High-dimensional permutations and discrepancy

Nati Linial

BIRS Meeting, August 2016

What are high dimensional permutations?

What are high dimensional permutations?

A permutation can be encoded by means of a permutation matrix.

What are high dimensional permutations?

A permutation can be encoded by means of a permutation matrix. As we all know, this is an $n \times n$ array of zeros and ones in which every line contains exactly one 1-entry.

What are high dimensional permutations?

A permutation can be encoded by means of a permutation matrix. As we all know, this is an $n \times n$ array of zeros and ones in which every line contains exactly one 1-entry.
A line here means either a row or a column.

A notion of high dimensional permutations

This suggests the following definition of a d-dimensional permutation on $[n]$.

A notion of high dimensional permutations

This suggests the following definition of a d-dimensional permutation on [n]. It is an array $[n] \times[n] \times \ldots \times[n]=[n]^{d+1}$ (with $d+1$ factors) of zeros and ones in which every line contains exactly one 1-entry.

A notion of high dimensional permutations

This suggests the following definition of a d-dimensional permutation on $[n]$. It is an array $[n] \times[n] \times \ldots \times[n]=[n]^{d+1}$ (with $d+1$ factors) of zeros and ones in which every line contains exactly one 1-entry. Whereas a matrix has two kinds of lines, namely rows and columns, now there are $d+1$ kinds of lines.

A notion of high dimensional permutations

This suggests the following definition of a d-dimensional permutation on [n]. It is an array $[n] \times[n] \times \ldots \times[n]=[n]^{d+1}$ (with $d+1$ factors) of zeros and ones in which every line contains exactly one 1-entry.
Whereas a matrix has two kinds of lines, namely rows and columns, now there are $d+1$ kinds of lines.
A line is a set of n entries in the array that are obtained by fixing d out of the $d+1$ coordinates and the letting the remaining coordinate take all values from 1 to n.

The case $d=2$. A familiar face?

According to our definition, a 2-dimensional permutation on $[n]$ is an $[n] \times[n] \times[n]$ array of zeros and ones in which every row, every column, and every shaft contains exactly one 1-entry.

The case $d=2$. A familiar face?

According to our definition, a 2-dimensional permutation on $[n]$ is an $[n] \times[n] \times[n]$ array of zeros and ones in which every row, every column, and every shaft contains exactly one 1-entry.
An equivalent description can be achieved by using a topographical map of this terrain.

The two-dimensional case

Rather that an $[n] \times[n] \times[n]$ array of zeros and ones we can now consider an $[n] \times[n]$ array with entries from [n], as follows:

The two-dimensional case

Rather that an $[n] \times[n] \times[n]$ array of zeros and ones we can now consider an $[n] \times[n]$ array with entries from $[n]$, as follows: The (i, j) entry in this array is k where k is the "height above the ground" of the unique 1-entry in the shaft $(i, j, *)$.

The two-dimensional case

Rather that an $[n] \times[n] \times[n]$ array of zeros and ones we can now consider an $[n] \times[n]$ array with entries from $[n]$, as follows: The (i, j) entry in this array is k where k is the "height above the ground" of the unique 1-entry in the shaft $(i, j, *)$.
It is easily verified that the defining condition is that in this array every row and every column contains every entry $n \geq i \geq 1$ exactly once.

The two-dimensional case

Rather that an $[n] \times[n] \times[n]$ array of zeros and ones we can now consider an $[n] \times[n]$ array with entries from $[n]$, as follows: The (i, j) entry in this array is k where k is the "height above the ground" of the unique 1-entry in the shaft $(i, j, *)$.
It is easily verified that the defining condition is that in this array every row and every column contains every entry $n \geq i \geq 1$ exactly once. In other words: Two-dimensional permutations are synonymous with Latin Squares.

Where do we go from here?

We seek high-dimensional counterparts of known phenomena in ("classical" = "one-dimensional") permutations.

Where do we go from here?

We seek high-dimensional counterparts of known phenomena in ("classical" = "one-dimensional") permutations. Specifically, we wish to:

Where do we go from here?

We seek high-dimensional counterparts of known phenomena in ("classical" = "one-dimensional") permutations. Specifically, we wish to:

- Enummerate d-dimensional permutations.

Where do we go from here?

We seek high-dimensional counterparts of known phenomena in ("classical" = "one-dimensional") permutations. Specifically, we wish to:

- Enummerate d-dimensional permutations.
- Find how to generate them randomly and efficiently and describe their typical behavior.

Where do we go from here?

We seek high-dimensional counterparts of known phenomena in ("classical" = "one-dimensional") permutations. Specifically, we wish to:

- Enummerate d-dimensional permutations.
- Find how to generate them randomly and efficiently and describe their typical behavior.
- Investigate analogs of the Birkhoff von-Neumann Theorem on doubly stochastic matrices.
... and more and more and more....
- Of Erdős-Szekeres.
- Of Erdős-Szekeres. Of the solution to Ulam's Problem.
- Of Erdős-Szekeres. Of the solution to Ulam's Problem.
- Find out how small their discrepancy can be.
- Of Erdős-Szekeres. Of the solution to Ulam's Problem.
- Find out how small their discrepancy can be.
- Use low-discrepancy permutations to construct high-dimensional expanders.

Erdős-Szekeres for high-dimensional permutations, and a word on Ulam's problem

Theorem (NL+Michael Simkin)

Erdős-Szekeres for high-dimensional permutations, and a word on Ulam's problem

Theorem (NL+Michael Simkin)
Every d-dimensional permutation has a monotone subsequence of length $\Omega_{d}(\sqrt{n})$. The bound is tight up to the implicit coefficient.

Erdős-Szekeres for high-dimensional permutations, and a word on Ulam's problem

Theorem (NL+Michael Simkin)
Every d-dimensional permutation has a monotone subsequence of length $\Omega_{d}(\sqrt{n})$. The bound is tight up to the implicit coefficient.
In almost every d-dimensional permutation the length of the longest monotone subsequence is $\Theta_{d}\left(n^{\frac{d}{d+1}}\right)$.

The count - An interesting numerology

As we all know (Stirling's formula)

$$
n!=\left((1+o(1)) \frac{n}{e}\right)^{n}
$$

The count - An interesting numerology

As we all know (Stirling's formula)

$$
n!=\left((1+o(1)) \frac{n}{e}\right)^{n}
$$

As van Lint and Wilson showed, the number of order- n Latin squares is

$$
\left|\mathcal{L}_{\mathrm{n}}\right|=\left((1+\mathrm{o}(1)) \frac{\mathrm{n}}{\mathrm{e}^{2}}\right)^{\mathrm{n}^{2}}
$$

So, let us conecture

Conjecture

The number of d-dimensional permutations on $[n]$ is

$$
\left|S_{n}^{d}\right|=\left((1+o(1)) \frac{n}{e^{d}}\right)^{n^{d}}
$$

and what we actually know

At present we can only prove the upper bound
Theorem (NL, Zur Luria '14)
The number of d-dimensional permutations on $[n]$ is

$$
\left|S_{n}^{d}\right| \leq\left((1+o(1)) \frac{n}{e^{d}}\right)^{n^{d}}
$$

How van Lint and Wilson enumerated Latin Squares

Recall that the permanent of a square matrix is a
"determinant without signs".

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod a_{i, \sigma(i)}
$$

This is a curious and fascinating object. E.g.

This is a curious and fascinating object. E.g.

- It counts perfect matchings in bipartite graphs.

This is a curious and fascinating object. E.g.

- It counts perfect matchings in bipartite graphs.
- In other words, it counts the generalized diagonals included in a $0 / 1$ matrix.

This is a curious and fascinating object. E.g.

- It counts perfect matchings in bipartite graphs.
- In other words, it counts the generalized diagonals included in a $0 / 1$ matrix.
- It is \#-P-hard to calculate the permanent exactly, even for a $0 / 1$ matrix.

This is a curious and fascinating object. E.g.

- It counts perfect matchings in bipartite graphs.
- In other words, it counts the generalized diagonals included in a $0 / 1$ matrix.
- It is \#-P-hard to calculate the permanent exactly, even for a $0 / 1$ matrix.
- On the other hand, there is an efficient approximation scheme for permanents of nonnegative matrices.

This is a curious and fascinating object. E.g.

- It counts perfect matchings in bipartite graphs.
- In other words, it counts the generalized diagonals included in a $0 / 1$ matrix.
- It is \#-P-hard to calculate the permanent exactly, even for a $0 / 1$ matrix.
- On the other hand, there is an efficient approximation scheme for permanents of nonnegative matrices.
- The most important open problem in algebraic computational complexity is to separate permanents from determinants.

A lower bound on the permanent

We say that A is a doubly stochastic matrix provided that

A lower bound on the permanent

We say that A is a doubly stochastic matrix provided that

- Its entries are nonnegative.

A lower bound on the permanent

We say that A is a doubly stochastic matrix provided that

- Its entries are nonnegative.
- The sum of entries in every row is 1 .

A lower bound on the permanent

We say that A is a doubly stochastic matrix provided that

- Its entries are nonnegative.
- The sum of entries in every row is 1 .
- The sum of entries in every column is 1 .

What is min per A over $n \times n$ doubly-stochastic matrices?

What is min per A over $n \times n$ doubly-stochastic matrices? As conjectured by van der Waerden in the 20's and proved over 50 years later, in the minimizing matrix all entries are $\frac{1}{n}$.
Theorem (Falikman; Egorichev '80-81)
The permanent of every $n \times n$ doubly stochastic matrix is $\geq \frac{n!}{n^{n}}$.

An upper bound on permanents

The following was conjectured by Minc Theorem (Brégman '73)
Let A be an $n \times n \quad 0 / 1$ matrix with r_{i} ones in the i-th row $i=1, \ldots, n$. Then per $A \leq \prod_{i}\left(r_{i}!\right)^{1 / r_{i}}$.
The bound is tight.

How we proved the upper bound on the number of d-dimensional permutations

Our proof can be viewed as an extension of the Minc-Brégman theorem. Specifically, we use ideas from papers of Schrijver and Radhakrishnan elaborating on Brégman's proof.

How we proved the upper bound on the number of d-dimensional permutations

Our proof can be viewed as an extension of the Minc-Brégman theorem. Specifically, we use ideas from papers of Schrijver and Radhakrishnan elaborating on Brégman's proof.
This gave us an upper bound on the number of d-dimensional permutations.

How we proved the upper bound on the number of d-dimensional permutations

Our proof can be viewed as an extension of the Minc-Brégman theorem. Specifically, we use ideas from papers of Schrijver and Radhakrishnan elaborating on Brégman's proof.
This gave us an upper bound on the number of d-dimensional permutations.
What about a matching lower bound?

How we proved the upper bound on the number of d-dimensional permutations

Our proof can be viewed as an extension of the Minc-Brégman theorem. Specifically, we use ideas from papers of Schrijver and Radhakrishnan elaborating on Brégman's proof.
This gave us an upper bound on the number of d-dimensional permutations.
What about a matching lower bound?
The analog of the van der Waerden conjecture fails in higher dimension

Don't panic

In a recent breakthrough P. Keevash solved a 160-years old problem and showed the existence of combinatorial designs.

Don't panic

In a recent breakthrough P. Keevash solved a 160 -years old problem and showed the existence of combinatorial designs. His work yields as well the tight lower bound on $\left|\mathcal{L}_{\mathrm{n}}\right|$.

Don't panic

In a recent breakthrough P. Keevash solved a
160 -years old problem and showed the existence of combinatorial designs. His work yields as well the tight lower bound on $\left|\mathcal{L}_{\mathrm{n}}\right|$.
It is conceivable that an appropriate adaptation of his method will prove the tight lower bound in all dimensions.

Approximately counting Latin squares

The general scheme: We consider a Latin square (= a 2-dimensional permutation) A, layer by layer.

Approximately counting Latin squares

The general scheme: We consider a Latin square (= a 2-dimensional permutation) A, layer by layer. Namely, A is an $n \times n \times n$ array of $0 / 1$ where every line has a single 1 entry.

Approximately counting Latin squares

The general scheme: We consider a Latin square (= a 2-dimensional permutation) A, layer by layer. Namely, A is an $n \times n \times n$ array of $0 / 1$ where every line has a single 1 entry.
Note that every layer in A is a permutation matrix.

Approximately counting Latin squares

The general scheme: We consider a Latin square (= a 2-dimensional permutation) A, layer by layer. Namely, A is an $n \times n \times n$ array of $0 / 1$ where every line has a single 1 entry.
Note that every layer in A is a permutation matrix. Given several layers in A, how many permutation matrices can play the role of the next layer?

How many choices for the next layer?

Let B be a $0 / 1$ matrix where $b_{i j}=1$ iff in all previous layers the ij entry is zero.

How many choices for the next layer?

Let B be a $0 / 1$ matrix where $b_{i j}=1$ iff in all previous layers the ij entry is zero.
The set of all possible next layers coincides with the collection of generalized diagonals in B.

How many choices for the next layer?

Let B be a $0 / 1$ matrix where $b_{i j}=1$ iff in all previous layers the ij entry is zero.
The set of all possible next layers coincides with the collection of generalized diagonals in B. Therefore, there are exactly per B possibilities for the next layer.

How many choices for the next layer?

To estimate the number of Latin squares we bound at each step the number of possibilities for the next layer ($=$ per B) from above and from below using Minc-Brégman and van der Waerden, respectively.

How many choices for the next layer?

To estimate the number of Latin squares we bound at each step the number of possibilities for the next layer ($=$ per B) from above and from below using Minc-Brégman and van der Waerden, respectively.

Repeat....

Our high-dim Minc-Brégman Theorem

Definition
Denote by $\operatorname{per}_{d}(A)$ the number of d-dimensional permutations contained in A, an $[n]^{d+1}$ array of $0 / 1$.

Our high-dim Minc-Brégman Theorem

Definition
Denote by $\operatorname{per}_{d}(A)$ the number of d-dimensional permutations contained in A, an $[n]^{d+1}$ array of $0 / 1$.
For $d=1$ this reduces to the usual permanent.

Our high-dim Minc-Brégman Theorem

Definition

Denote by $\operatorname{per}_{d}(A)$ the number of d-dimensional permutations contained in A, an $[n]^{d+1}$ array of $0 / 1$.
For $d=1$ this reduces to the usual permanent.
Theorem

$$
\operatorname{per}_{d}(A) \leq \prod_{\mathbf{i}} \exp \left(f\left(d, r_{\mathbf{i}}\right)\right)
$$

where r_{i} is the number of 1 's in the line $\boldsymbol{r}_{\mathrm{i}}$. (All lines in some specific direction).

Our high-dimensional Minc-Brégman

 Theorem (contd.)We define $f(d, r)$ via $f(0, r)=\log r$, and

$$
f(d, r)=\frac{1}{r} \sum_{k=1, \ldots, r} f(d-1, k)
$$

Note that $f(1, r)=\frac{\log (r!)}{r}$ and we recover Brégman's inequality.

Our high-dimensional Minc-Brégman

 Theorem (contd.)We define $f(d, r)$ via $f(0, r)=\log r$, and

$$
f(d, r)=\frac{1}{r} \sum_{k=1, \ldots, r} f(d-1, k)
$$

Note that $f(1, r)=\frac{\log (r!)}{r}$ and we recover Brégman's inequality. In general

$$
f(d, r)=\log r-d+O_{d}\left(\frac{\log ^{d} r}{r}\right)
$$

Discrepancy and high-dimensional expansion

There is much ongoing research seeking high-dimensional expanders.

Discrepancy and high-dimensional expansion

There is much ongoing research seeking high-dimensional expanders. Many beautiful results were already found, but I believe that the right definition is still missing.

Discrepancy and high-dimensional expansion

There is much ongoing research seeking high-dimensional expanders. Many beautiful results were already found, but I believe that the right definition is still missing. It should be based on the structure of random objects and the notions of regularity, small discrepancy and sparsity.

Discrepancy and high-dimensional expansion

There is much ongoing research seeking high-dimensional expanders. Many beautiful results were already found, but I believe that the right definition is still missing. It should be based on the structure of random objects and the notions of regularity, small discrepancy and sparsity. High-dimensional permutations have something interesting to offer here.

Discrepancy and high-dimensional expansion

There is much ongoing research seeking high-dimensional expanders. Many beautiful results were already found, but I believe that the right definition is still missing. It should be based on the structure of random objects and the notions of regularity, small discrepancy and sparsity.
High-dimensional permutations have something interesting to offer here. If yo want to learn about Discrepancy, the best place to go in Jirka's beautiful book.

A little background - An example of discrepancy in geometry

Theorem (van Aardenne-Ehrenfest '45, Schmidt '75)

- There is a set of N points $X \subset[0,1]^{2}$, s.t. $||X \cap R|-N \cdot \operatorname{area}(R)| \leq O(\log N)$ for every axis-parallel rectangle $R \subseteq[0,1]^{2}$.

A little background - An example of discrepancy in geometry

Theorem (van Aardenne-Ehrenfest '45,

Schmidt '75)

- There is a set of N points $X \subset[0,1]^{2}$, s.t. $||X \cap R|-N \cdot \operatorname{area}(R)| \leq O(\log N)$ for every axis-parallel rectangle $R \subseteq[0,1]^{2}$.
- On the other hand, for every set of N points $X \subset[0,1]^{2}$ there is an axis-parallel rectangle R for which $||X \cap R|-N \cdot \operatorname{area}(R)| \geq \Omega(\log N)$.

Discrepancy in graph theory

Theorem (Alon Chung, ' 88 "The expander mixing lemma")

Discrepancy in graph theory

Theorem (Alon Chung, ' 88 "The expander mixing lemma")
Let $G=(V, E)$ be an n-vertex d-regular graph, and let λ be the largest absolute value of a nontrivial eigenvalue of G 's adjacency matrix. Then for every $A, B \subset V$,

$$
\left|e(A, B)-\frac{d}{n}\right| A||B|| \leq \lambda \sqrt{|A||B|} .
$$

Discrepancy in high-dimensional permutations

Conjecture (NL and Zur Luria '15)

Discrepancy in high-dimensional permutations

Conjecture (NL and Zur Luria '15)
There exist order-N Latin squares such that for every $A, B, C \subseteq[N]$ there holds

$$
\left||L \cap(A \times B \times C)|-\frac{|A||B||C|}{N}\right| \leq O(\sqrt{|A||B \| C|}) .
$$

Discrepancy in high-dimensional permutations

Conjecture (NL and Zur Luria '15)
There exist order-N Latin squares such that for every $A, B, C \subseteq[N]$ there holds

$$
\left||L \cap(A \times B \times C)|-\frac{|A||B||C|}{N}\right| \leq O(\sqrt{|A||B \| C|}) .
$$

Moreover, this holds for almost every Latin square.

Discrepancy in high-dimensional permutations

It is interesting to restrict this conjecture to the case of empty boxes, i.e., deal with the case where $L \cap(A \times B \times C)=\emptyset$. The conjecture reads

Discrepancy in high-dimensional permutations

It is interesting to restrict this conjecture to the case of empty boxes, i.e., deal with the case where $L \cap(A \times B \times C)=\emptyset$. The conjecture reads
Conjecture
There exist order- N Latin squares in which every empty box has volume $O\left(N^{2}\right)$.

Discrepancy in high-dimensional permutations

It is interesting to restrict this conjecture to the case of empty boxes, i.e., deal with the case where $L \cap(A \times B \times C)=\emptyset$. The conjecture reads
Conjecture
There exist order- N Latin squares in which every empty box has volume $O\left(N^{2}\right)$. Moreover, this holds for almost every Latin square.

Discrepancy in high-dimensional permutations

It is interesting to restrict this conjecture to the case of empty boxes, i.e., deal with the case where $L \cap(A \times B \times C)=\emptyset$. The conjecture reads
Conjecture
There exist order- N Latin squares in which every empty box has volume $O\left(N^{2}\right)$. Moreover, this holds for almost every Latin square.
Note
Every Latin square has an empty box of volume $\Omega\left(N^{2}\right)$.

Discrepancy in high-dimensional permutations

Theorem (NL and Zur Luria)

- There exist order- N Latin squares in which every empty box has volume $O\left(N^{2}\right)$.

Discrepancy in high-dimensional permutations

Theorem (NL and Zur Luria)

- There exist order- N Latin squares in which every empty box has volume $O\left(N^{2}\right)$.
- In almost every order- N Latin squares all empty boxes have volume $O\left(N^{2} \log ^{2} N\right)$.

Discrepancy in high-dimensional permutations

Can we explicitly construct such Latin squares?

Discrepancy in high-dimensional permutations

Can we explicitly construct such Latin squares? The multiplication table of a finite group is a Latin square.

Discrepancy in high-dimensional permutations

Can we explicitly construct such Latin squares? The multiplication table of a finite group is a Latin square. However,
Theorem (Kedlaya '95)
The Latin square of every order- N group contains an empty box of volume $\geq \Omega\left(N^{2.357 . . .}\right)$ (this exponent is $\frac{33}{14}$).

Discrepancy in high-dimensional permutations

Can we explicitly construct such Latin squares? The multiplication table of a finite group is a Latin square. However,

Theorem (Kedlaya '95)

The Latin square of every order- N group contains an empty box of volume $\geq \Omega\left(N^{2.357 . \ldots}\right)$ (this exponent is $\frac{33}{14}$).
This line of work was started by Babai-Sos.

Discrepancy in high-dimensional permutations

Can we explicitly construct such Latin squares? The multiplication table of a finite group is a Latin square. However,

Theorem (Kedlaya '95)

The Latin square of every order- N group contains an empty box of volume $\geq \Omega\left(N^{2.357 . \ldots}\right)$ (this exponent is $\frac{33}{14}$).
This line of work was started by Babai-Sos. There exist groups where all empty boxes have volume $N^{8 / 3}$ (Gowers).

Discrepancy in high-dimensional permutations

Theorem (NL and Zur Luria)

- There exist order- N Latin squares in which every empty box has volume $O\left(N^{2}\right)$.
- In almost every order- N Latin squares all empty boxes have volume $O\left(N^{2} \log ^{2} N\right)$.

A word about the proof

We construct Latin squares with no large empty boxes using Keevash's construction of Steiner systems.

A word about the proof

We construct Latin squares with no large empty boxes using Keevash's construction of Steiner systems.

- To every Steiner triple system X we associate a Latin square L where $\{i, j, k\} \in X$ implies $L(i, j, k)=\ldots=L(k, j, i)=1$ (six terms). Also, for all i, let $L(i, i, i)=1$.

A word about the proof

We construct Latin squares with no large empty boxes using Keevash's construction of Steiner systems.

- To every Steiner triple system X we associate a Latin square L where $\{i, j, k\} \in X$ implies $L(i, j, k)=\ldots=L(k, j, i)=1$ (six terms). Also, for all i, let $L(i, i, i)=1$.
- Keevash's method starts with a random greedy choice of triples. His main argument shows that whp this triple system can be completed to an STS. We show that this initial phase suffices to hit all boxes of volume above Cn^{2}.

A word about the proof

Why is it that in almost every order- N Latin squares all empty boxes have volume $O\left(N^{2} \log ^{2} N\right)$?

A word about the proof

Why is it that in almost every order- N Latin squares all empty boxes have volume $O\left(N^{2} \log ^{2} N\right)$? Fix a box $A \times B \times C$ and note that the probability that it is empty in a random Latin square is:

A word about the proof

Why is it that in almost every order- N Latin squares all empty boxes have volume $O\left(N^{2} \log ^{2} N\right)$? Fix a box $A \times B \times C$ and note that the probability that it is empty in a random Latin square is:

$$
\frac{\operatorname{per}_{d} X}{\left|\mathcal{L}_{\mathrm{n}}\right|}
$$

where X is the $n \times n \times n$ array whose entries are zero in $A \times B \times C$ and one otherwise.

A word about the proof

Why is it that in almost every order- N Latin squares all empty boxes have volume $O\left(N^{2} \log ^{2} N\right)$?
Fix a box $A \times B \times C$ and note that the probability that it is empty in a random Latin square is:

$$
\frac{\operatorname{per}_{d} X}{\left|\mathcal{L}_{\mathrm{n}}\right|}
$$

where X is the $n \times n \times n$ array whose entries are zero in $A \times B \times C$ and one otherwise. Our Brégman-type upper bound on per $_{d} X$ yields the conclusion fairly straightforwardly.

Late breaking news

Theorem (Kwan and Sudakov)
The above conjecture holds, provided we increase the upper bound to $O\left(\log n \cdot \sqrt{|A||B||C|}+n \log ^{2} n\right)$.

Late breaking news

Theorem (Kwan and Sudakov)
The above conjecture holds, provided we increase the upper bound to $O\left(\log n \cdot \sqrt{|A||B||C|}+n \log ^{2} n\right)$.

Wonderful!

Late breaking news

Theorem (Kwan and Sudakov)
The above conjecture holds, provided we increase the upper bound to $O\left(\log n \cdot \sqrt{|A||B||C|}+n \log ^{2} n\right)$.

Wonderful! But now we want more....

Refining our questions on small discrepancy

In view of the progress made by Kwan and Sudakov we can ask more daring questions:

Refining our questions on small discrepancy

In view of the progress made by Kwan and Sudakov we can ask more daring questions:
A one factorization of the complete graph K_{n} (for even n) can be viewed as a Latin square that is symmetric and has n 's on the main diagonal. We can now ask questions such as:

Refining our questions on small discrepancy

In view of the progress made by Kwan and Sudakov we can ask more daring questions:
A one factorization of the complete graph K_{n} (for even n) can be viewed as a Latin square that is symmetric and has n's on the main diagonal. We can now ask questions such as:
Open Problem
Do there exist one-factorizations in which the union of any d (perhaps even $d=d(n)$?) color classes is a Ramanujan graph?

Many questions remain open....

- Find the asymptotic number of high-dimensional permutations.

Many questions remain open....

- Find the asymptotic number of high-dimensional permutations.
- Do Birkhoff von-Neumann in higher dimensions.

Many questions remain open....

- Find the asymptotic number of high-dimensional permutations.
- Do Birkhoff von-Neumann in higher dimensions.
- Settle the strong discrepancy and sparsity problems.

Many questions remain open....

- Find the asymptotic number of high-dimensional permutations.
- Do Birkhoff von-Neumann in higher dimensions.
- Settle the strong discrepancy and sparsity problems.
- Find explicit constructions of low-discrepancy high-dimensional permutations.

Many questions remain open....

- Find the asymptotic number of high-dimensional permutations.
- Do Birkhoff von-Neumann in higher dimensions.
- Settle the strong discrepancy and sparsity problems.
- Find explicit constructions of low-discrepancy high-dimensional permutations.
- Find how to sample high-dimensional permutations and determine their typical behavior.

