Skew-symmetric EW matrices and tournaments

Sho Suda, Aichi University of Education (joint work with Gary Greaves, Nanyang Technological University)

July 8, 2017 Special Western Canada Linear Algebra meeting BIRS

- Let X be a skew-symmetric $n \times n$ (1, -1)-matrix: $X + X^{\top} = 2I$.
- ▶ Normalize X so that the first row consists of 1 and the first column consists of -1 except for the (1,1)-entry:

$$X = \begin{pmatrix} 1 & \mathbf{1}^\top \\ -\mathbf{1} & I + A - A^\top \end{pmatrix}$$

for some (0,1)-matrix A such that $A + A^{\top} = J - I$.

When can we characterize the skew-symmetric (1, -1)-matrix X in terms of the (0, 1)-matrix A?

Known results: Skew-symmetric Hadamard matrices and tournaments.
 Today's topic: Skew-symmetric EW matrices and tournaments.

- Let X be a skew-symmetric $n \times n$ (1, -1)-matrix: $X + X^{\top} = 2I$.
- ► Normalize X so that the first row consists of 1 and the first column consists of -1 except for the (1,1)-entry:

$$X = \begin{pmatrix} 1 & \mathbf{1}^\top \\ -\mathbf{1} & I + A - A^\top \end{pmatrix}$$

for some (0, 1)-matrix A such that $A + A^{\top} = J - I$.

When can we characterize the skew-symmetric (1, -1)-matrix X in terms of the (0, 1)-matrix A?

Known results: Skew-symmetric Hadamard matrices and tournaments.
 Today's topic: Skew-symmetric EW matrices and tournaments.

- Let X be a skew-symmetric $n \times n$ (1, -1)-matrix: $X + X^{\top} = 2I$.
- ► Normalize X so that the first row consists of 1 and the first column consists of -1 except for the (1,1)-entry:

$$X = \begin{pmatrix} 1 & \mathbf{1}^\top \\ -\mathbf{1} & I + A - A^\top \end{pmatrix}$$

for some (0,1)-matrix A such that $A + A^{\top} = J - I$.

When can we characterize the skew-symmetric (1, -1)-matrix X in terms of the (0, 1)-matrix A?

Known results: Skew-symmetric Hadamard matrices and tournaments.

Today's topic: Skew-symmetric EW matrices and tournaments.

- Let X be a skew-symmetric $n \times n$ (1, -1)-matrix: $X + X^{\top} = 2I$.
- ► Normalize X so that the first row consists of 1 and the first column consists of -1 except for the (1,1)-entry:

$$X = \begin{pmatrix} 1 & \mathbf{1}^\top \\ -\mathbf{1} & I + A - A^\top \end{pmatrix}$$

for some (0,1)-matrix A such that $A + A^{\top} = J - I$.

When can we characterize the skew-symmetric (1, -1)-matrix X in terms of the (0, 1)-matrix A?

- ► Known results: Skew-symmetric Hadamard matrices and tournaments.
- Today's topic: Skew-symmetric EW matrices and tournaments.

- Let X be a skew-symmetric $n \times n$ (1, -1)-matrix: $X + X^{\top} = 2I$.
- ► Normalize X so that the first row consists of 1 and the first column consists of -1 except for the (1,1)-entry:

$$X = \begin{pmatrix} 1 & \mathbf{1}^\top \\ -\mathbf{1} & I + A - A^\top \end{pmatrix}$$

for some (0,1)-matrix A such that $A + A^{\top} = J - I$.

When can we characterize the skew-symmetric (1, -1)-matrix X in terms of the (0, 1)-matrix A?

- ► Known results: Skew-symmetric Hadamard matrices and tournaments.
- ► Today's topic: Skew-symmetric EW matrices and tournaments.

• For an $n \times n$ (1, -1)-matrix X,

 $|\det(X)| \le n^{n/2}.$

Equality holds if and only if X is a Hadamard matrix, that is $XX^{\top}=nI.$

- ► The order of a Hadamard matrix must be 1, 2, or a multiple of 4.
- ► Hadamard conjecture: Hadamard matrices exist for all such orders.
- ► It is also conjectured that skew-symmetric Hadamard matrices exist for all order divisible by 4.

A tournament is a digraph whose adjacency matrix A satisfies that A + A^T = J − I.

A tournament of order 4t + 3 is *doubly regular* if AA^T = (t + 1)I + tJ.

Theorem

The existence of the following are equivalent:

(1) A skew-symmetric Hadamard matrix of order n_{\cdot}

- (2) A doubly regular tournament of order n-1. (Reid-Brown, 1972)
- (3) A tournament of order n-1 with spectrum
 - $\{(rac{n}{2}-1)^1, (rac{-1\pm\sqrt{-n}}{2})^{n/2-1}\}$. (Zagaglia Salvi, 1984)
- A regular tournament of order n 1 with three distinct eigenvalues. (Rowlinson, 1986)
- An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

- A tournament is a digraph whose adjacency matrix A satisfies that A + A^T = J − I.
- ► A tournament of order 4t + 3 is *doubly regular* if $AA^{\top} = (t+1)I + tJ$.

Theorem

The existence of the following are equivalent:

(1) A skew-symmetric Hadamard matrix of order n_{\cdot}

- (2) A doubly regular tournament of order n-1. (Reid-Brown, 1972)
- (3) A tournament of order n-1 with spectrum
 - $\{(rac{n}{2}-1)^1, (rac{-1\pm \sqrt{-n}}{2})^{n/2-1}\}$. (Zagaglia Salvi, 1984)
- A regular tournament of order n 1 with three distinct eigenvalues. (Rowlinson, 1986)
- An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

- A tournament is a digraph whose adjacency matrix A satisfies that A + A^T = J − I.
- ► A tournament of order 4t + 3 is *doubly regular* if $AA^{\top} = (t+1)I + tJ$.

Theorem

The existence of the following are equivalent:

- (1) A skew-symmetric Hadamard matrix of order n.
- (2) A doubly regular tournament of order n-1. (Reid-Brown, 1972)
- (3) A tournament of order n-1 with spectrum $\{(\frac{n}{2}-1)^1, (\frac{-1\pm\sqrt{-n}}{2})^{n/2-1}\}$. (Zagaglia Salvi, 198
- (4) A regular tournament of order n-1 with three distinct eigenvalues. (Rowlinson, 1986)

(5) An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

- A tournament is a digraph whose adjacency matrix A satisfies that A + A^T = J − I.
- ► A tournament of order 4t + 3 is *doubly regular* if $AA^{\top} = (t+1)I + tJ$.

Theorem

The existence of the following are equivalent:

- (1) A skew-symmetric Hadamard matrix of order n.
- (2) A doubly regular tournament of order n-1. (Reid-Brown, 1972)
- (3) A tournament of order n-1 with spectrum
 - $\{(\frac{n}{2}-1)^1, (\frac{-1\pm\sqrt{-n}}{2})^{n/2-1}\}.$ (Zagaglia Salvi, 1984)
- (4) A regular tournament of order n-1 with three distinct eigenvalues. (Rowlinson, 1986)

(5) An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

- A tournament is a digraph whose adjacency matrix A satisfies that A + A^T = J − I.
- ► A tournament of order 4t + 3 is *doubly regular* if $AA^{\top} = (t+1)I + tJ$.

Theorem

The existence of the following are equivalent:

- (1) A skew-symmetric Hadamard matrix of order n.
- (2) A doubly regular tournament of order n-1. (Reid-Brown, 1972)
- (3) A tournament of order n-1 with spectrum $\{(\frac{n}{2}-1)^1, (\frac{-1\pm\sqrt{-n}}{2})^{n/2-1}\}$. (Zagaglia Salvi, 1984)
- (4) A regular tournament of order n-1 with three distinct eigenvalues. (Rowlinson, 1986)
- (5) An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

- A tournament is a digraph whose adjacency matrix A satisfies that A + A^T = J − I.
- ► A tournament of order 4t + 3 is *doubly regular* if $AA^{\top} = (t+1)I + tJ$.

Theorem

The existence of the following are equivalent:

- (1) A skew-symmetric Hadamard matrix of order n.
- (2) A doubly regular tournament of order n-1. (Reid-Brown, 1972)
- (3) A tournament of order n-1 with spectrum $\{(\frac{n}{2}-1)^1, (\frac{-1\pm\sqrt{-n}}{2})^{n/2-1}\}$. (Zagaglia Salvi, 1984)
- (4) A regular tournament of order n-1 with three distinct eigenvalues. (Rowlinson, 1986)

(5) An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

- ► A *tournament* is a digraph whose adjacency matrix A satisfies that $A + A^{\top} = J I$.
- ► A tournament of order 4t + 3 is *doubly regular* if $AA^{\top} = (t+1)I + tJ$.

Theorem

The existence of the following are equivalent:

- (1) A skew-symmetric Hadamard matrix of order n.
- (2) A doubly regular tournament of order n-1. (Reid-Brown, 1972)
- (3) A tournament of order n-1 with spectrum $\{(\frac{n}{2}-1)^1, (\frac{-1\pm\sqrt{-n}}{2})^{n/2-1}\}$. (Zagaglia Salvi, 1984)
- (4) A regular tournament of order n-1 with three distinct eigenvalues. (Rowlinson, 1986)
- (5) An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

	skew-symmetric	(0,1)-matrix	(0,1)-matrix
	(1,-1)-matrix	(combinatorial)	(spectrum)
order n			four distinct
	$XX^{\top} = nI$		eigenvalues
order $n-1$	_	doubly regular	three distinct
	$XX^{\top} = nI - J$	tournament	eigenvalues

Maximal det. of (± 1) -matrices of order $n \equiv 2 \pmod{4}$

▶ Ehlich (1964) and Wojtas (1964) independently showed that for an $n \times n$ (1,-1)-matrix X where $n \equiv 2 \pmod{4}$,

$$|\det(X)| \le 2(n-1)(n-2)^{(n-2)/2}$$

Equality holds if and only if there exists an $n \times n$ (1, -1)-matrix B such that

$$BB^{\top} = B^{\top}B = \begin{pmatrix} (n-2)I_{n/2} + 2J_{n/2} & O_{n/2} \\ O_{n/2} & (n-2)I_{n/2} + 2J_{n/2} \end{pmatrix}$$
(1)

A (1,-1)-matrix B is an *EW matrix* if the equation (1) holds.

Maximal det. of (± 1) -matrices of order $n \equiv 2 \pmod{4}$

▶ Ehlich (1964) and Wojtas (1964) independently showed that for an $n \times n$ (1,-1)-matrix X where $n \equiv 2 \pmod{4}$,

$$|\det(X)| \le 2(n-1)(n-2)^{(n-2)/2}.$$

Equality holds if and only if there exists an $n\times n$ $(1,-1)\text{-matrix}\ B$ such that

$$BB^{\top} = B^{\top}B = \begin{pmatrix} (n-2)I_{n/2} + 2J_{n/2} & O_{n/2} \\ O_{n/2} & (n-2)I_{n/2} + 2J_{n/2} \end{pmatrix}$$
(1)

• A (1,-1)-matrix B is an *EW matrix* if the equation (1) holds.

Maximal det. of (± 1) -matrices of order $n \equiv 2 \pmod{4}$

▶ Ehlich (1964) and Wojtas (1964) independently showed that for an $n \times n$ (1,-1)-matrix X where $n \equiv 2 \pmod{4}$,

$$|\det(X)| \le 2(n-1)(n-2)^{(n-2)/2}.$$

Equality holds if and only if there exists an $n\times n$ $(1,-1)\text{-matrix}\ B$ such that

$$BB^{\top} = B^{\top}B = \begin{pmatrix} (n-2)I_{n/2} + 2J_{n/2} & O_{n/2} \\ O_{n/2} & (n-2)I_{n/2} + 2J_{n/2} \end{pmatrix}$$
(1)

• A (1, -1)-matrix B is an *EW matrix* if the equation (1) holds.

Results of EW matrices

- An EW matrix of order n exists only if 2n-2 is a sum of two squares.
- ► There exists an EW matrix of order 2(q² + q + 1) for any prime power q (Koukouvinos, Kounias, Sebbery, 1991).
- ► Armario and Flau (2016) showed that if there exists a skew-symmetric EW matrix of order n, then 2n 3 must be square.
- Skew-symmetric EW matrices exist for order n = 6, 14, 26, 42, 62.

Problem

Do there exist infinitely many of skew-symmetric EW matrices?

Skew-symmetric EW matrices and tournaments

Theorem(Armario, 2015, ADTHM)

The existence of the following are equivalent:

- (1) A skew-symmetric EW matrix of order 4t + 2.
- (2) A tournament of order 4t + 1 satisfying

$$AA^{\top} = t(I_{4t+1} + J_{4t+1}) + \begin{pmatrix} -J_t & -J_t & -J_{t,a} & -J_{t,2t+1-a} \\ -J_t & J_t & 0 & 0 \\ -J_{a,t} & 0 & 0 & -J_{a,2t+1-a} \\ -J_{2t+1-a,t} & 0 & -J_{2t+1-a,a} & 0 \end{pmatrix}$$

for some a.

Problem(Armario, 2015)

Characterize the above tournament of order 4t + 1 by its spectrum.

Main theorem

Theorem(Greaves-S.)

The existence of the following are equivalent:

- (1) A skew-symmetric EW matrix of order 4t + 2.
- (2) A tournament of order 4t + 1 with characteristic polynomial

$$\chi(t) = (x^3 - (2t - 1)x^2 - t(4t - 1))(x^2 + x + t)^{2t - 1}$$

In proof, we make use of main angles of S := X − I or A − A^T, where X is a skew-symmetric (1, −1)-matrix and A is a tournament matrix.

	skew-symmetric $(1, -1)$ -matrix	(0,1)-matrix	(0,1)-matrix
		(combinatorial)	(spectrum)
order n	EW matrices		
order $n-1$		Armario	Greaves-S.

Main angle

- The main angle was introduced by Cvetković in 1972 for simple undirected graphs.
- ► The notion of the main angle can be extended to normal matrices:
 - M: a normal matrix, i.e. $MM^* = M^*M$.
 - $M = \sum_{i=1}^{s} \tau_i P_i$: the spectral decomposition.
 - Define the main angle α_i by

$$\alpha_i := ||P_i \cdot \mathbf{1}||^2.$$

• $\sum_{i=1}^{s} \alpha_i = n$ holds where n is the size of the square matrix M.

Main angle

- The main angle was introduced by Cvetković in 1972 for simple undirected graphs.
- ► The notion of the main angle can be extended to normal matrices:
 - M: a normal matrix, i.e. $MM^* = M^*M$.
 - $M = \sum_{i=1}^{s} \tau_i P_i$: the spectral decomposition.
 - Define the main angle α_i by

$$\alpha_i := ||P_i \cdot \mathbf{1}||^2.$$

• $\sum_{i=1}^{s} \alpha_i = n$ holds where n is the size of the square matrix M.

- ► A: the adjacency matrix of a tournament.
- ► $S = A A^{\top} = 2A J + I$: the Seidel matrix.
- ▶ $\tau_i, \alpha_i \ (i = 1, 2, ..., s)$: the eigenvalue and the corresponding main angle of S.
- $\chi_M(t) := \det(M tI)$: the characteristic polynomial of M.

Lemma

$\chi_{\mathcal{A}}(x) = \left(\frac{-1}{2}\right)^n \chi_S(-2x-1)\left(1 + \sum_{i=1}^s \frac{\alpha_i}{\tau_i - (2x+1)}\right).$

- ► A: the adjacency matrix of a tournament.
- ► $S = A A^{\top} = 2A J + I$: the Seidel matrix.
- *τ_i*, *α_i* (*i* = 1, 2, ..., *s*): the eigenvalue and the corresponding main angle of *S*.
- $\chi_M(t) := \det(M tI)$: the characteristic polynomial of M.

Lemma

$\chi_A(x) = (\frac{-1}{2})^n \chi_S(-2x-1)(1+\sum_{i=1}^s \frac{\alpha_i}{\tau_i - (2x+1)}).$

- ► A: the adjacency matrix of a tournament.
- ► $S = A A^{\top} = 2A J + I$: the Seidel matrix.
- *τ_i*, *α_i* (*i* = 1, 2, ..., *s*): the eigenvalue and the corresponding main angle of *S*.
- $\chi_M(t) := \det(M tI)$: the characteristic polynomial of M.

Lemma

 $\chi_A(x) = \left(\frac{-1}{2}\right)^n \chi_S(-2x-1)\left(1 + \sum_{i=1}^s \frac{\alpha_i}{\tau_i - (2x+1)}\right).$

- ► A: the adjacency matrix of a tournament.
- ► $S = A A^{\top} = 2A J + I$: the Seidel matrix.
- τ_i, α_i (i = 1, 2, ..., s): the eigenvalue and the corresponding main angle of S.
- $\chi_M(t) := \det(M tI)$: the characteristic polynomial of M.

Lemma

$$\chi_A(x) = \left(\frac{-1}{2}\right)^n \chi_S(-2x-1)\left(1 + \sum_{i=1}^s \frac{\alpha_i}{\tau_i - (2x+1)}\right).$$

- (1) There exists a skew-symmetric EW matrices of order 4t + 2.
- (2) There exists a tournament of order 4t + 1 with characteristic polynomial $\chi(t) = (x^3 (2t 1)x^2 t(4t 1))(x^2 + x + t)^{2t-1}$.

$[\mathsf{Proof of }(1){\Rightarrow}(2)]$

- Let S + I be a normalized skew-symmetric EW matrix of order 4t + 2.
- ▶ Determine the spectrum of S: $\lambda = \sqrt{-8t-1}, \mu = \sqrt{-4t+1}$. spec $(S) = \{ [\pm \lambda]^1, [\pm \mu]^{2t} \}$ and $\alpha_{\pm \lambda} = \frac{4t+1}{2t+1}, \alpha_{\pm \mu} = \frac{2t}{2t+1}$.
- ► The characteristic polynomial of A is uniquely determined from the data of S: $\chi_A(x) = x(x^3 (2t-1)x^t(4t-1))(x^2 + x + t)^{2t-1}$.

- (1) There exists a skew-symmetric EW matrices of order 4t + 2.
- (2) There exists a tournament of order 4t + 1 with characteristic polynomial $\chi(t) = (x^3 (2t 1)x^2 t(4t 1))(x^2 + x + t)^{2t-1}$.

$[\mathsf{Proof of }(1){\Rightarrow}(2)]$

- Let S + I be a normalized skew-symmetric EW matrix of order 4t + 2.
- ▶ Determine the spectrum of S: $\lambda = \sqrt{-8t 1}, \mu = \sqrt{-4t + 1}$. spec $(S) = \{ [\pm \lambda]^1, [\pm \mu]^{2t} \}$ and $\alpha_{\pm \lambda} = \frac{4t+1}{2t+1}, \alpha_{\pm \mu} = \frac{2t}{2t+1}$.
- ► The characteristic polynomial of A is uniquely determined from the data of S: $\chi_A(x) = x(x^3 (2t 1)x^t(4t 1))(x^2 + x + t)^{2t-1}$.
- ▶ Let $S = A A^{\top}$. Then A has the form $A = \begin{pmatrix} 0 & \mathbf{0}^{\top} \\ \mathbf{1} & A' \end{pmatrix}$, so A' is a tournament and its char. poly. is the desired form.

- (1) There exists a skew-symmetric EW matrices of order 4t + 2.
- (2) There exists a tournament of order 4t + 1 with characteristic polynomial $\chi(t) = (x^3 (2t 1)x^2 t(4t 1))(x^2 + x + t)^{2t-1}$.

$[\mathsf{Proof of }(1) \Rightarrow (2)]$

- Let S + I be a normalized skew-symmetric EW matrix of order 4t + 2.
- ► Determine the spectrum of S: $\lambda = \sqrt{-8t-1}, \mu = \sqrt{-4t+1}$. spec $(S) = \{ [\pm \lambda]^1, [\pm \mu]^{2t} \}$ and $\alpha_{\pm \lambda} = \frac{4t+1}{2t+1}, \alpha_{\pm \mu} = \frac{2t}{2t+1}$.
- ► The characteristic polynomial of A is uniquely determined from the data of S: $\chi_A(x) = x(x^3 (2t-1)x^t(4t-1))(x^2 + x + t)^{2t-1}$.

- (1) There exists a skew-symmetric EW matrices of order 4t + 2.
- (2) There exists a tournament of order 4t + 1 with characteristic polynomial $\chi(t) = (x^3 (2t 1)x^2 t(4t 1))(x^2 + x + t)^{2t-1}$.

$[\mathsf{Proof of }(1) \Rightarrow (2)]$

- Let S + I be a normalized skew-symmetric EW matrix of order 4t + 2.
- ► Determine the spectrum of S: $\lambda = \sqrt{-8t-1}, \mu = \sqrt{-4t+1}$. spec $(S) = \{ [\pm \lambda]^1, [\pm \mu]^{2t} \}$ and $\alpha_{\pm \lambda} = \frac{4t+1}{2t+1}, \alpha_{\pm \mu} = \frac{2t}{2t+1}$.
- ► The characteristic polynomial of A is uniquely determined from the data of S: \(\chi_A(x) = x(x^3 (2t-1)x^t(4t-1))(x^2 + x + t)^{2t-1}\).
- Let S = A − A^T. Then A has the form A = (⁰_{1 A'} ⁰_A), so A' is a tournament and its char. poly. is the desired form.

- (1) There exists a skew-symmetric EW matrices of order 4t + 2.
- (2) There exists a tournament of order 4t + 1 with characteristic polynomial $\chi(t) = (x^3 (2t 1)x^2 t(4t 1))(x^2 + x + t)^{2t-1}$.

$[\mathsf{Proof of }(1) \Rightarrow (2)]$

- Let S + I be a normalized skew-symmetric EW matrix of order 4t + 2.
- ► Determine the spectrum of S: $\lambda = \sqrt{-8t-1}, \mu = \sqrt{-4t+1}$. spec $(S) = \{ [\pm \lambda]^1, [\pm \mu]^{2t} \}$ and $\alpha_{\pm \lambda} = \frac{4t+1}{2t+1}, \alpha_{\pm \mu} = \frac{2t}{2t+1}$.
- ► The characteristic polynomial of A is uniquely determined from the data of S: \(\chi_A(x) = x(x^3 (2t 1)x^t(4t 1))(x^2 + x + t)^{2t 1}\).
- ▶ Let $S = A A^{\top}$. Then A has the form $A = \begin{pmatrix} 0 & \mathbf{0}^{\top} \\ \mathbf{1} & A' \end{pmatrix}$, so A' is a tournament and its char. poly. is the desired form.

[Proof of (2) \Rightarrow (1)] Let A be a tournament matrix with $\chi_A(x) = (x^3 - (2t-1)x^2 - t(4t-1))(x^2 + x + t)^{2t-1}$.

Lemma

- Since A has eigenvalues =^{1±√1−4t}/₂ with multiplicity 2t − 1, S has eigenvalues μ = ∓√1−4t with multiplicity ≥ 2t − 1.
- ▶ Determine the remaining three eigenvalues of $S: 0, \lambda = \pm \sqrt{1-8t}$.
- ▶ Determine the main angles: $\alpha_{\lambda} = 0$, $\alpha_0 = \frac{(8t+1)(4t-1)}{8t-1}$, $\alpha_{\mu} = \frac{4t}{8t-1}$.
- ▶ Then $S_1 := \left(egin{array}{cc} 0 & 1^{ op} \\ -1 & S \end{array}
 ight)$ has characteristic polynomial
 - $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t 1)^{2t}.$
- It remains to show that $S_1S_1 = (4t-1)I$ is signed permutation $(2d_{2}) = 0$

[Proof of (2) \Rightarrow (1)] Let A be a tournament matrix with $\chi_A(x) = (x^3 - (2t - 1)x^2 - t(4t - 1))(x^2 + x + t)^{2t-1}$.

Lemma

- Since A has eigenvalues $\frac{-1\pm\sqrt{1-4t}}{2}$ with multiplicity 2t-1, S has eigenvalues $\mu = \mp \sqrt{1-4t}$ with multiplicity $\geq 2t-1$.
- Determine the remaining three eigenvalues of S: 0, $\lambda = \pm \sqrt{1 8t}$.
- Determine the main angles: $\alpha_{\lambda} = 0$, $\alpha_0 = \frac{(8t+1)(4t-1)}{8t-1}$, $\alpha_{\mu} = \frac{4t}{8t-1}$.
- ▶ Then $S_1 := \begin{pmatrix} 0 & 1^T \\ -1 & S \end{pmatrix}$ has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t 1)^{2t}.$
- ▶ It remains to show that $S_1S_1^{\top} (4t-1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of (2) \Rightarrow (1)] Let A be a tournament matrix with $\chi_A(x) = (x^3 - (2t - 1)x^2 - t(4t - 1))(x^2 + x + t)^{2t-1}$.

Lemma

- ► Since A has eigenvalues $\frac{-1\pm\sqrt{1-4t}}{2}$ with multiplicity 2t 1, S has eigenvalues $\mu = \mp\sqrt{1-4t}$ with multiplicity $\ge 2t 1$.
- ▶ Determine the remaining three eigenvalues of S: 0, $\lambda = \pm \sqrt{1-8t}$.
- ▶ Determine the main angles: $\alpha_{\lambda} = 0$, $\alpha_0 = \frac{(8t+1)(4t-1)}{8t-1}$, $\alpha_{\mu} = \frac{4t}{8t-1}$.
- ► Then $S_1 := \begin{pmatrix} 0 & \mathbf{1}^\top \\ -\mathbf{1} & S \end{pmatrix}$ has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t 1)^{2t}.$
- ▶ It remains to show that $S_1S_1^{\top} (4t-1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of (2) \Rightarrow (1)] Let A be a tournament matrix with $\chi_A(x) = (x^3 - (2t-1)x^2 - t(4t-1))(x^2 + x + t)^{2t-1}$.

Lemma

- ► Since A has eigenvalues $\frac{-1\pm\sqrt{1-4t}}{2}$ with multiplicity 2t 1, S has eigenvalues $\mu = \mp\sqrt{1-4t}$ with multiplicity $\geq 2t 1$.
- Determine the remaining three eigenvalues of S: 0, $\lambda = \pm \sqrt{1-8t}$.
- ▶ Determine the main angles: $\alpha_{\lambda} = 0$, $\alpha_0 = \frac{(8t+1)(4t-1)}{8t-1}$, $\alpha_{\mu} = \frac{4t}{8t-1}$.
- ▶ Then $S_1 := \begin{pmatrix} 0 & 1^T \\ -1 & S \end{pmatrix}$ has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t 1)^{2t}.$
- ▶ It remains to show that $S_1S_1^{\top} (4t-1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of (2) \Rightarrow (1)] Let A be a tournament matrix with $\chi_A(x) = (x^3 - (2t-1)x^2 - t(4t-1))(x^2 + x + t)^{2t-1}$.

Lemma

- ► Since A has eigenvalues $\frac{-1\pm\sqrt{1-4t}}{2}$ with multiplicity 2t 1, S has eigenvalues $\mu = \mp\sqrt{1-4t}$ with multiplicity $\ge 2t 1$.
- Determine the remaining three eigenvalues of S: 0, $\lambda = \pm \sqrt{1-8t}$.
- Determine the main angles: $\alpha_{\lambda} = 0$, $\alpha_0 = \frac{(8t+1)(4t-1)}{8t-1}$, $\alpha_{\mu} = \frac{4t}{8t-1}$.
- ► Then $S_1 := \begin{pmatrix} 0 & 1^T \\ -1 & S \end{pmatrix}$ has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t 1)^{2t}$.
- ▶ It remains to show that $S_1S_1^{\top} (4t-1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of (2) \Rightarrow (1)] Let A be a tournament matrix with $\chi_A(x) = (x^3 - (2t-1)x^2 - t(4t-1))(x^2 + x + t)^{2t-1}$.

Lemma

- ► Since A has eigenvalues $\frac{-1\pm\sqrt{1-4t}}{2}$ with multiplicity 2t 1, S has eigenvalues $\mu = \mp\sqrt{1-4t}$ with multiplicity $\ge 2t 1$.
- Determine the remaining three eigenvalues of S: 0, $\lambda = \pm \sqrt{1-8t}$.
- Determine the main angles: $\alpha_{\lambda} = 0$, $\alpha_0 = \frac{(8t+1)(4t-1)}{8t-1}$, $\alpha_{\mu} = \frac{4t}{8t-1}$.
- ► Then $S_1 := \begin{pmatrix} 0 & \mathbf{1}_S^\top \\ -\mathbf{1} & S \end{pmatrix}$ has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t 1)^{2t}.$
- ▶ It remains to show that $S_1S_1^{\top} (4t-1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of (2) \Rightarrow (1)] Let A be a tournament matrix with $\chi_A(x) = (x^3 - (2t-1)x^2 - t(4t-1))(x^2 + x + t)^{2t-1}$.

Lemma

- ► Since A has eigenvalues $\frac{-1\pm\sqrt{1-4t}}{2}$ with multiplicity 2t 1, S has eigenvalues $\mu = \mp\sqrt{1-4t}$ with multiplicity $\geq 2t 1$.
- Determine the remaining three eigenvalues of S: 0, $\lambda = \pm \sqrt{1-8t}$.
- Determine the main angles: $\alpha_{\lambda} = 0$, $\alpha_0 = \frac{(8t+1)(4t-1)}{8t-1}$, $\alpha_{\mu} = \frac{4t}{8t-1}$.

Lemma

Assume S_1 has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$. Then $S_1S_1^{\top} - (4t - 1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of Lemma]

- Since $Y := S_1 S_1^\top (4t-1)I$ has the eigenvalues $\{[0]^{4t}, [4t+2]^2\}, Y$ is positive semi-definite.
- ▶ The diagonal entries of *Y* is 2.

Lemma

Assume S_1 has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$. Then $S_1S_1^{\top} - (4t - 1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of Lemma]

- ► Since $Y := S_1 S_1^\top (4t 1)I$ has the eigenvalues $\{[0]^{4t}, [4t + 2]^2\}$, Y is positive semi-definite.
- ▶ The diagonal entries of *Y* is 2.

Lemma

Assume S_1 has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$. Then $S_1S_1^{\top} - (4t - 1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of Lemma]

- ► Since $Y := S_1 S_1^\top (4t 1)I$ has the eigenvalues $\{[0]^{4t}, [4t + 2]^2\}$, Y is positive semi-definite.
- ► The diagonal entries of Y is 2.

Lemma

Assume S_1 has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$. Then $S_1S_1^{\top} - (4t - 1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of Lemma]

- ► Since $Y := S_1 S_1^\top (4t 1)I$ has the eigenvalues $\{[0]^{4t}, [4t + 2]^2\}$, Y is positive semi-definite.
- ► The diagonal entries of Y is 2.

Lemma

Assume S_1 has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$. Then $S_1S_1^{\top} - (4t - 1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of Lemma]

- ► Since $Y := S_1 S_1^\top (4t 1)I$ has the eigenvalues $\{[0]^{4t}, [4t + 2]^2\}$, Y is positive semi-definite.
- ► The diagonal entries of Y is 2.

Lemma

Assume S_1 has characteristic polynomial $\chi_{S_1}(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$. Then $S_1S_1^{\top} - (4t - 1)I$ is signed permutation equivalent to $\begin{pmatrix} 2J_{2t+1} & O \\ O & 2J_{2t+1} \end{pmatrix}$.

[Proof of Lemma]

- ► Since $Y := S_1 S_1^\top (4t 1)I$ has the eigenvalues $\{[0]^{4t}, [4t + 2]^2\}$, Y is positive semi-definite.
- The diagonal entries of Y is 2.

	skew-symmetric	(0,1)-matrix	(0,1)-matrix
	(1,-1)-matrix X	(combinatorial)	(spectrum)
order n	EW matrices		
order $n-1$	(1)	Armario	Greaves-S.
order $n-2$	(2)		

Let S = X - I.

• (1):
$$\chi_S(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$$
.
• (2): $\chi_S(x) = x(x^2 + 8t - 1)(x^2 + 4t - 1)^{2t-1}$

• (2):
$$\chi_S(x) = x(x^2 + 8t - 1)(x^2 + 4t - 1)^{2t-1}$$
.

Proposition(Greaves-S.)

(1) implies (2).

Problem

Does (2) imply (1)?

Reference: G. Graves, S. Suda, Symmetric and skew-symmetric $\{0, \pm 1\}$ -matrices with large determinants, to appear in J. Combin. Des. arXiv:1601:02769.

Thank you for your attention!

	skew-symmetric	(0,1)-matrix	(0,1)-matrix
	(1,-1)-matrix X	(combinatorial)	(spectrum)
order n	EW matrices		
order $n-1$	(1)	Armario	Greaves-S.
order $n-2$	(2)		

Let S = X - I.

► (1):
$$\chi_S(x) = (x^2 + 8t + 1)(x^2 + 4t - 1)^{2t}$$
.
► (2): $\chi_S(x) = x(x^2 + 8t - 1)(x^2 + 4t - 1)^{2t-1}$.

Proposition(Greaves-S.)

(1) implies (2).

Problem

Does (2) imply (1)?

Reference: G. Graves, S. Suda, Symmetric and skew-symmetric $\{0,\pm1\}$ -matrices with large determinants, to appear in J. Combin. Des. arXiv:1601:02769.

Thank you for your attention!