complex eigenvalues?

Can any clustering behaviour be determined from a complex eigenvalue?
That is, given $\lambda \in \mathbb{C}$ an eigenvalue of T where $\lambda=\alpha+i \beta$, can we:
(a) define a conformal partition of a corresponding eigenvector for λ and the matrix T;
(b) determine lower bounds for the spectral radii of T_{11} and T_{22} (the principal submatrices determined by the index set of this partition); and
(c) conclude equivalent statements about the clustering properties of T as in parts (b) and (c) of the theorem.
A brief examination of the proof of the above theorem will determine that (b) and (c) are proven independent of the fact that λ is real; moreover, given lower bounds for $\rho\left(T_{11}\right), \rho\left(T_{22}\right)$, these may be substituted for λ in (1), (2), (3) and (4).

A starting point

- Let T be an irreducible stochastic matrix with an eigenvalue $\lambda=\alpha+i \beta$.
- Let $x+i y$ be an eigenvector of T corresponding to the eigenvalue
- Then since

$$
T(x+i y)=(\alpha+i \beta)(x+i y)
$$

by equating real and imaginary parts we have

$$
T x=\alpha x-\beta y
$$

A starting point

- Let T be an irreducible stochastic matrix with an eigenvalue $\lambda=\alpha+i \beta$.
- Let $x+i y$ be an eigenvector of T corresponding to the eigenvalue λ.
- Then since

$$
T(x+i y)=(\alpha+i \beta)(x+i y)
$$

by equating real and imaginary parts we have

$$
T x=\alpha x-\beta y
$$

A starting point

- Let T be an irreducible stochastic matrix with an eigenvalue $\lambda=\alpha+i \beta$.
- Let $x+i y$ be an eigenvector of T corresponding to the eigenvalue λ.
- Then since

$$
T(x+i y)=(\alpha+i \beta)(x+i y)
$$

by equating real and imaginary parts we have

$$
T y=\beta x+\alpha y
$$

A starting point

- Let T be an irreducible stochastic matrix with an eigenvalue $\lambda=\alpha+i \beta$.
- Let $x+i y$ be an eigenvector of T corresponding to the eigenvalue λ.
- Then since

$$
T(x+i y)=(\alpha+i \beta)(x+i y)
$$

by equating real and imaginary parts we have

$$
T x=\alpha x-\beta y
$$

and

$$
T y=\beta x+\alpha y
$$

- Partition the system (i.e. the matrix T and the vectors x and y) according to where x is positive, negative, and zero.
- Then we have

where $x_{1}>0$ and $x_{2}<0$, entrywise.
- Let S_{1}, S_{2}, S_{3} denote the index sets of the partition. Note that S_{3} may be empty.
- Partition the system (i.e. the matrix T and the vectors x and y) according to where x is positive, negative, and zero.
- Then we have

$$
\left[\begin{array}{c|c|c}
T_{11} & T_{12} & T_{13} \\
\hline T_{21} & T_{22} & T_{23} \\
\hline T_{31} & T_{32} & T_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\hline x_{2} \\
\hline 0
\end{array}\right]=\left[\begin{array}{c}
\alpha x_{1}-\beta y_{1} \\
\hline \alpha x_{2}-\beta y_{2} \\
\hline-\beta y_{3}
\end{array}\right]
$$

where $x_{1}>0$ and $x_{2}<0$, entrywise.

- Let S_{1}, S_{2}, S_{3} denote the index sets of the partition. Note that S_{3} may be empty.

This gives:

$$
T_{11} x_{1}+T_{12} x_{2}=\alpha x_{1}-\beta y_{1},
$$

and since $T_{12} x_{2}$ is entrywise nonpositive,

$$
T_{11} x_{1} \geq \alpha x_{1}-\beta y_{1} .
$$

It follows from this that

By a well-known result we know that the spectral radius of a nonnegative matrix lies between its minimum and maximum row sums. It follows that

This gives:

$$
T_{11} x_{1}+T_{12} x_{2}=\alpha x_{1}-\beta y_{1}
$$

and since $T_{12} x_{2}$ is entrywise nonpositive,

$$
T_{11} x_{1} \geq \alpha x_{1}-\beta y_{1}
$$

It follows from this that

By a well-known result we know that the spectral radius of a nonnegative matrix lies between its minimum and maximum row sums. It follows that

This gives:

$$
T_{11} x_{1}+T_{12} x_{2}=\alpha x_{1}-\beta y_{1}
$$

and since $T_{12} x_{2}$ is entrywise nonpositive,

$$
T_{11} x_{1} \geq \alpha x_{1}-\beta y_{1} .
$$

It follows from this that

$$
T_{11} \mathbb{1} \geq \min _{j}\left(\frac{\alpha x_{1}(j)-\beta y_{1}(j)}{x_{1}(j)}\right) \mathbb{1}
$$

By a well-known result we know that the spectral radius of a
nonnegative matrix lies between its minimum and maximum row sums. It follows that

This gives:

$$
T_{11} x_{1}+T_{12} x_{2}=\alpha x_{1}-\beta y_{1}
$$

and since $T_{12} x_{2}$ is entrywise nonpositive,

$$
T_{11} x_{1} \geq \alpha x_{1}-\beta y_{1}
$$

It follows from this that

$$
T_{11} \mathbb{1} \geq \min _{j}\left(\frac{\alpha x_{1}(j)-\beta y_{1}(j)}{x_{1}(j)}\right) \mathbb{1}
$$

By a well-known result we know that the spectral radius of a nonnegative matrix lies between its minimum and maximum row sums.
It follows that

This gives:

$$
T_{11} x_{1}+T_{12} x_{2}=\alpha x_{1}-\beta y_{1}
$$

and since $T_{12} x_{2}$ is entrywise nonpositive,

$$
T_{11} x_{1} \geq \alpha x_{1}-\beta y_{1}
$$

It follows from this that

$$
T_{11} \mathbb{1} \geq \min _{j}\left(\frac{\alpha x_{1}(j)-\beta y_{1}(j)}{x_{1}(j)}\right) \mathbb{1}
$$

By a well-known result we know that the spectral radius of a nonnegative matrix lies between its minimum and maximum row sums. It follows that

$$
\rho\left(T_{11}\right) \geq \min _{j}\left(\frac{\alpha x_{1}(j)-\beta y_{1}(j)}{x_{1}(j)}\right)
$$

or alternatively,

$$
\rho\left(T_{11}\right) \geq \alpha-\beta \max _{j}\left(\frac{y_{1}(j)}{x_{1}(j)}\right)
$$

Similarly, we may show that

If $\alpha \approx 1$ and $\beta \approx 0$, then these lower bounds are close to 1 , indicating clustering behaviour in the collections of states indexed by S_{1} and by

or alternatively,

$$
\rho\left(T_{11}\right) \geq \alpha-\beta \max _{j}\left(\frac{y_{1}(j)}{x_{1}(j)}\right)
$$

Similarly, we may show that

$$
\rho\left(T_{22}\right) \geq \alpha-\beta \max _{j}\left(\frac{y_{2}(j)}{x_{2}(j)}\right)
$$

If $\alpha \approx 1$ and $\beta \approx 0$, then these lower bounds are close to 1 , indicating clustering behaviour in the collections of states indexed by S_{1} and by
or alternatively,

$$
\rho\left(T_{11}\right) \geq \alpha-\beta \max _{j}\left(\frac{y_{1}(j)}{x_{1}(j)}\right)
$$

Similarly, we may show that

$$
\rho\left(T_{22}\right) \geq \alpha-\beta \max _{j}\left(\frac{y_{2}(j)}{x_{2}(j)}\right)
$$

If $\alpha \approx 1$ and $\beta \approx 0$, then these lower bounds are close to 1 , indicating clustering behaviour in the collections of states indexed by S_{1} and by S_{2}.

Extra hypotheses

- Note that we need

$$
\alpha x_{1}-\beta y_{1}>0 \quad \text { and } \quad \alpha x_{2}-\beta y_{2}<0
$$

in order that these lower bounds are positive.

- We treat the above as hypotheses that must be satisfied in order to conclude anything about clustering behaviour of the chain.

Extra hypotheses

- Note that we need

$$
\alpha x_{1}-\beta y_{1}>0 \quad \text { and } \quad \alpha x_{2}-\beta y_{2}<0
$$

in order that these lower bounds are positive.

- We treat the above as hypotheses that must be satisfied in order to conclude anything about clustering behaviour of the chain.

Repartitioning

- Consider the vector $x+t y$, for some $t>0$, and partition according to where $x+t y$ is positive, negative, or zero, with index sets $\tilde{S}_{1}, \tilde{S}_{2}, \tilde{S}_{3}$.

- t must be bounded above by

Repartitioning

- Consider the vector $x+t y$, for some $t>0$, and partition according to where $x+t y$ is positive, negative, or zero, with index sets $\tilde{S}_{1}, \tilde{S}_{2}, \tilde{S}_{3}$.
- Then we have

$$
\left[\begin{array}{c|c|c}
\widetilde{T}_{11} & \widetilde{T}_{12} & \widetilde{T}_{13} \\
\hline \widetilde{T}_{21} & \widetilde{T}_{22} & \widetilde{T}_{23} \\
\hline \widetilde{T}_{31} & \widetilde{T}_{32} & \widetilde{T}_{33}
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{1}+t \tilde{y}_{1} \\
\hline \tilde{x}_{2}+t \tilde{y}_{2} \\
\hline 0
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(\tilde{x}_{1}+t \tilde{y}_{1}\right)+\beta\left(t \tilde{x}_{1}-\tilde{y}_{1}\right) \\
\frac{\alpha\left(\tilde{x}_{2}+t \tilde{y}_{2}\right)+\beta\left(t \tilde{x}_{2}-\tilde{y}_{2}\right)}{(\alpha t-\beta) \tilde{y}_{3}}
\end{array}\right] .
$$

Repartitioning

- Consider the vector $x+t y$, for some $t>0$, and partition according to where $x+t y$ is positive, negative, or zero, with index sets $\tilde{S}_{1}, \tilde{S}_{2}, \tilde{S}_{3}$.
- Then we have

$$
\left[\begin{array}{c|c|c}
\widetilde{T}_{11} & \widetilde{T}_{12} & \widetilde{T}_{13} \\
\hline \widetilde{T}_{21} & \widetilde{T}_{22} & \widetilde{T}_{23} \\
\hline \widetilde{T}_{31} & \widetilde{T}_{32} & \widetilde{T}_{33}
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{1}+t \tilde{y}_{1} \\
\hline \tilde{x}_{2}+t \tilde{y}_{2} \\
\hline 0
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(\tilde{x}_{1}+t \tilde{y}_{1}\right)+\beta\left(t \tilde{x}_{1}-\tilde{y}_{1}\right) \\
\frac{\alpha\left(\tilde{x}_{2}+t \tilde{y}_{2}\right)+\beta\left(t \tilde{x}_{2}-\tilde{y}_{2}\right)}{(\alpha t-\beta) \tilde{y}_{3}}
\end{array}\right] .
$$

- t must be bounded above by

$$
\min _{\substack{j \\ \tilde{y}_{1}(j)<0}}\left(\frac{-\tilde{x}_{1}(j)}{\tilde{y}_{1}(j)}\right) \quad \text { and } \quad \min _{j}^{\tilde{y}_{2}(j)>0}\left(\frac{-\tilde{x}_{2}(j)}{\tilde{y}_{2}(j)}\right) .
$$

Repartitioning

- Note that this 'repartition' is not substantially different. We simply allow the option of including some extra states in the cluster by including indices corresponding to positive entries of y_{3} to S_{1}, and indices corresponding to negative entries of y_{3} to S_{2}.
- Moreover, $S_{1} \subseteq \tilde{S}_{1}$ and $S_{2} \subseteq \tilde{S}_{2}$.
- Interpreting in terms of prospective clustering behaviour, we are simply allowing the possible addition of more states into our existing index set to potentially achieve a 'tighter' cluster.

Repartitioning

- Note that this 'repartition' is not substantially different. We simply allow the option of including some extra states in the cluster by including indices corresponding to positive entries of y_{3} to S_{1}, and indices corresponding to negative entries of y_{3} to S_{2}.
- Moreover, $S_{1} \subseteq \tilde{S}_{1}$ and $S_{2} \subseteq \tilde{S}_{2}$.
- Interpreting in terms of prospective clustering behaviour, we are simply allowing the possible addition of more states into our existing index set to potentially achieve a 'tighter' cluster.

Repartitioning

- Note that this 'repartition' is not substantially different. We simply allow the option of including some extra states in the cluster by including indices corresponding to positive entries of y_{3} to S_{1}, and indices corresponding to negative entries of y_{3} to S_{2}.
- Moreover, $S_{1} \subseteq \tilde{S}_{1}$ and $S_{2} \subseteq \tilde{S}_{2}$.
- Interpreting in terms of prospective clustering behaviour, we are simply allowing the possible addition of more states into our existing index set to potentially achieve a 'tighter' cluster.

Repartitioning

- Proceeding as before, we have:

$$
\begin{aligned}
& \tilde{T}_{11}\left(\tilde{x}_{1}+t \tilde{y}_{1}\right) \geq \alpha\left(\tilde{x}_{1}+t \tilde{y}_{1}\right)+\beta\left(t \tilde{x}_{1}-\tilde{y}_{1}\right) \\
& \Rightarrow \quad \rho\left(\tilde{T}_{11}\right) \geq \alpha+\beta \min _{j}\left(\frac{t \tilde{x}_{1}(j)-\tilde{y}_{1}(j)}{\tilde{x}_{1}(j)+t \tilde{y}_{1}(j)}\right),
\end{aligned}
$$

- Similarly

- These lower bounds are increasing functions of t, and so they are optimized by taking the limit as t approached the minimum of the previous bounds.

Repartitioning

- Proceeding as before, we have:

$$
\begin{aligned}
\tilde{T}_{11}\left(\tilde{x}_{1}+t \tilde{y}_{1}\right) & \geq \alpha\left(\tilde{x}_{1}+t \tilde{y}_{1}\right)+\beta\left(t \tilde{x}_{1}-\tilde{y}_{1}\right) \\
\Rightarrow \quad \rho\left(\tilde{T}_{11}\right) & \geq \alpha+\beta \min _{j}\left(\frac{t \tilde{x}_{1}(j)-\tilde{y}_{1}(j)}{\tilde{x}_{1}(j)+t \tilde{y}_{1}(j)}\right)
\end{aligned}
$$

- Similarly

$$
\rho\left(\tilde{T}_{22}\right) \geq \alpha+\beta \min _{j}\left(\frac{t \tilde{x}_{2}(j)-\tilde{y}_{2}(j)}{\tilde{x}_{2}(j)+t \tilde{y}_{2}(j)}\right) .
$$

- These lower bounds are increasing functions of t, and so they are optimized by taking the limit as t approached the minimum of the previous bounds.

Repartitioning

- Proceeding as before, we have:

$$
\begin{aligned}
& \tilde{T}_{11}\left(\tilde{x}_{1}+t \tilde{y}_{1}\right) \geq \alpha\left(\tilde{x}_{1}+t \tilde{y}_{1}\right)+\beta\left(t \tilde{x}_{1}-\tilde{y}_{1}\right) \\
& \Rightarrow \quad \rho\left(\tilde{T}_{11}\right) \geq \alpha+\beta \min _{j}\left(\frac{t \tilde{x}_{1}(j)-\tilde{y}_{1}(j)}{\tilde{x}_{1}(j)+t \tilde{y}_{1}(j)}\right)
\end{aligned}
$$

- Similarly

$$
\rho\left(\tilde{T}_{22}\right) \geq \alpha+\beta \min _{j}\left(\frac{t \tilde{x}_{2}(j)-\tilde{y}_{2}(j)}{\tilde{x}_{2}(j)+t \tilde{y}_{2}(j)}\right) .
$$

- These lower bounds are increasing functions of t, and so they are optimized by taking the limit as t approached the minimum of the previous bounds.

Repartitioning - again!

- Now consider $x+t y$, where t is negative, and partition according to where $x+t y$ is positive, negative and zero, denoting these new index sets $\bar{S}_{1}, \bar{S}_{2}, \bar{S}_{3}$.
- Then there is the possibility of including in the index set S_{1} (respectively, S_{2}) some nodes corresponding to entries of y_{3} which are positive (respectively, negative), producing a different partition than before (possibly).
- Since we observed that the expression for the lower bounds were increasing in t, and t is negative, we choose $t \rightarrow 0$ to optimise these lower bounds for the spectral radii. This means that we achieve the same lower bounds as in the most basic case.

Repartitioning - again!

- Now consider $x+t y$, where t is negative, and partition according to where $x+t y$ is positive, negative and zero, denoting these new index sets $\bar{S}_{1}, \bar{S}_{2}, \bar{S}_{3}$.
- Then there is the possibility of including in the index set S_{1} (respectively, S_{2}) some nodes corresponding to entries of y_{3} which are positive (respectively, negative), producing a different partition than before (possibly).
- Since we observed that the expression for the lower bounds were increasing in t, and t is negative, we choose $t \rightarrow 0$ to optimise these lower bounds for the spectral radii. This means that we achieve the same lower bounds as in the most basic case.

Repartitioning - again!

- Now consider $x+t y$, where t is negative, and partition according to where $x+t y$ is positive, negative and zero, denoting these new index sets $\bar{S}_{1}, \bar{S}_{2}, \bar{S}_{3}$.
- Then there is the possibility of including in the index set S_{1} (respectively, S_{2}) some nodes corresponding to entries of y_{3} which are positive (respectively, negative), producing a different partition than before (possibly).
- Since we observed that the expression for the lower bounds were increasing in t, and t is negative, we choose $t \rightarrow 0$ to optimise these lower bounds for the spectral radii. This means that we achieve the same lower bounds as in the most basic case.

Theorem

Theorem
Let T be an $n \times n$ irreducible and stochastic matrix, let $\lambda=\alpha+i \beta$ be an eigenvalue of T, with $\alpha, \beta>0$, and let $x+i y$ be a right eigenvector of T corresponding to λ. For $i=1,2,3$, let S_{i}, S_{i}, and S_{i} be the index sets obtained from the partitions described above, let $x_{i}, y_{i}, \tilde{x}_{i}, \tilde{y}_{i}, \bar{x}_{i}, \bar{y}_{i}$ be the subvectors of x and y corresponding to the index sets S_{i}, S_{i} and \bar{S}_{i}, and let $T_{i i}, T_{i j}$ and $T_{i j}$ be the principal submatrices of T corresponding to the index sets S_{i}, S_{i}, and S_{i}. Then:

Theorem

Abstract

Theorem Let T be an $n \times n$ irreducible and stochastic matrix, let $\lambda=\alpha+i \beta$ be an eigenvalue of T, with $\alpha, \beta>0$, and let $x+i y$ be a right eigenvector of T corresponding to λ. For $\mathrm{i}=1,2$, 3, let S_{i}, \widetilde{S}_{i}, and \bar{S}_{i} be the index sets obtained from the partitions described above, let $x_{i}, y_{i}, \tilde{x}_{i}, \tilde{y}_{i}, \bar{x}_{i}, \bar{y}_{i}$ be the subvectors of x and y corresponding to the index sets S_{i}, S_{i}, and \bar{S}_{i}, and let $T_{i i}, \widetilde{T}_{i i}$ and $\bar{T}_{i i}$ be the principal submatrices of T corresponding to the index sets S_{i}, \widetilde{S}_{i}, and \bar{S}_{i}. Then:

Theorem(ctd)
(a) If $\alpha x_{1}-\beta y_{1}>0$,

$$
\rho\left(T_{11}\right) \geq \alpha-\beta \cdot \max _{j}\left\{\frac{y_{1}(j)}{x_{1}(j)}\right\} .
$$

(b) If $\alpha x_{2}-\beta y_{2}<0$,

$$
\rho\left(T_{22}\right) \geq \alpha-\beta \cdot \max _{j}\left\{\frac{y_{2}(j)}{x_{2}(j)}\right\} .
$$

Theorem(ctd)

(c) If $\alpha \tilde{x}_{1}-\beta \tilde{y}_{1}>0$,

$$
\rho\left(\tilde{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\begin{array}{l}
t \tilde{x}_{1}(j)-\tilde{y}_{1}(j) \\
\tilde{x}_{1}(j)+t \tilde{y}_{1}(j)
\end{array}\right\},
$$

where $t>0$ and is bounded above by

If $\tilde{y}_{1}>0$ and $\tilde{y}_{2}<0$, then

Theorem(ctd)

(c) If $\alpha \tilde{x}_{1}-\beta \tilde{y}_{1}>0$,

$$
\rho\left(\widetilde{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{t \tilde{x}_{1}(j)-\tilde{y}_{1}(j)}{\tilde{x}_{1}(j)+t \tilde{y}_{1}(j)}\right\}
$$

where $t>0$ and is bounded above by

$$
\min _{j}^{\tilde{y}_{1}(j)<0}\left\{\frac{-\tilde{x}_{1}(j)}{\tilde{y}_{1}(j)}\right\} \quad \text { and } \quad \min _{j}\left\{\frac{-\tilde{x}_{2}(j)}{\tilde{y}_{2}(j)>0}\right\} .
$$

If $\tilde{y}_{1}>0$ and $\tilde{y}_{2}<0$, then

Theorem(ctd)

(c) If $\alpha \tilde{x}_{1}-\beta \tilde{y}_{1}>0$,

$$
\rho\left(\widetilde{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{t \tilde{x}_{1}(j)-\tilde{y}_{1}(j)}{\tilde{x}_{1}(j)+t \tilde{y}_{1}(j)}\right\}
$$

where $t>0$ and is bounded above by

$$
\min _{j}^{\tilde{y}_{1}(j)<0}\left\{\frac{-\tilde{x}_{1}(j)}{\tilde{y}_{1}(j)}\right\} \quad \text { and } \quad \min _{j}\left\{\frac{-\tilde{x}_{2}(j)}{\tilde{y}_{2}(j)>0}\right\} .
$$

If $\tilde{y}_{1}>0$ and $\tilde{y}_{2}<0$, then

$$
\rho\left(\widetilde{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\tilde{x}_{1}(j)}{\tilde{y}_{1}(j)}\right\} .
$$

Theorem(ctd)

(d) If $\alpha \tilde{x}_{2}-\beta \tilde{y}_{2}<0$,

$$
\rho\left(\widetilde{T}_{22}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{t \tilde{x}_{2}(j)-\tilde{y}_{2}(j)}{\tilde{x}_{2}(j)+t \tilde{y}_{2}(j)}\right\},
$$

where $t>0$ and is bounded above by

$$
\min _{j}^{\tilde{y}_{1}(j)<0}\left\{\frac{-\tilde{x}_{1}(j)}{\tilde{y}_{1}(j)}\right\} \quad \text { and } \quad \min _{j}\left\{\frac{-\tilde{x}_{2}(j)}{\tilde{y}_{2}(j)>0}\right\} .
$$

If $\tilde{y}_{1}>0$ and $\tilde{y}_{2}<0$, then

$$
\rho\left(\widetilde{T}_{22}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\tilde{x}_{2}(j)}{\tilde{y}_{2}(j)}\right\} .
$$

Theorem(ctd)
(e) If $\alpha \bar{x}_{1}-\beta \bar{y}_{1}>0$,

$$
\rho\left(\bar{T}_{11}\right) \geq \alpha-\beta \cdot \min _{j}\left\{\frac{\bar{y}_{1}(j)}{\bar{x}_{1}(j)}\right\} .
$$

(f) If $\alpha \bar{x}_{2}-\beta \bar{y}_{2}>0$,

$$
\rho\left(\bar{T}_{22}\right) \geq \alpha-\beta \cdot \min _{j}\left\{\frac{\bar{y}_{2}(j)}{\bar{x}_{2}(j)}\right\} .
$$

Using the imaginary part of the eigenvector

- Partition the system (i.e. the matrix T and the vectors x and y) according to where y is positive, negative, and zero.
- That is, we have

$$
\left[\begin{array}{c|c|c}
T_{11} & T_{12} & T_{13} \\
\hline T_{21} & T_{22} & T_{23} \\
\hline T_{31} & T_{32} & T_{33}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\hline y_{2} \\
\hline 0
\end{array}\right]=\left[\begin{array}{c}
\beta x_{1}+\alpha y_{1} \\
\frac{\beta x_{2}+\alpha y_{2}}{\beta x_{3}}
\end{array}\right]
$$

Another theorem

Theorem II
Let T be an $n \times n$ irreducible and stochastic matrix, let $\lambda=\alpha+i \beta$ be an eigenvalue of T, with $\alpha, \beta>0$, and let $x+i y$ be a right eigenvector of T corresponding to λ. For $\mathrm{i}=1,2$, 3, let S_{i} denote the index sets obtained by partitioning according to where y is positive, negative and zero.
partitioning according to where $s x+y$ is positive, negative, and zero, where s is positive (respectively, where s is negative). Let $x_{i}, y_{i}, \tilde{x}_{i}, \tilde{y}_{i}, \bar{x}_{i}, \bar{y}_{i}$ be the subvectors of x and y corresponding to the index sets S_{i}, S_{i}, and S_{i}, and let $T_{i i}, T_{i i}$ and $T_{i i}$ be the principal submatrices of T corresponding to the index sets S_{i}, S_{i}, and \bar{S}_{i} Assume that x_{i} and y_{i} (resp., \tilde{x}_{i} and $\tilde{y}_{i}, \bar{x}_{i}$ and \bar{y}_{i}) are linearly independent, $i=1,2$. Then:

Another theorem

Theorem II
Let T be an $n \times n$ irreducible and stochastic matrix, let $\lambda=\alpha+i \beta$ be an eigenvalue of T, with $\alpha, \beta>0$, and let $x+i y$ be a right eigenvector of T corresponding to λ. For $\mathrm{i}=1,2$, 3, let S_{i} denote the index sets obtained by partitioning according to where y is positive, negative and zero. Also, let \widetilde{S}_{i} (respectively, \bar{S}_{i}) be the index sets obtained by partitioning according to where $s x+y$ is positive, negative, and zero, where s is positive (respectively, where s is negative).

Assume that x_{i} and y_{i} (resp., \tilde{x}_{i} and $\tilde{y}_{i}, \bar{x}_{i}$ and \bar{y}_{i}) are linearly

Another theorem

Theorem II

Let T be an $n \times n$ irreducible and stochastic matrix, let $\lambda=\alpha+i \beta$ be an eigenvalue of T, with $\alpha, \beta>0$, and let $x+i y$ be a right eigenvector of T corresponding to λ. For $\mathrm{i}=1,2$, 3, let S_{i} denote the index sets obtained by partitioning according to where y is positive, negative and zero. Also, let \widetilde{S}_{i} (respectively, \bar{S}_{i}) be the index sets obtained by partitioning according to where $s x+y$ is positive, negative, and zero, where s is positive (respectively, where s is negative). Let $x_{i}, y_{i}, \tilde{x}_{i}, \tilde{y}_{i}, \bar{x}_{i}, \bar{y}_{i}$ be the subvectors of x and y corresponding to the index sets S_{i}, \widetilde{S}_{i}, and \bar{S}_{i}, and let $T_{i i}, \widetilde{T}_{i i}$ and $\bar{T}_{i i}$ be the principal submatrices of T corresponding to the index sets S_{i}, \bar{S}_{i}, and \bar{S}_{i}. Assume that x_{i} and y_{i} (resp., \tilde{x}_{i} and $\tilde{y}_{i}, \bar{x}_{i}$ and \bar{y}_{i}) are linearly independent, $i=1,2$. Then:

Theorem II (ctd)

(a) If $\alpha y_{1}+\beta x_{1}>0$,

$$
\rho\left(T_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{x_{1}(j)}{y_{1}(j)}\right\} .
$$

(b) If $\alpha y_{2}+\beta x_{2}<0$,

$$
\rho\left(T_{22}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{x_{2}(j)}{y_{2}(j)}\right\} .
$$

Theorem II (ctd)
(c) If $\alpha \tilde{y}_{1}+\beta \tilde{x}_{1}>0$,

$$
\rho\left(\widetilde{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\tilde{x}_{1}(j)}{\tilde{y}_{1}(j)}\right\} .
$$

(d) If $\alpha \tilde{y}_{2}+\beta \tilde{x}_{2}>0$,

$$
\rho\left(\widetilde{T}_{22}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\tilde{x}_{2}(j)}{\tilde{y}_{2}(j)}\right\} .
$$

Theorem II (ctd)
(e) If $\alpha \bar{y}_{1}+\beta \bar{x}_{1}>0$,

$$
\rho\left(\bar{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\bar{x}_{1}(j)-s \bar{y}_{1}(j)}{s \bar{x}_{1}(j)+\bar{y}_{1}(j)}\right\},
$$

where $s<0$ and is bounded below by

Theorem II (ctd)

(e) If $\alpha \bar{y}_{1}+\beta \bar{x}_{1}>0$,

$$
\rho\left(\bar{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\bar{x}_{1}(j)-s \bar{y}_{1}(j)}{s \bar{x}_{1}(j)+\bar{y}_{1}(j)}\right\},
$$

where $s<0$ and is bounded below by

$$
\min _{j}^{\tilde{x}_{1}(j)>0}\left\{\begin{array}{c}
-\tilde{y}_{1}(j) \\
\tilde{x}_{1}(j)
\end{array} \quad \text { and by } \quad \min _{j}^{\tilde{x}_{2}(j)<0}\left\{\frac{-\tilde{y}_{2}(j)}{\tilde{x}_{2}(j)}\right\}\right.
$$

If $\bar{x}_{1}<0$ and $\bar{x}_{2}>0$, then

Theorem II (ctd)

(e) If $\alpha \bar{y}_{1}+\beta \bar{x}_{1}>0$,

$$
\rho\left(\bar{T}_{11}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\bar{x}_{1}(j)-s \bar{y}_{1}(j)}{s \bar{x}_{1}(j)+\bar{y}_{1}(j)}\right\},
$$

where $s<0$ and is bounded below by

$$
\min _{\substack{j \\ \tilde{x}_{1}(j)>0}}\left\{\frac{-\tilde{y}_{1}(j)}{\tilde{x}_{1}(j)}\right\} \quad \text { and by } \quad \min _{\substack{j \\ \tilde{x}_{2}(j)<0}}\left\{\frac{-\tilde{y}_{2}(j)}{\tilde{x}_{2}(j)}\right\} .
$$

If $\bar{x}_{1}<0$ and $\bar{x}_{2}>0$, then

$$
\rho\left(\bar{T}_{11}\right) \geq \alpha-\beta \cdot \min _{j}\left\{\frac{\bar{y}_{1}(j)}{\bar{x}_{1}(j)}\right\} .
$$

Theorem II (ctd)

(f) If $\alpha \bar{y}_{2}+\beta \bar{x}_{2}<0$,

$$
\rho\left(\bar{T}_{22}\right) \geq \alpha+\beta \cdot \min _{j}\left\{\frac{\bar{x}_{2}(j)-s \bar{y}_{2}(j)}{s \bar{x}_{2}(j)+\bar{y}_{2}(j)}\right\},
$$

where $s<0$ and is bounded below by

$$
\min _{\tilde{x}_{1}(j)>0}\left\{\frac{-\tilde{y}_{1}(j)}{\tilde{x}_{1}(j)}\right\} \quad \text { and by } \quad \min _{\substack{j \\ \tilde{x}_{2}(j)<0}}\left\{\frac{-\tilde{y}_{2}(j)}{\tilde{x}_{2}(j)}\right\} .
$$

If $\bar{x}_{1}<0$ and $\bar{x}_{2}>0$, then

$$
\rho\left(\bar{T}_{22}\right) \geq \alpha-\beta \cdot \min _{j}\left\{\frac{\bar{y}_{2}(j)}{\bar{x}_{2}(j)}\right\} .
$$

Example

- T a 40×40 irreducible stochastic matrix, with an eigenvalue $\lambda=0.8188+0.0348 i$.

Partition wrt:	S_{1}	LB on $\rho\left(T_{11}\right)$	S_{2}	LB on $\rho\left(T_{22}\right)$
x	$6-40$	0.6539	$1-5$	0.8108
$x+t y, t>0$	$6-40$	0.8115	$1-5$	0.8027
$x+t y, t<0$	$6-40$	0.6539	$1-5$	0.8108
y	$1-5$	0.9698	$6-35$	0.8262
$s x+y, s>0$	$1-5,36-40$	0.9698	$6-35$	0.8262
$s x+y, s<0$	$1-5$	0.8108	$6-40$	0.8188

Example

Thank you!

