Skew-symmetric EW matrices and tournaments

Sho Suda, Aichi University of Education (joint work with Gary Greaves, Nanyang Technological University)

July 8, 2017
Special Western Canada Linear Algebra meeting BIRS

Introduction

- Let X be a skew-symmetric $n \times n(1,-1)$-matrix: $X+X^{\top}=2 I$. Normalize X so that the first row consists of 1 and the first column consists of -1 except for the $(1,1)$-entry:

Introduction

- Let X be a skew-symmetric $n \times n(1,-1)$-matrix: $X+X^{\top}=2 I$.
- Normalize X so that the first row consists of 1 and the first column consists of -1 except for the $(1,1)$-entry:

$$
X=\left(\begin{array}{cc}
1 & \mathbf{1}^{\top} \\
-\mathbf{1} & I+A-A^{\top}
\end{array}\right)
$$

for some $(0,1)$-matrix A such that $A+A^{\top}=J-I$.

Introduction

- Let X be a skew-symmetric $n \times n(1,-1)$-matrix: $X+X^{\top}=2 I$.
- Normalize X so that the first row consists of 1 and the first column consists of -1 except for the $(1,1)$-entry:

$$
X=\left(\begin{array}{cc}
1 & \mathbf{1}^{\top} \\
-\mathbf{1} & I+A-A^{\top}
\end{array}\right)
$$

for some $(0,1)$-matrix A such that $A+A^{\top}=J-I$.

When can we characterize the skew-symmetric $(1,-1)$-matrix X in terms of the $(0,1)$-matrix A ?

- Known results: Skew-symmetric Hadamard matrices and tournaments. - Today's topic: Skew-symmetric EW matrices and tournaments.

Introduction

- Let X be a skew-symmetric $n \times n(1,-1)$-matrix: $X+X^{\top}=2 I$.
- Normalize X so that the first row consists of 1 and the first column consists of -1 except for the $(1,1)$-entry:

$$
X=\left(\begin{array}{cc}
1 & \mathbf{1}^{\top} \\
-\mathbf{1} & I+A-A^{\top}
\end{array}\right)
$$

for some $(0,1)$-matrix A such that $A+A^{\top}=J-I$.

When can we characterize the skew-symmetric $(1,-1)$-matrix X in terms of the $(0,1)$-matrix A ?

- Known results: Skew-symmetric Hadamard matrices and tournaments.

Introduction

- Let X be a skew-symmetric $n \times n(1,-1)$-matrix: $X+X^{\top}=2 I$.
- Normalize X so that the first row consists of 1 and the first column consists of -1 except for the $(1,1)$-entry:

$$
X=\left(\begin{array}{cc}
1 & \mathbf{1}^{\top} \\
-\mathbf{1} & I+A-A^{\top}
\end{array}\right)
$$

for some $(0,1)$-matrix A such that $A+A^{\top}=J-I$.

When can we characterize the skew-symmetric $(1,-1)$-matrix X in terms of the $(0,1)$-matrix A ?

- Known results: Skew-symmetric Hadamard matrices and tournaments.
- Today's topic: Skew-symmetric EW matrices and tournaments.

Hadamard matrices

- For an $n \times n(1,-1)$-matrix X,

$$
|\operatorname{det}(X)| \leq n^{n / 2}
$$

Equality holds if and only if X is a Hadamard matrix, that is $X X^{\top}=n I$.

- The order of a Hadamard matrix must be 1,2 , or a multiple of 4 .
- Hadamard conjecture: Hadamard matrices exist for all such orders.
- It is also conjectured that skew-symmetric Hadamard matrices exist for all order divisible by 4 .

Equivalences of skew-symmetric Hadamard matrices

- A tournament is a digraph whose adjacency matrix A satisfies that $A+A^{\top}=J-I$.

[^0]
Equivalences of skew-symmetric Hadamard matrices

- A tournament is a digraph whose adjacency matrix A satisfies that $A+A^{\top}=J-I$.
- A tournament of order $4 t+3$ is doubly regular if $A A^{\top}=(t+1) I+t J$.

Equivalences of skew-symmetric Hadamard matrices

- A tournament is a digraph whose adjacency matrix A satisfies that $A+A^{\top}=J-I$.
- A tournament of order $4 t+3$ is doubly regular if

$$
A A^{\top}=(t+1) I+t J
$$

Theorem

The existence of the following are equivalent:

Equivalences of skew-symmetric Hadamard matrices

- A tournament is a digraph whose adjacency matrix A satisfies that $A+A^{\top}=J-I$.
- A tournament of order $4 t+3$ is doubly regular if

$$
A A^{\top}=(t+1) I+t J
$$

Theorem

The existence of the following are equivalent:
(1) A skew-symmetric Hadamard matrix of order n.
(Reid-Brown, 1972)

Equivalences of skew-symmetric Hadamard matrices

- A tournament is a digraph whose adjacency matrix A satisfies that $A+A^{\top}=J-I$.
- A tournament of order $4 t+3$ is doubly regular if

$$
A A^{\top}=(t+1) I+t J
$$

Theorem

The existence of the following are equivalent:
(1) A skew-symmetric Hadamard matrix of order n.
(2) A doubly regular tournament of order $n-1$. (Reid-Brown, 1972)

Equivalences of skew-symmetric Hadamard matrices

- A tournament is a digraph whose adjacency matrix A satisfies that $A+A^{\top}=J-I$.
- A tournament of order $4 t+3$ is doubly regular if

$$
A A^{\top}=(t+1) I+t J
$$

Theorem

The existence of the following are equivalent:
(1) A skew-symmetric Hadamard matrix of order n.
(2) A doubly regular tournament of order $n-1$. (Reid-Brown, 1972)
(3) A tournament of order $n-1$ with spectrum $\left\{\left(\frac{n}{2}-1\right)^{1},\left(\frac{-1 \pm \sqrt{-n}}{2}\right)^{n / 2-1}\right\}$. (Zagaglia Salvi, 1984)
(4) A regular tournament of order $n-1$ with three distinct eigenvalues. (Rowlinson, 1986)

Equivalences of skew-symmetric Hadamard matrices

- A tournament is a digraph whose adjacency matrix A satisfies that $A+A^{\top}=J-I$.
- A tournament of order $4 t+3$ is doubly regular if

$$
A A^{\top}=(t+1) I+t J
$$

Theorem

The existence of the following are equivalent:
(1) A skew-symmetric Hadamard matrix of order n.
(2) A doubly regular tournament of order $n-1$. (Reid-Brown, 1972)
(3) A tournament of order $n-1$ with spectrum $\left\{\left(\frac{n}{2}-1\right)^{1},\left(\frac{-1 \pm \sqrt{-n}}{2}\right)^{n / 2-1}\right\}$. (Zagaglia Salvi, 1984)
(4) A regular tournament of order $n-1$ with three distinct eigenvalues. (Rowlinson, 1986)
(5) An irreducible tournament of order n having 4 distinct eigenvalues, one of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)

Equivalences of skew-symmetric Hadamard matrices

	skew-symmetric $(1,-1)$-matrix	$(0,1)$-matrix (combinatorial)	$(0,1)$-matrix (spectrum)
order n	$X X^{\top}=n I$		four distinct eigenvalues
order $n-1$	$X X^{\top}=n I-J$	doubly regular tournament	three distinct eigenvalues

Maximal det. of (± 1)-matrices of order $n \equiv 2(\bmod 4)$

- Ehlich (1964) and Wojtas (1964) independently showed that for an $n \times n(1,-1)$-matrix X where $n \equiv 2(\bmod 4)$,

$$
|\operatorname{det}(X)| \leq 2(n-1)(n-2)^{(n-2) / 2}
$$

Maximal det. of (± 1)-matrices of order $n \equiv 2(\bmod 4)$

- Ehlich (1964) and Wojtas (1964) independently showed that for an $n \times n(1,-1)$-matrix X where $n \equiv 2(\bmod 4)$,

$$
|\operatorname{det}(X)| \leq 2(n-1)(n-2)^{(n-2) / 2} .
$$

Equality holds if and only if there exists an $n \times n(1,-1)$-matrix B such that

$$
B B^{\top}=B^{\top} B=\left(\begin{array}{cc}
(n-2) I_{n / 2}+2 J_{n / 2} & O_{n / 2} \tag{1}\\
O_{n / 2} & (n-2) I_{n / 2}+2 J_{n / 2}
\end{array}\right)
$$

Maximal det. of (± 1)-matrices of order $n \equiv 2(\bmod 4)$

- Ehlich (1964) and Wojtas (1964) independently showed that for an $n \times n(1,-1)$-matrix X where $n \equiv 2(\bmod 4)$,

$$
|\operatorname{det}(X)| \leq 2(n-1)(n-2)^{(n-2) / 2}
$$

Equality holds if and only if there exists an $n \times n(1,-1)$-matrix B such that

$$
B B^{\top}=B^{\top} B=\left(\begin{array}{cc}
(n-2) I_{n / 2}+2 J_{n / 2} & O_{n / 2} \tag{1}\\
O_{n / 2} & (n-2) I_{n / 2}+2 J_{n / 2}
\end{array}\right)
$$

- A $(1,-1)$-matrix B is an EW matrix if the equation (1) holds.

Results of EW matrices

- An EW matrix of order n exists only if $2 n-2$ is a sum of two squares.
- There exists an EW matrix of order $2\left(q^{2}+q+1\right)$ for any prime power q (Koukouvinos, Kounias, Sebbery, 1991).
- Armario and Flau (2016) showed that if there exists a skew-symmetric EW matrix of order n, then $2 n-3$ must be square.
- Skew-symmetric EW matrices exist for order $n=6,14,26,42,62$.

Problem

Do there exist infinitely many of skew-symmetric EW matrices?

Skew-symmetric EW matrices and tournaments

Theorem(Armario, 2015, ADTHM)

The existence of the following are equivalent:
(1) A skew-symmetric EW matrix of order $4 t+2$.
(2) A tournament of order $4 t+1$ satisfying

$$
A A^{\top}=t\left(I_{4 t+1}+J_{4 t+1}\right)+\left(\begin{array}{cccc}
-J_{t} & -J_{t} & -J_{t, a} & -J_{t, 2 t+1-a} \\
-J_{t} & J_{t} & 0 & 0 \\
-J_{a, t} & 0 & 0 & -J_{a, 2 t+1-a} \\
-J_{2 t+1-a, t} & 0 & -J_{2 t+1-a, a} & 0
\end{array}\right)
$$

for some a.

Problem(Armario, 2015)

Characterize the above tournament of order $4 t+1$ by its spectrum.

Main theorem

Theorem(Greaves-S.)

The existence of the following are equivalent:
(1) A skew-symmetric EW matrix of order $4 t+2$.
(2) A tournament of order $4 t+1$ with characteristic polynomial

$$
\chi(t)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1} .
$$

- In proof, we make use of main angles of $S:=X-I$ or $A-A^{\top}$, where X is a skew-symmetric $(1,-1)$-matrix and A is a tournament matrix.

	skew-symmetric $(1,-1)$-matrix	$(0,1)$-matrix (combinatorial)	$(0,1)$-matrix (spectrum)
order n	EW matrices		
order $n-1$		Armario	Greaves-S.

Main angle

- The main angle was introduced by Cvetković in 1972 for simple undirected graphs.
- The notion of the main angle can be extended to normal matrices:

Main angle

- The main angle was introduced by Cvetković in 1972 for simple undirected graphs.
- The notion of the main angle can be extended to normal matrices:
- M : a normal matrix, i.e. $M M^{*}=M^{*} M$.
- $M=\sum_{i=1}^{s} \tau_{i} P_{i}$: the spectral decomposition.
- Define the main angle α_{i} by

$$
\alpha_{i}:=\left\|P_{i} \cdot \mathbf{1}\right\|^{2} .
$$

- $\sum_{i=1}^{s} \alpha_{i}=n$ holds where n is the size of the square matrix M.

The characteristic polynomial of Seidel and adjacency

 matrices of tournaments- A: the adjacency matrix of a tournament.
- $S=A-A^{\top}=2 A-J+I$: the Seidel matrix.
\qquad

The characteristic polynomial of Seidel and adjacency matrices of tournaments

- A : the adjacency matrix of a tournament.
- $S=A-A^{\top}=2 A-J+I$: the Seidel matrix.
- $\tau_{i}, \alpha_{i}(i=1,2, \ldots, s)$: the eigenvalue and the corresponding main angle of S.

The characteristic polynomial of Seidel and adjacency matrices of tournaments

- A : the adjacency matrix of a tournament.
- $S=A-A^{\top}=2 A-J+I$: the Seidel matrix.
- $\tau_{i}, \alpha_{i}(i=1,2, \ldots, s)$: the eigenvalue and the corresponding main angle of S.
- $\chi_{M}(t):=\operatorname{det}(M-t I)$: the characteristic polynomial of M.

The characteristic polynomial of Seidel and adjacency matrices of tournaments

- A : the adjacency matrix of a tournament.
- $S=A-A^{\top}=2 A-J+I$: the Seidel matrix.
- $\tau_{i}, \alpha_{i}(i=1,2, \ldots, s)$: the eigenvalue and the corresponding main angle of S.
- $\chi_{M}(t):=\operatorname{det}(M-t I)$: the characteristic polynomial of M.

Lemma
$\chi_{A}(x)=\left(\frac{-1}{2}\right)^{n} \chi_{S}(-2 x-1)\left(1+\sum_{i=1}^{s} \frac{\alpha_{i}}{\tau_{i}-(2 x+1)}\right)$.
The characteristic polynomial of A is completely determined by that of S and its main angles.

Proof: $(1) \Rightarrow(2)$

(1) There exists a skew-symmetric EW matrices of order $4 t+2$.
(2) There exists a tournament of order $4 t+1$ with characteristic polynomial $\chi(t)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.
[Proof of $(1) \Rightarrow(2)]$
tournament and its char. poly. is the desired form

Proof: $(1) \Rightarrow(2)$

(1) There exists a skew-symmetric EW matrices of order $4 t+2$.
(2) There exists a tournament of order $4 t+1$ with characteristic polynomial $\chi(t)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.
[Proof of $(1) \Rightarrow(2)]$

- Let $S+I$ be a normalized skew-symmetric EW matrix of order $4 t+2$.

Proof: $(1) \Rightarrow(2)$

(1) There exists a skew-symmetric EW matrices of order $4 t+2$.
(2) There exists a tournament of order $4 t+1$ with characteristic polynomial $\chi(t)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.
[Proof of $(1) \Rightarrow(2)]$

- Let $S+I$ be a normalized skew-symmetric EW matrix of order $4 t+2$.
- Determine the spectrum of $S: \lambda=\sqrt{-8 t-1}, \mu=\sqrt{-4 t+1}$. $\operatorname{spec}(S)=\left\{[\pm \lambda]^{1},[\pm \mu]^{2 t}\right\}$ and $\alpha_{ \pm \lambda}=\frac{4 t+1}{2 t+1}, \alpha_{ \pm \mu}=\frac{2 t}{2 t+1}$.

Proof: $(1) \Rightarrow(2)$

(1) There exists a skew-symmetric EW matrices of order $4 t+2$.
(2) There exists a tournament of order $4 t+1$ with characteristic polynomial $\chi(t)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.
[Proof of $(1) \Rightarrow(2)]$

- Let $S+I$ be a normalized skew-symmetric EW matrix of order $4 t+2$.
- Determine the spectrum of $S: \lambda=\sqrt{-8 t-1}, \mu=\sqrt{-4 t+1}$. $\operatorname{spec}(S)=\left\{[\pm \lambda]^{1},[\pm \mu]^{2 t}\right\}$ and $\alpha_{ \pm \lambda}=\frac{4 t+1}{2 t+1}, \alpha_{ \pm \mu}=\frac{2 t}{2 t+1}$.
- The characteristic polynomial of A is uniquely determined from the data of S : $\chi_{A}(x)=x\left(x^{3}-(2 t-1) x^{t}(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.
tournament and its char. poly. is the desired form.

Proof: $(1) \Rightarrow(2)$

(1) There exists a skew-symmetric EW matrices of order $4 t+2$.
(2) There exists a tournament of order $4 t+1$ with characteristic polynomial $\chi(t)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.
[Proof of $(1) \Rightarrow(2)]$

- Let $S+I$ be a normalized skew-symmetric EW matrix of order $4 t+2$.
- Determine the spectrum of $S: \lambda=\sqrt{-8 t-1}, \mu=\sqrt{-4 t+1}$. $\operatorname{spec}(S)=\left\{[\pm \lambda]^{1},[\pm \mu]^{2 t}\right\}$ and $\alpha_{ \pm \lambda}=\frac{4 t+1}{2 t+1}, \alpha_{ \pm \mu}=\frac{2 t}{2 t+1}$.
- The characteristic polynomial of A is uniquely determined from the data of $S: \chi_{A}(x)=x\left(x^{3}-(2 t-1) x^{t}(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.
- Let $S=A-A^{\top}$. Then A has the form $A=\left(\begin{array}{ll}0 & \mathbf{0}^{\top} \\ 1 & A^{\prime}\end{array}\right)$, so A^{\prime} is a tournament and its char. poly. is the desired form.
[Proof of $(2) \Rightarrow(1)$] Let A be a tournament matrix with

$$
\chi_{A}(x)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1} .
$$

Proof: $(2)=(1)$

[Proof of $(2) \Rightarrow(1)$] Let A be a tournament matrix with

$$
\chi_{A}(x)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1} .
$$

Lemma

Let A be a tournament matrix and let θ be an eigenvalue of A with multiplicity m. If $\operatorname{Re}(\theta)=-\frac{1}{2}$, then $-2 \operatorname{lm}(\theta)$ is an eigenvalue of S with multiplicity at least m.

Proof: $(2)=(1)$

[Proof of $(2) \Rightarrow(1)$] Let A be a tournament matrix with

$$
\chi_{A}(x)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1} .
$$

Lemma

Let A be a tournament matrix and let θ be an eigenvalue of A with multiplicity m. If $\operatorname{Re}(\theta)=-\frac{1}{2}$, then $-2 \operatorname{lm}(\theta)$ is an eigenvalue of S with multiplicity at least m.

- Since A has eigenvalues $\frac{-1 \pm \sqrt{1-4 t}}{2}$ with multiplicity $2 t-1, S$ has eigenvalues $\mu=\mp \sqrt{1-4 t}$ with multiplicity $\geq 2 t-1$.
- It remains to show that $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equiva'ent to

Proof: $(2)=(1)$

[Proof of $(2) \Rightarrow(1)$] Let A be a tournament matrix with

$$
\chi_{A}(x)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1} .
$$

Lemma

Let A be a tournament matrix and let θ be an eigenvalue of A with multiplicity m. If $\operatorname{Re}(\theta)=-\frac{1}{2}$, then $-2 \operatorname{lm}(\theta)$ is an eigenvalue of S with multiplicity at least m.

- Since A has eigenvalues $\frac{-1 \pm \sqrt{1-4 t}}{2}$ with multiplicity $2 t-1, S$ has eigenvalues $\mu=\mp \sqrt{1-4 t}$ with multiplicity $\geq 2 t-1$.
- Determine the remaining three eigenvalues of $S: 0, \lambda= \pm \sqrt{1-8 t}$.
\square
equivalent to

Proof: $(2) \Rightarrow(1)$

[Proof of $(2) \Rightarrow(1)$] Let A be a tournament matrix with

$$
\chi_{A}(x)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1} .
$$

Lemma

Let A be a tournament matrix and let θ be an eigenvalue of A with multiplicity m. If $\operatorname{Re}(\theta)=-\frac{1}{2}$, then $-2 \operatorname{lm}(\theta)$ is an eigenvalue of S with multiplicity at least m.

- Since A has eigenvalues $\frac{-1 \pm \sqrt{1-4 t}}{2}$ with multiplicity $2 t-1, S$ has eigenvalues $\mu=\mp \sqrt{1-4 t}$ with multiplicity $\geq 2 t-1$.
- Determine the remaining three eigenvalues of $S: 0, \lambda= \pm \sqrt{1-8 t}$.
- Determine the main angles: $\alpha_{\lambda}=0, \alpha_{0}=\frac{(8 t+1)(4 t-1)}{8 t-1}, \alpha_{\mu}=\frac{4 t}{8 t-1}$.
- It remains to show that $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation

Proof: $(2)=(1)$

[Proof of $(2) \Rightarrow(1)$] Let A be a tournament matrix with

$$
\chi_{A}(x)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1} .
$$

Lemma

Let A be a tournament matrix and let θ be an eigenvalue of A with multiplicity m. If $\operatorname{Re}(\theta)=-\frac{1}{2}$, then $-2 \operatorname{lm}(\theta)$ is an eigenvalue of S with multiplicity at least m.

- Since A has eigenvalues $\frac{-1 \pm \sqrt{1-4 t}}{2}$ with multiplicity $2 t-1, S$ has eigenvalues $\mu=\mp \sqrt{1-4 t}$ with multiplicity $\geq 2 t-1$.
- Determine the remaining three eigenvalues of $S: 0, \lambda= \pm \sqrt{1-8 t}$.
- Determine the main angles: $\alpha_{\lambda}=0, \alpha_{0}=\frac{(8 t+1)(4 t-1)}{8 t-1}, \alpha_{\mu}=\frac{4 t}{8 t-1}$.
- Then $S_{1}:=\left(\begin{array}{cc}0 & \mathbf{1}^{\top} \\ -1 & S\end{array}\right)$ has characteristic polynomial

$$
\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t} .
$$

[^1]
Proof: $(2)=(1)$

[Proof of $(2) \Rightarrow(1)$] Let A be a tournament matrix with $\chi_{A}(x)=\left(x^{3}-(2 t-1) x^{2}-t(4 t-1)\right)\left(x^{2}+x+t\right)^{2 t-1}$.

Lemma

Let A be a tournament matrix and let θ be an eigenvalue of A with multiplicity m. If $\operatorname{Re}(\theta)=-\frac{1}{2}$, then $-2 \operatorname{lm}(\theta)$ is an eigenvalue of S with multiplicity at least m.

- Since A has eigenvalues $\frac{-1 \pm \sqrt{1-4 t}}{2}$ with multiplicity $2 t-1, S$ has eigenvalues $\mu=\mp \sqrt{1-4 t}$ with multiplicity $\geq 2 t-1$.
- Determine the remaining three eigenvalues of $S: 0, \lambda= \pm \sqrt{1-8 t}$.
- Determine the main angles: $\alpha_{\lambda}=0, \alpha_{0}=\frac{(8 t+1)(4 t-1)}{8 t-1}, \alpha_{\mu}=\frac{4 t}{8 t-1}$.
- Then $S_{1}:=\left(\begin{array}{cc}0 & \mathbf{1}^{\top} \\ -1 & S\end{array}\right)$ has characteristic polynomial $\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t}$.
- It remains to show that $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equivalent to $\left(\begin{array}{cc}2 J_{2 t+1} & O \\ O & 2 J_{2 t+1}\end{array}\right)$.

Continued: Proof: $(2)=(1)$

Lemma

Assume S_{1} has characteristic polynomial
$\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t}$. Then $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equivalent to $\left(\begin{array}{ccc}2 J_{2 t+1} & O \\ O & 2 J_{2 t+1}\end{array}\right)$.
[Proof of Lemma]

Continued: Proof: $(2)=(1)$

Lemma

Assume S_{1} has characteristic polynomial
$\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t}$. Then $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equivalent to $\left(\begin{array}{ccc}2 J_{2 t+1} & O \\ O_{2 t+1} & 2 J_{2 t}\end{array}\right)$.
[Proof of Lemma]

- Since $Y:=S_{1} S_{1}^{\top}-(4 t-1) I$ has the eigenvalues $\left\{[0]^{4 t},[4 t+2]^{2}\right\}, Y$ is positive semi-definite.

Therefore Y is a $(0, \pm 2)$-matrix. Then it is proved by induction on the size that Y is signed permutation equivalent to $\operatorname{diag}\left(2 J_{k_{1}}, \ldots, 2 J_{k_{c}}\right)$. Since Y had the non-zero eigenvalue

Continued: Proof: $(2)=(1)$

Lemma

Assume S_{1} has characteristic polynomial
$\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t}$. Then $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equivalent to $\left(\begin{array}{ccc}2 J_{2 t+1} & O \\ O_{2 t+1} & 2 J_{2 t}\end{array}\right)$.
[Proof of Lemma]

- Since $Y:=S_{1} S_{1}^{\top}-(4 t-1) I$ has the eigenvalues $\left\{[0]^{4 t},[4 t+2]^{2}\right\}, Y$ is positive semi-definite.
- The diagonal entries of Y is 2 .

Therefore Y is a $(0, \pm 2)$-matrix. Then it is proved by induction on the size that Y is signed permutation equivalent to $\operatorname{diag}\left(2 J_{k_{1}}\right.$ had the non-zero eigenvalue

Continued: Proof: $(2)=(1)$

Lemma

Assume S_{1} has characteristic polynomial
$\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t}$. Then $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equivalent to $\left(\begin{array}{ccc}2 J_{2 t+1} & O \\ O_{2 t+1} & 2 J_{2 t}\end{array}\right)$.
[Proof of Lemma]

- Since $Y:=S_{1} S_{1}^{\top}-(4 t-1) I$ has the eigenvalues $\left\{[0]^{4 t},[4 t+2]^{2}\right\}, Y$ is positive semi-definite.
- The diagonal entries of Y is 2 .

Therefore Y is a $(0, \pm 2)$-matrix.

[^2]
Continued: Proof: $(2)=(1)$

Lemma

Assume S_{1} has characteristic polynomial
$\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t}$. Then $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equivalent to $\left(\begin{array}{ccc}2 J_{2 t+1} & O \\ O^{2} & 2 J_{2 t+1}\end{array}\right)$.
[Proof of Lemma]

- Since $Y:=S_{1} S_{1}^{\top}-(4 t-1) I$ has the eigenvalues $\left\{[0]^{4 t},[4 t+2]^{2}\right\}, Y$ is positive semi-definite.
- The diagonal entries of Y is 2 .

Therefore Y is a $(0, \pm 2)$-matrix. Then it is proved by induction on the size that Y is signed permutation equivalent to $\operatorname{diag}\left(2 J_{k_{1}}, \ldots, 2 J_{k_{c}}\right)$.

Continued: Proof: $(2) \Rightarrow(1)$

Lemma

Assume S_{1} has characteristic polynomial
$\chi_{S_{1}}(x)=\left(x^{2}+8 t+1\right)\left(x^{2}+4 t-1\right)^{2 t}$. Then $S_{1} S_{1}^{\top}-(4 t-1) I$ is signed permutation equivalent to $\left(\begin{array}{ccc}2 J_{2 t+1} & O \\ O^{2} & 2 J_{2 t+1}\end{array}\right)$.
[Proof of Lemma]

- Since $Y:=S_{1} S_{1}^{\top}-(4 t-1) I$ has the eigenvalues $\left\{[0]^{4 t},[4 t+2]^{2}\right\}, Y$ is positive semi-definite.
- The diagonal entries of Y is 2 .

Therefore Y is a $(0, \pm 2)$-matrix. Then it is proved by induction on the size that Y is signed permutation equivalent to $\operatorname{diag}\left(2 J_{k_{1}}, \ldots, 2 J_{k_{c}}\right)$. Since Y had the non-zero eigenvalue $4 t+2, Y$ is $\operatorname{diag}\left(2 J_{2 t+1}, 2 J_{2 t+1}\right)$.

	skew-symmetı $(1,-1)$-matri>
order n	EW matrices
order $n-1$	(1)
order $n-2$	(2)

Let $S=X-I$.

- (1): $\chi_{S}(x)=\left(x^{2}+8 t+1 \quad x^{2}+4 t-1\right)^{2 t}$.
- (2): $\chi_{S}(x)=x\left(x^{2}+8 t-\right.$

Proposition(Greaves-S.)

(1) implies (2).

	skew-symmetı $(1,-1)$-matri
order n	EW matrices
order $n-1$	(1)
order $n-2$	(2)

Let $S=X-I$.

- (1): $\chi_{S}(x)=\left(x^{2}+8 t+1 \quad x^{2}+4 t-1\right)^{2 t}$.
- (2): $\chi_{S}(x)=x\left(x^{2}+8 t-\right.$

Proposition(Greaves-S.)

(1) implies (2).

\vdots	$(0,1)$-matrix	$(0,1)$-matı
X	(combinatorial)	(spectrum)
	Armario	Greaves-S.

\square
$)\left(x^{2}+4 t-1\right)^{2 t-1}$.

Problem

Does (2) imply (1)?

Reference: G. Graves, S. Suda, Symmetric and skew-symmetric $\{0, \pm 1\}$-matrices with large determinants, to appear in J. Combin. Des. arXiv:1601:02769.

Thank you for your attention!

[^0]: Theorem The existence of the following are equivalent

[^1]: equivalent to

[^2]: had the non-zero eigenvalue $4 t+2, Y$ is $\operatorname{diag}\left(2 J_{2} t\right.$

