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Introduction

▶ Let X be a skew-symmetric n× n (1,−1)-matrix: X +X⊤ = 2I.

▶ Normalize X so that the first row consists of 1 and the first column
consists of −1 except for the (1, 1)-entry:

X =

(
1 1⊤

−1 I +A−A⊤

)
for some (0, 1)-matrix A such that A+A⊤ = J − I.

.

......

When can we characterize the skew-symmetric (1,−1)-matrix X in terms
of the (0, 1)-matrix A?

▶ Known results: Skew-symmetric Hadamard matrices and tournaments.

▶ Today’s topic: Skew-symmetric EW matrices and tournaments.
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Hadamard matrices

▶ For an n× n (1,−1)-matrix X,

|det(X)| ≤ nn/2.

Equality holds if and only if X is a Hadamard matrix, that is
XX⊤ = nI.

▶ The order of a Hadamard matrix must be 1, 2, or a multiple of 4.

▶ Hadamard conjecture: Hadamard matrices exist for all such orders.

▶ It is also conjectured that skew-symmetric Hadamard matrices exist
for all order divisible by 4.
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Equivalences of skew-symmetric Hadamard matrices

▶ A tournament is a digraph whose adjacency matrix A satisfies that
A+A⊤ = J − I.

▶ A tournament of order 4t+ 3 is doubly regular if
AA⊤ = (t+ 1)I + tJ .

.
Theorem
..

......

The existence of the following are equivalent:

(1) A skew-symmetric Hadamard matrix of order n.

(2) A doubly regular tournament of order n− 1. (Reid-Brown, 1972)

(3) A tournament of order n− 1 with spectrum

{(n2 − 1)1,
(−1±

√
−n

2

)n/2−1}. (Zagaglia Salvi, 1984)

(4) A regular tournament of order n− 1 with three distinct eigenvalues.
(Rowlinson, 1986)

(5) An irreducible tournament of order n having 4 distinct eigenvalues, one
of which is zero with algebraic multiplicity 1. (Kirkland-Shader, 1994)
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Equivalences of skew-symmetric Hadamard matrices

skew-symmetric
(1,−1)-matrix

(0, 1)-matrix
(combinatorial)

(0, 1)-matrix
(spectrum)

order n

XX⊤ = nI

four distinct
eigenvalues

order n− 1
XX⊤ = nI − J

doubly regular
tournament

three distinct
eigenvalues
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Maximal det. of (±1)-matrices of order n ≡ 2 (mod 4)

▶ Ehlich (1964) and Wojtas (1964) independently showed that for an
n× n (1,−1)-matrix X where n ≡ 2 (mod 4),

| det(X)| ≤ 2(n− 1)(n− 2)(n−2)/2.

Equality holds if and only if there exists an n× n (1,−1)-matrix B
such that

BB⊤ = B⊤B =

(
(n− 2)In/2 + 2Jn/2 On/2

On/2 (n− 2)In/2 + 2Jn/2

)
(1)

▶ A (1,−1)-matrix B is an EW matrix if the equation (1) holds.
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Results of EW matrices

▶ An EW matrix of order n exists only if 2n− 2 is a sum of two squares.

▶ There exists an EW matrix of order 2(q2 + q + 1) for any prime power
q (Koukouvinos, Kounias, Sebbery, 1991).

▶ Armario and Flau (2016) showed that if there exists a skew-symmetric
EW matrix of order n, then 2n− 3 must be square.

▶ Skew-symmetric EW matrices exist for order n = 6, 14, 26, 42, 62.

.
Problem
..
......Do there exist infinitely many of skew-symmetric EW matrices?
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Skew-symmetric EW matrices and tournaments

.
Theorem(Armario, 2015, ADTHM)
..

......

The existence of the following are equivalent:

(1) A skew-symmetric EW matrix of order 4t+ 2.

(2) A tournament of order 4t+ 1 satisfying

AA⊤ = t(I4t+1 + J4t+1) +

( −Jt −Jt −Jt,a −Jt,2t+1−a

−Jt Jt 0 0
−Ja,t 0 0 −Ja,2t+1−a

−J2t+1−a,t 0 −J2t+1−a,a 0

)

for some a.

.
Problem(Armario, 2015)
..
......Characterize the above tournament of order 4t+ 1 by its spectrum.
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Main theorem

.
Theorem(Greaves-S.)
..

......

The existence of the following are equivalent:

(1) A skew-symmetric EW matrix of order 4t+ 2.

(2) A tournament of order 4t+ 1 with characteristic polynomial

χ(t) = (x3 − (2t− 1)x2 − t(4t− 1))(x2 + x+ t)2t−1.

▶ In proof, we make use of main angles of S := X − I or A−A⊤, where
X is a skew-symmetric (1,−1)-matrix and A is a tournament matrix.

skew-symmetric
(1,−1)-matrix

(0, 1)-matrix
(combinatorial)

(0, 1)-matrix
(spectrum)

order n EW matrices

order n− 1 Armario Greaves-S.
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Main angle

▶ The main angle was introduced by Cvetković in 1972 for simple
undirected graphs.

▶ The notion of the main angle can be extended to normal matrices:
▶ M : a normal matrix, i.e. MM∗ = M∗M .
▶ M =

∑s
i=1 τiPi: the spectral decomposition.

▶ Define the main angle αi by

αi := ||Pi · 1||2.

▶
∑s

i=1 αi = n holds where n is the size of the square matrix M .
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The characteristic polynomial of Seidel and adjacency
matrices of tournaments

▶ A: the adjacency matrix of a tournament.

▶ S = A−A⊤ = 2A− J + I: the Seidel matrix.

▶ τi, αi (i = 1, 2, . . . , s): the eigenvalue and the corresponding main
angle of S.

▶ χM (t) := det(M − tI): the characteristic polynomial of M .
.
Lemma
..

......
χA(x) = (−1

2 )nχS(−2x− 1)(1 +
∑s

i=1
αi

τi−(2x+1)).

The characteristic polynomial of A is completely determined by that of S
and its main angles.
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Proof: (1)⇒(2)

.

......

(1) There exists a skew-symmetric EW matrices of order 4t+ 2.

(2) There exists a tournament of order 4t+ 1 with characteristic
polynomial χ(t) = (x3 − (2t− 1)x2 − t(4t− 1))(x2 + x+ t)2t−1.

[Proof of (1)⇒(2)]

▶ Let S + I be a normalized skew-symmetric EW matrix of order 4t+2.

▶ Determine the spectrum of S: λ =
√
−8t− 1, µ =

√
−4t+ 1.

spec(S) = {[±λ]1, [±µ]2t} and α±λ = 4t+1
2t+1 , α±µ = 2t

2t+1 .

▶ The characteristic polynomial of A is uniquely determined from the
data of S: χA(x) = x(x3 − (2t− 1)xt(4t− 1))(x2 + x+ t)2t−1.

▶ Let S = A−A⊤. Then A has the form A =
(

0 0⊤

1 A′

)
, so A′ is a

tournament and its char. poly. is the desired form.
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Proof: (2)⇒(1)

[Proof of (2)⇒(1)] Let A be a tournament matrix with
χA(x) = (x3 − (2t− 1)x2 − t(4t− 1))(x2 + x+ t)2t−1.
.
Lemma
..

......

Let A be a tournament matrix and let θ be an eigenvalue of A with
multiplicity m. If Re(θ) = −1

2 , then −2Im(θ) is an eigenvalue of S with
multiplicity at least m.

▶ Since A has eigenvalues −1±
√
1−4t

2 with multiplicity 2t− 1, S has
eigenvalues µ = ∓

√
1− 4t with multiplicity ≥ 2t− 1.

▶ Determine the remaining three eigenvalues of S: 0, λ = ±
√
1− 8t.

▶ Determine the main angles: αλ = 0, α0 =
(8t+1)(4t−1)

8t−1 , αµ = 4t
8t−1 .

▶ Then S1 :=
(

0 1⊤
−1 S

)
has characteristic polynomial

χS1(x) = (x2 + 8t+ 1)(x2 + 4t− 1)2t.
▶ It remains to show that S1S

⊤
1 − (4t− 1)I is signed permutation

equivalent to
(
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O 2J2t+1
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Continued: Proof: (2)⇒(1)

.
Lemma
..

......

Assume S1 has characteristic polynomial
χS1(x) = (x2 + 8t+ 1)(x2 + 4t− 1)2t. Then S1S

⊤
1 − (4t− 1)I is signed

permutation equivalent to
(

2J2t+1 O
O 2J2t+1

)
.

[Proof of Lemma]

▶ Since Y := S1S
⊤
1 − (4t− 1)I has the eigenvalues {[0]4t, [4t+ 2]2}, Y

is positive semi-definite.

▶ The diagonal entries of Y is 2.

Therefore Y is a (0,±2)-matrix. Then it is proved by induction on the size
that Y is signed permutation equivalent to diag(2Jk1 , . . . , 2Jkc). Since Y
had the non-zero eigenvalue 4t+ 2, Y is diag(2J2t+1, 2J2t+1).
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skew-symmetric
(1,−1)-matrix X

(0, 1)-matrix
(combinatorial)

(0, 1)-matrix
(spectrum)

order n EW matrices

order n− 1 (1) Armario Greaves-S.

order n− 2 (2)

Let S = X − I.

▶ (1): χS(x) = (x2 + 8t+ 1)(x2 + 4t− 1)2t.
▶ (2): χS(x) = x(x2 + 8t− 1)(x2 + 4t− 1)2t−1.

.
Proposition(Greaves-S.)
..
......(1) implies (2).

.
Problem
..
......Does (2) imply (1)?

Reference: G. Graves, S. Suda, Symmetric and skew-symmetric
{0,±1}-matrices with large determinants, to appear in J. Combin. Des.
arXiv:1601:02769.

Thank you for your attention!
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