Hadamard matrices with few distinct types

B. Tayfeh-Rezaie

Institute for Research in Fundamental Sciences (IPM)

(A joint work with A. Mohammadian)

Banff, July 2017

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

A Hadamard matrix is a square matrix H of order n with entries ± 1 satisfying

$$HH^T = nI.$$

Example

Sylvester matrices

$$H_0 = \begin{bmatrix} 1 \end{bmatrix}$$
$$H_{r+1} = \begin{bmatrix} H_r & H_r \\ H_r & -H_r \end{bmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 H_r is a Hadamard matrix of order 2^r .

Equivalence

Two Hadamard matrices H_1 and H_2 are called equivalent if one is obtained from the other using some of the following operations:

- a permutation of rows
- a permutation of columns
- negations of some rows
- negations of some columns

In other words, H_1 and H_2 are equivalent if there are signed permutation matrices *P* and *Q* such that

 $H_2 = PH_1Q.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Classification

The number of equivalence classes of Hadamard matrices of order $n \leq 32$:

n	1	2	4	8	12	16	20	24	28	32
#	1	1	1	1	1	5	3	60	487	13710027

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Types

$H = [h_{ij}]$: A Hadamard matrix of order n

By a sequence of row/column permutations/negations, any four distinct rows i, j, k, ℓ of H may be transformed uniquely to the form

where s + t = n/4 and $0 \le t \le \lfloor n/8 \rfloor$. We define the *type* of the four rows *i*, *j*, *k*, ℓ as $T_{ijk\ell} = t$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Profile of Hadamard matrices

 $H = [h_{ij}]$: A Hadamard matrix of order n

For any four distinct rows i, j, k, ℓ , define

$$P_{ijk\ell} = \left| \sum_{c=1}^n h_{ci} h_{cj} h_{ck} h_{c\ell} \right|.$$

Let π_m be the number of four rows i, j, k, ℓ of H with $P_{ijk\ell} = m$. Then

 $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$

is called the profile of H.

Types vs. Profile

It is straightforward to check that

$$T_{ijk\ell}=\frac{n-P_{ijk\ell}}{8}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Is it possible to have a profile with only one nonzero entry?

in other words:

Is there a Hadamard matrix whose 4-tuples of rows are all of the same type?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The answer is almost NO!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The answer is almost NO!

Lemma: Let *H* be a Hadamard matrix of order $n \ge 4$. If all 4-tuples of rows are of the same type, then n = 4 or n = 12.

Type relations

H: A Hadamard matrix of order n = 4m

Fix three rows and let k_i be the number of rows which are of type *i* with the fixed three rows. Then

$$\sum_{i} k_i = n - 3,$$

$$\sum_{i} k_i (m - 2i)^2 = m^2.$$

Also, if $k_i k_j > 0$, then

 $2(i+j) \ge m$.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Next question

Is it possible to have a profile with only two nonzero entries?

in other words:

Is there a Hadamard matrix with only two distinct types for 4-tuples of rows?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Three Infinite Classes

We consider Hadamard matrices with exactly two types for 4-tuples of rows:

- Types 0, ^{*n*}/₈
- Types 1, <u>n-4</u>/8
- Types $\frac{n}{16}, \frac{n}{8}$

Note that theses pairs of types satisfy the previous type relations.

The $(\frac{n}{16}, \frac{n}{8})$ case

Lemma: There exists no Hadamard matrix of order *n* whose all quadruples of rows are of type $\frac{n}{16}$ or $\frac{n}{8}$.

うして ふぼう ふほう ふほう ふしつ

The Proof is not hard! We need to consider only 7 rows.

The other two cases

Main Theorem: Let *H* be a Hadamard matrix of order *n* and r < n/16. Suppose that for every three distinct rows *i*, *j*, *k* of *H*, there exists a row ℓ with $T_{ijk\ell} \leq r$ and no row *x* with $r < T_{ijkx} \leq 2r$. Then *n* must be a power of 2.

Corollaries

Corollary 1: Any Hadamard matrix of order *n* whose all quadruples of rows are of type 0 or $\frac{n}{8}$ is equivalent to the Sylvester Hadamard matrix.

Corollary 2: Any Hadamard matrix of order *n* whose all quadruples of rows are of type 1 or $\frac{n-4}{8}$ has order n = 4, 12, 20.

うして ふぼう ふほう ふほう ふしつ

Main Theorem

Main Theorem: Let *H* be a Hadamard matrix of order *n* and r < n/16. Suppose that for every three distinct rows *i*, *j*, *k* of *H*, there exists a row ℓ with $T_{ijk\ell} \leq r$ and no row *x* with $r < T_{ijkx} \leq 2r$. Then *n* must be a power of 2.

うして ふぼう ふほう ふほう ふしつ

Notation

Hadamard product of two (-1, 1)-vectors $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$:

 $a \circ b = (a_1b_1,\ldots,a_nb_n).$

Also let

$$\sigma(\mathbf{a}) = |\mathbf{a}_1 + \cdots + \mathbf{a}_n|.$$

Then

 $\sigma(\mathbf{a} \circ \mathbf{b}) \ge \sigma(\mathbf{a}) + \sigma(\mathbf{b}) - \mathbf{n}.$

Definition: A set *S* of the rows of *H* is full if for every distinct rows $i, j, k \in S$, the unique row ℓ with $T_{ijk\ell} \leq r$ is contained in *S*.

Proof of Theorem

Claim: Any full set of size s < n can be extended to a full set of size 2s.

So if we start with a full set of size 4, by the above claim we find that n is a power of 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of Claim

Let $S = \{a_1, \ldots, a_s\}$ be a full set in H.

Choose an arbitrary row b_1 in *H* outside of *S*. Let b_i be the unique row in *H* such that

 $T_{a_1a_ib_1b_i} \leq r$

for i = 2, ..., s. It is not hard to show that

 $S' = S \cup \{b_1, \ldots, b_s\}$

うして ふぼう ふほう ふほう ふしつ

is a full set of size 2s.

Classify all Hadamard matrices with only two distinct types for 4-tuples of rows.

Find another infinite family of Hadamard matrices with only two distinct types for 4-tuples of rows.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●