Hadamard matrices with few distinct types

B. Tayfeh-Rezaie
Institute for Research in Fundamental Sciences (IPM)

(A joint work with A. Mohammadian)

Banff, July 2017

Definition

A Hadamard matrix is a square matrix H of order n with entries ± 1 satisfying

$$
H H^{T}=n l .
$$

Example

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Sylvester matrices

$$
\begin{gathered}
\mathrm{H}_{0}=[1] \\
\mathrm{H}_{r+1}=\left[\begin{array}{cc}
\mathrm{H}_{r} & \mathrm{H}_{r} \\
\mathrm{H}_{r} & -\mathrm{H}_{r}
\end{array}\right]
\end{gathered}
$$

H_{r} is a Hadamard matrix of order 2^{r}.

Equivalence

Two Hadamard matrices H_{1} and H_{2} are called equivalent if one is obtained from the other using some of the following operations:

- a permutation of rows
- a permutation of columns
- negations of some rows
- negations of some columns

In other words, H_{1} and H_{2} are equivalent if there are signed permutation matrices P and Q such that

$$
H_{2}=P H_{1} Q .
$$

Classification

The number of equivalence classes of Hadamard matrices of order $n \leqslant 32$:

n	1	2	4	8	12	16	20	24	28	32
$\#$	1	1	1	1	1	5	3	60	487	13710027

Types

$H=\left[h_{i j}\right]:$ A Hadamard matrix of order n

By a sequence of row/column permutations/negations, any four distinct rows i, j, k, ℓ of H may be transformed uniquely to the form

$$
\begin{array}{cccccccccc}
& & s & t & t & s & t & s & s & t \\
i & : & + & + & + & + & + & + & + & + \\
j & : & + & + & + & + & - & - & - & - \\
k & : & + & + & - & - & + & + & - & - \\
\ell & : & + & - & + & - & + & - & + & -
\end{array}
$$

where $s+t=n / 4$ and $0 \leq t \leq\lfloor n / 8\rfloor$. We define the type of the four rows i, j, k, ℓ as $T_{i j k \ell}=t$.

Profile of Hadamard matrices

$H=\left[h_{i j}\right]:$ A Hadamard matrix of order n

For any four distinct rows i, j, k, ℓ, define

$$
P_{i j k \ell}=\left|\sum_{c=1}^{n} h_{c i} h_{c j} h_{c k} h_{c \ell}\right| .
$$

Let π_{m} be the number of four rows i, j, k, ℓ of H with $P_{i j k \ell}=m$. Then

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)
$$

is called the profile of H.

Types vs. Profile

It is straightforward to check that

$$
T_{i j k \ell}=\frac{n-P_{i j k \ell}}{8}
$$

Question

Is it possible to have a profile with only one nonzero entry?
in other words:

Is there a Hadamard matrix whose 4-tuples of rows are all of the same type?

The answer is almost NO!

The answer is almost NO!

Lemma: Let H be a Hadamard matrix of order $n \geqslant 4$. If all 4 -tuples of rows are of the same type, then $n=4$ or $n=12$.

Type relations

H: A Hadamard matrix of order $n=4 m$
Fix three rows and let k_{i} be the number of rows which are of type i with the fixed three rows. Then

$$
\begin{aligned}
& \sum_{i} k_{i}=n-3 \\
& \sum_{i} k_{i}(m-2 i)^{2}=m^{2}
\end{aligned}
$$

Also, if $k_{i} k_{j}>0$, then

$$
2(i+j) \geqslant m .
$$

Next question

Is it possible to have a profile with only two nonzero entries?
in other words:

Is there a Hadamard matrix with only two distinct types for 4-tuples of rows?

Three Infinite Classes

We consider Hadamard matrices with exactly two types for 4-tuples of rows:

- Types $0, \frac{n}{8}$
- Types $1, \frac{n-4}{8}$
- Types $\frac{n}{16}, \frac{n}{8}$

Note that theses pairs of types satisfy the previous type relations.

The $\left(\frac{n}{16}, \frac{n}{8}\right)$ case

Lemma: There exists no Hadamard matrix of order n whose all quadruples of rows are of type $\frac{n}{16}$ or $\frac{n}{8}$.

The Proof is not hard!
We need to consider only 7 rows.

The other two cases

Main Theorem: Let H be a Hadamard matrix of order n and $r<n / 16$. Suppose that for every three distinct rows i, j, k of H, there exists a row ℓ with $T_{i j k \ell} \leqslant r$ and no row x with $r<T_{i j k x} \leqslant 2 r$. Then n must be a power of 2 .

Corollaries

Corollary 1: Any Hadamard matrix of order n whose all quadruples of rows are of type 0 or $\frac{n}{8}$ is equivalent to the Sylvester Hadamard matrix.

Corollary 2: Any Hadamard matrix of order n whose all quadruples of rows are of type 1 or $\frac{n-4}{8}$ has order $n=4,12,20$.

Main Theorem

Main Theorem: Let H be a Hadamard matrix of order n and $r<n / 16$. Suppose that for every three distinct rows i, j, k of H, there exists a row ℓ with $T_{i j k \ell} \leqslant r$ and no row x with $r<T_{i j k x} \leqslant 2 r$. Then n must be a power of 2 .

Notation

Hadamard product of two $(-1,1)$-vectors $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$:

$$
a \circ b=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

Also let

$$
\sigma(a)=\left|a_{1}+\cdots+a_{n}\right| .
$$

Then

$$
\sigma(a \circ b) \geqslant \sigma(a)+\sigma(b)-n .
$$

Definition: A set \mathcal{S} of the rows of H is full if for every distinct rows $i, j, k \in \mathcal{S}$, the unique row ℓ with $T_{i j k \ell} \leqslant r$ is contained in \mathcal{S}.

Proof of Theorem

Claim: Any full set of size $s<n$ can be extended to a full set of size $2 s$.

So if we start with a full set of size 4, by the above claim we find that n is a power of 2 .

Proof of Claim

Let $\mathcal{S}=\left\{a_{1}, \ldots, a_{s}\right\}$ be a full set in H.

Choose an arbitrary row b_{1} in H outside of \mathcal{S}. Let b_{i} be the unique row in H such that

$$
T_{a_{1} a_{i} b_{1} b_{i}} \leqslant r
$$

for $i=2, \ldots, s$.
It is not hard to show that

$$
\mathcal{S}^{\prime}=\mathcal{S} \cup\left\{b_{1}, \ldots, b_{s}\right\}
$$

is a full set of size $2 s$.

Problems

Classify all Hadamard matrices with only two distinct types for 4-tuples of rows.

Find another infinite family of Hadamard matrices with only two distinct types for 4-tuples of rows.

