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Markov chains

A discrete-time, time-homogeneous, finite Markov chain can be
thought of as a system that undergoes transitions between states,
over some finite state space {s1, . . . , sn}, in discrete time steps.
For each si , sj , there is some transition probability tij denoting the
probability of the system moving from state i to state j in a single
time step.
In this way, the chain is memoryless; the movement of the chain
depends only on the current state the system is in.
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Markov chains

A Markov chain can be represented entirely by the probability
transition matrix T = [tij ], a nonnegative row-stochastic matrix.
Given an initial probability distribution vector u>0 , the probability
distribution after k time-steps is given by u>k = u>0 T k .
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Perron-Frobenius theorem

Theorem
Let T be a primitive row-stochastic matrix. Then:
(a) ρ(T ) = 1, and 1 is an eigenvalue of T .
(b) If λ 6= 1 is an eigenvalue of T , then |λ| < 1.
(c) There is a positive left eigenvector w> of T corresponding to the

eigenvalue 1.
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Stationary vector

Definition
Given that a Markov chain with transition matrix T is ergodic (that is, T
is primitive), the left eigenvector w> of T corresponding to the
eigenvalue 1 is referred to as the stationary vector of the chain, and it
catalogues the long-term behaviour of the chain.
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Mean first passage times

Definition
For states i and j , the mean first passage time from i to j , denoted
mi,j , is the expected length of time it takes for the chain to reach state j
for the first time, given that the chain starts in state i .
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Road network model

Emanuele Crisostomi, Stephen Kirkland, and Robert Shorten.
A Google-like model of road network dynamics and its application
to regulation and control.
International Journal of Control, 84(3):633–651, 2011.

Photo credit: Microsoft
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Clustering in Markov chains

Clustering behaviour is usually characterised by the existence of
collections of states of the Markov chain for which the system, if
starting in a state in a cluster, is unlikely to leave that collection of
states in the short term. Also, the expected number of time-steps until
the chain is in a state outside of that cluster is relatively large.
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Clustering in Markov chains
Example



0.0875 0.1158 0.2665 0.2820 0.2382 0 0.0059 0.0002 0.0022 0 0 0.0017
0.2885 0.2870 0.1245 0 0.2900 0 0.0071 0 0 0.0010 0 0.0019
0.0295 0.2473 0.3186 0.0610 0.3337 0.0021 0.0047 0 0.0018 0.0013 0.0001 0
0.3650 0.2060 0.3579 0.0611 0 0 0.0012 0.0016 0 0.0030 0.0018 0.0024
0.0681 0.2789 0.2432 0.3053 0.0946 0 0.0049 0 0.0051 0 0 0
0.0046 0.0062 0.0086 0.0006 0 0 0.2443 0.0713 0.0666 0.2911 0.2355 0.0711

0 0.0011 0.0052 0 0.0137 0.3158 0.1960 0.1266 0.1098 0.2318 0 0
0.0018 0.0133 0 0.0011 0.0037 0.1890 0.1562 0.1396 0.1138 0.0634 0.1436 0.1744
0.0024 0.0116 0.0060 0 0.0000 0.3355 0.1983 0 0.0853 0.0364 0.0730 0.2514
0.0104 0 0.0061 0 0.0036 0.2141 0.1702 0.0960 0 0.1272 0.2196 0.1529

0 0.0107 0 0.0046 0.0047 0.0639 0.0182 0.1455 0.2555 0.1268 0.1469 0.2232
0.0200 0 0 0 0 0.1941 0.1876 0.0491 0.2231 0 0.1052 0.2210
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Clustering in Markov chains
Example



9.5683 7.2856 5.9192 8.8386 6.1623 111.4516 108.3750 134.2927 119.9151 117.8051 123.5211 121.5733
7.8461 6.2463 7.0903 11.4373 5.5713 111.4553 108.3307 134.3028 119.9611 117.7897 123.5357 121.5815

10.4161 6.2682 5.8823 11.2735 5.2066 111.4228 108.3764 134.3090 119.9243 117.7744 123.5182 121.6233
7.3576 6.8711 5.5085 11.2142 7.2498 111.4637 108.4423 134.2491 119.9635 117.7652 123.4718 121.5431
9.4234 6.2587 6.1983 8.9797 6.9987 111.4499 108.3828 134.3059 119.8662 117.8042 123.5220 121.5991

56.4328 54.8813 55.0335 59.7105 54.6607 16.2745 16.3806 35.2123 24.9775 17.7940 20.6192 23.8023
56.4948 54.9064 55.0376 59.7083 54.5837 11.6313 16.3656 33.6425 25.2645 17.7810 25.2785 26.2237
56.4292 54.8265 55.0941 59.7095 54.6532 13.5774 17.3639 33.5737 23.4582 22.5940 22.7664 21.5933
56.4285 54.8526 55.0460 59.7299 54.6689 11.4165 16.2917 38.5797 24.4123 22.4132 24.2767 20.6083
56.3789 54.9226 55.0433 59.6940 54.6523 13.5906 17.4180 34.5322 26.1350 20.9484 20.6825 22.1686
56.4234 54.8407 55.0941 59.6727 54.6644 15.2224 19.7046 34.1128 19.7242 22.4636 22.7562 19.5144
56.2799 54.9319 55.0728 59.6880 54.6831 13.1262 16.5668 37.2585 20.8087 23.8979 24.0661 20.6803
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Result

Theorem (Crisostomi, Kirkland, Shorten, 2011)

Let T be an irreducible stochastic matrix and suppose that λ ∈ R is an
eigenvalue of T . Let v = [v>1 | −v>2 |0>]> be a corresponding
λ-eigenvector (with v1 > 0 and v2 > 0) and let us partition the matrix T
conformally as  T11 T12 T13

T21 T22 T23
T31 T32 T33


and label the subsets of the partition as S1,S2, and S0 respectively.
Then:
(a) ρ(T11) > λ and ρ(T22) > λ.
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Result

Theorem(ctd)

(b) There are subsets S̃1 ⊆ S1, S̃2 ⊆ S2, and positive vectors w̃>1 , w̃
>
2

with supports on S̃1, S̃2 respectively such that w̃>1 1 = w̃>2 1 = 1
and ∑

i∈S̃1

w̃1(i)
∑
j /∈S̃1

tij = 1− ρ(T11) ≤ 1− λ, (1)

and ∑
i∈S̃2

w̃2(i)
∑
j /∈S̃2

tij = 1− ρ(T22) ≤ 1− λ. (2)
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Result

Theorem(ctd)

(c) For any j ∈ S̃2, ∑
i∈S̃1

w̃1(i)mij ≥
1

1− ρ(T11)
≥ 1

1− λ
(3)

and for any j ∈ S̃1,∑
i∈S̃2

w̃2(i)mij ≥
1

1− ρ(T22)
≥ 1

1− λ
, (4)

where mij are entries of the mean first passage matrix.
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Explanation of result

The existence of a real eigenvalue λ that is ‘close’ to 1 indicates the
existence of clustering behaviour in the Markov chain as follows:

There are two collections of states, S1 and S2, indexed by where
the entries of an eigenvector corresponding to λ are positive and
negative.
Some weighted average of the transition probabilities from states
in S1 to states in S2 (and vice versa) is bounded above by 1− λ –
i.e. the probability of transitioning from S1 to S2 is expected to be
small if λ ≈ 1.
Some weighted average of the mean first passage times from
states in S1 to states in S2 (and vice versa) is bounded below by

1
1−λ – i.e. MFP times from S1 to S2 are expected to be large if
λ ≈ 1.
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Example
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0.3650 0.2060 0.3579 0.0611 0 0 0.0012 0.0016 0 0.0030 0.0018 0.0024
0.0681 0.2789 0.2432 0.3053 0.0946 0 0.0049 0 0.0051 0 0 0
0.0046 0.0062 0.0086 0.0006 0 0 0.2443 0.0713 0.0666 0.2911 0.2355 0.0711

0 0.0011 0.0052 0 0.0137 0.3158 0.1960 0.1266 0.1098 0.2318 0 0
0.0018 0.0133 0 0.0011 0.0037 0.1890 0.1562 0.1396 0.1138 0.0634 0.1436 0.1744
0.0024 0.0116 0.0060 0 0.0000 0.3355 0.1983 0 0.0853 0.0364 0.0730 0.2514
0.0104 0 0.0061 0 0.0036 0.2141 0.1702 0.0960 0 0.1272 0.2196 0.1529

0 0.0107 0 0.0046 0.0047 0.0639 0.0182 0.1455 0.2555 0.1268 0.1469 0.2232
0.0200 0 0 0 0 0.1941 0.1876 0.0491 0.2231 0 0.1052 0.2210



λ = 0.97.
v> = [ 0.5 0.5 0.5 0.5 0.5 − 1 − 1 − 1 − 1 − 1 − 1 − 1 ]
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Question: complex eigenvalues?

Can any clustering behaviour be determined from a complex
eigenvalue?
That is, given λ ∈ C an eigenvalue of T where λ = α + iβ, can we:
(a) define a conformal partition of a corresponding eigenvector for λ

and the matrix T ;
(b) determine lower bounds for the spectral radii of T11 and T22 (the

principal submatrices determined by the index set of this partition);
and

(c) conclude equivalent statements about the clustering properties of
T as in parts (b) and (c) of the theorem.

A brief examination of the proof of the above theorem will determine
that (b) and (c) are proven independent of the fact that λ is real;
moreover, given lower bounds for ρ(T11), ρ(T22), these may be
substituted for λ in (1), (2), (3) and (4).
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A starting point

Let T be an irreducible stochastic matrix with an eigenvalue
λ = α + iβ.
Let x + iy be an eigenvector of T corresponding to the eigenvalue
λ.
Then since

T (x + iy) = (α + iβ)(x + iy)

by equating real and imaginary parts we have

Tx = αx − βy

and
Ty = βx + αy .
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Partition the system (i.e. the matrix T and the vectors x and y )
according to where x is positive, negative, and zero.
Then we have T11 T12 T13

T21 T22 T23
T31 T32 T33

 x1
x2
0

 =

 αx1 − βy1
αx2 − βy2
−βy3


where x1 > 0 and x2 < 0, entrywise.
Let S1,S2,S3 denote the index sets of the partition. Note that S3
may be empty.
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This gives:
T11x1 + T12x2 = αx1 − βy1,

and since T12x2 is entrywise nonpositive,

T11x1 ≥ αx1 − βy1.

It follows from this that

T111 ≥ min
j

(
αx1(j)− βy1(j)

x1(j)

)
1.

By a well-known result we know that the spectral radius of a
nonnegative matrix lies between its minimum and maximum row sums.
It follows that

ρ(T11) ≥ min
j

(
αx1(j)− βy1(j)

x1(j)

)
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or alternatively,

ρ(T11) ≥ α− βmax
j

(
y1(j)
x1(j)

)
.

Similarly, we may show that

ρ(T22) ≥ α− βmax
j

(
y2(j)
x2(j)

)
.

If α ≈ 1 and β ≈ 0, then these lower bounds are close to 1, indicating
clustering behaviour in the collections of states indexed by S1 and by
S2.
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Extra hypotheses

Note that we need

αx1 − βy1 > 0 and αx2 − βy2 < 0

in order that these lower bounds are positive.
We treat the above as hypotheses that must be satisfied in order
to conclude anything about clustering behaviour of the chain.
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Repartitioning

Consider the vector x + ty , for some t > 0, and partition according
to where x + ty is positive, negative, or zero, with index sets
S̃1, S̃2, S̃3.
Then we have T̃11 T̃12 T̃13

T̃21 T̃22 T̃23

T̃31 T̃32 T̃33


 x̃1 + t ỹ1

x̃2 + t ỹ2
0

 =

 α(x̃1 + t ỹ1) + β(t x̃1 − ỹ1)

α(x̃2 + t ỹ2) + β(t x̃2 − ỹ2)

(αt − β)ỹ3

 .
t must be bounded above by

min
j

ỹ1(j)<0

(
−x̃1(j)
ỹ1(j)

)
and min

j
ỹ2(j)>0

(
−x̃2(j)
ỹ2(j)

)
.
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α(x̃2 + t ỹ2) + β(t x̃2 − ỹ2)
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Repartitioning

Note that this ‘repartition’ is not substantially different. We simply
allow the option of including some extra states in the cluster by
including indices corresponding to positive entries of y3 to S1, and
indices corresponding to negative entries of y3 to S2.
Moreover, S1 ⊆ S̃1 and S2 ⊆ S̃2.
Interpreting in terms of prospective clustering behaviour, we are
simply allowing the possible addition of more states into our
existing index set to potentially achieve a ‘tighter’ cluster.
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Repartitioning

Proceeding as before, we have:

T̃11(x̃1 + t ỹ1) ≥ α(x̃1 + t ỹ1) + β(t x̃1 − ỹ1)

⇒ ρ(T̃11) ≥ α + βmin
j

(
t x̃1(j)− ỹ1(j)
x̃1(j) + t ỹ1(j)

)
,

Similarly

ρ(T̃22) ≥ α + βmin
j

(
t x̃2(j)− ỹ2(j)
x̃2(j) + t ỹ2(j)

)
.

These lower bounds are increasing functions of t , and so they are
optimized by taking the limit as t approached the minimum of the
previous bounds.
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Repartitioning - again!

Now consider x + ty , where t is negative, and partition according
to where x + ty is positive, negative and zero, denoting these new
index sets S1,S2,S3.
Then there is the possibility of including in the index set S1
(respectively, S2) some nodes corresponding to entries of y3
which are positive (respectively, negative), producing a different
partition than before (possibly).
Since we observed that the expression for the lower bounds were
increasing in t , and t is negative, we choose t → 0 to optimise
these lower bounds for the spectral radii. This means that we
achieve the same lower bounds as in the most basic case.
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Theorem

Theorem
Let T be an n × n irreducible and stochastic matrix, let λ = α + iβ be
an eigenvalue of T , with α, β > 0, and let x + iy be a right eigenvector
of T corresponding to λ. For i = 1, 2, 3, let Si , S̃i , and Si be the index
sets obtained from the partitions described above, let xi , yi , x̃i , ỹi , x̄i , ȳi
be the subvectors of x and y corresponding to the index sets Si , S̃i ,
and Si , and let Tii , T̃ii and T ii be the principal submatrices of T
corresponding to the index sets Si , S̃i , and Si . Then:
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be the subvectors of x and y corresponding to the index sets Si , S̃i ,
and Si , and let Tii , T̃ii and T ii be the principal submatrices of T
corresponding to the index sets Si , S̃i , and Si . Then:

Jane Breen (U of M) Markov chain clustering WCLAM 2017 25 / 38



Theorem(ctd)
(a) If αx1 − βy1 > 0,

ρ(T11) ≥ α− β ·max
j

{
y1(j)
x1(j)

}
.

(b) If αx2 − βy2 < 0,

ρ(T22) ≥ α− β ·max
j

{
y2(j)
x2(j)

}
.
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Theorem(ctd)
(c) If αx̃1 − βỹ1 > 0,

ρ(T̃11) ≥ α + β ·min
j

{
t x̃1(j)− ỹ1(j)
x̃1(j) + t ỹ1(j)

}
,

where t > 0 and is bounded above by

min
j

ỹ1(j)<0

{
−x̃1(j)
ỹ1(j)

}
and min

j
ỹ2(j)>0

{
−x̃2(j)
ỹ2(j)

}
.

If ỹ1 > 0 and ỹ2 < 0, then

ρ(T̃11) ≥ α + β ·min
j

{
x̃1(j)
ỹ1(j)

}
.
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Theorem(ctd)
(d) If αx̃2 − βỹ2 < 0,

ρ(T̃22) ≥ α + β ·min
j

{
t x̃2(j)− ỹ2(j)
x̃2(j) + t ỹ2(j)

}
,

where t > 0 and is bounded above by

min
j

ỹ1(j)<0

{
−x̃1(j)
ỹ1(j)

}
and min

j
ỹ2(j)>0

{
−x̃2(j)
ỹ2(j)

}
.

If ỹ1 > 0 and ỹ2 < 0, then

ρ(T̃22) ≥ α + β ·min
j

{
x̃2(j)
ỹ2(j)

}
.
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Theorem(ctd)
(e) If αx̄1 − βȳ1 > 0,

ρ(T 11) ≥ α− β ·min
j

{
ȳ1(j)
x̄1(j)

}
.

(f) If αx̄2 − βȳ2 > 0,

ρ(T 22) ≥ α− β ·min
j

{
ȳ2(j)
x̄2(j)

}
.
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Using the imaginary part of the eigenvector

Partition the system (i.e. the matrix T and the vectors x and y )
according to where y is positive, negative, and zero.
That is, we have T11 T12 T13

T21 T22 T23
T31 T32 T33

 y1
y2
0

 =

 βx1 + αy1
βx2 + αy2

βx3
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Another theorem

Theorem II
Let T be an n × n irreducible and stochastic matrix, let λ = α + iβ be
an eigenvalue of T , with α, β > 0, and let x + iy be a right eigenvector
of T corresponding to λ. For i = 1, 2, 3, let Si denote the index sets
obtained by partitioning according to where y is positive, negative and
zero. Also, let S̃i (respectively, Si ) be the index sets obtained by
partitioning according to where sx + y is positive, negative, and zero,
where s is positive (respectively, where s is negative). Let
xi , yi , x̃i , ỹi , x̄i , ȳi be the subvectors of x and y corresponding to the
index sets Si , S̃i , and Si , and let Tii , T̃ii and T ii be the principal
submatrices of T corresponding to the index sets Si , S̃i , and Si .
Assume that xi and yi (resp., x̃i and ỹi , x̄i and ȳi ) are linearly
independent, i = 1,2. Then:
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Theorem II (ctd)
(a) If αy1 + βx1 > 0,

ρ(T11) ≥ α + β ·min
j

{
x1(j)
y1(j)

}
.

(b) If αy2 + βx2 < 0,

ρ(T22) ≥ α + β ·min
j

{
x2(j)
y2(j)

}
.
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Theorem II (ctd)
(c) If αỹ1 + βx̃1 > 0,

ρ(T̃11) ≥ α + β ·min
j

{
x̃1(j)
ỹ1(j)

}
.

(d) If αỹ2 + βx̃2 > 0,

ρ(T̃22) ≥ α + β ·min
j

{
x̃2(j)
ỹ2(j)

}
.
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Theorem II (ctd)
(e) If αȳ1 + βx̄1 > 0,

ρ(T 11) ≥ α + β ·min
j

{
x̄1(j)− sȳ1(j)
sx̄1(j) + ȳ1(j)

}
,

where s < 0 and is bounded below by

min
j

x̃1(j)>0

{
−ỹ1(j)
x̃1(j)

}
and by min

j
x̃2(j)<0

{
−ỹ2(j)
x̃2(j)

}
.

If x̄1 < 0 and x̄2 > 0, then

ρ(T 11) ≥ α− β ·min
j

{
ȳ1(j)
x̄1(j)

}
.
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Theorem II (ctd)
(f) If αȳ2 + βx̄2 < 0,

ρ(T 22) ≥ α + β ·min
j

{
x̄2(j)− sȳ2(j)
sx̄2(j) + ȳ2(j)

}
,

where s < 0 and is bounded below by

min
j

x̃1(j)>0

{
−ỹ1(j)
x̃1(j)

}
and by min

j
x̃2(j)<0

{
−ỹ2(j)
x̃2(j)

}
.

If x̄1 < 0 and x̄2 > 0, then

ρ(T 22) ≥ α− β ·min
j

{
ȳ2(j)
x̄2(j)

}
.
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Example

T a 40× 40 irreducible stochastic matrix, with an eigenvalue
λ = 0.8188 + 0.0348i .

Partition wrt: S1 LB on ρ(T11) S2 LB on ρ(T22)

x 6–40 0.6539 1–5 0.8108
x + ty , t > 0 6–40 0.8115 1–5 0.8027
x + ty , t < 0 6–40 0.6539 1–5 0.8108

y 1–5 0.9698 6–35 0.8262
sx + y , s > 0 1–5, 36–40 0.9698 6–35 0.8262
sx + y , s < 0 1–5 0.8108 6–40 0.8188
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Example
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Thank you!
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