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What are high dimensional permutations?

A permutation can be encoded by means of a
permutation matrix. As we all know, this is an
n × n array of zeros and ones in which every line
contains exactly one 1-entry.
A line here means either a row or a column.
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A notion of high dimensional permutations

This suggests the following definition of a
d-dimensional permutation on [n].

It is an array [n]× [n]× . . .× [n] = [n]d+1 (with
d + 1 factors) of zeros and ones in which every line
contains exactly one 1-entry.
Whereas a matrix has two kinds of lines, namely
rows and columns, now there are d + 1 kinds of
lines.
A line is a set of n entries in the array that are
obtained by fixing d out of the d + 1 coordinates
and the letting the remaining coordinate take all
values from 1 to n.
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The case d = 2. A familiar face?

According to our definition, a 2-dimensional
permutation on [n] is an [n]× [n]× [n] array of
zeros and ones in which every row, every column,
and every shaft contains exactly one 1-entry.

An equivalent description can be achieved by using
a topographical map of this terrain.
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The two-dimensional case

Rather that an [n]× [n]× [n] array of zeros and
ones we can now consider an [n]× [n] array with
entries from [n], as follows:

The (i , j) entry in this
array is k where k is the ”height above the ground”
of the unique 1-entry in the shaft (i , j , ∗).
It is easily verified that the defining condition is that
in this array every row and every column contains
every entry n ≥ i ≥ 1 exactly once.
In other words: Two-dimensional permutations are
synonymous with Latin Squares.
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Where do we go from here?

We seek high-dimensional counterparts of known
phenomena in (”classical” = ”one-dimensional”)
permutations.

Specifically, we wish to:

I Enummerate d-dimensional permutations.

I Find how to generate them randomly and
efficiently and describe their typical behavior.

I Investigate analogs of the Birkhoff
von-Neumann Theorem on doubly stochastic
matrices.
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... and more and more and more....

I Of Erdős-Szekeres.

Of the solution to Ulam’s
Problem.

I Find out how small their discrepancy can be.

I Use low-discrepancy permutations to construct
high-dimensional expanders.
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I Of Erdős-Szekeres. Of the solution to Ulam’s
Problem.

I Find out how small their discrepancy can be.

I Use low-discrepancy permutations to construct
high-dimensional expanders.

Nati Linial High-dimensional permutations and discrepancy



... and more and more and more....
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Erdős-Szekeres for high-dimensional
permutations, and a word on Ulam’s
problem

Theorem (NL+Michael Simkin)

Every d-dimensional permutation has a monotone
subsequence of length Ωd(

√
n). The bound is tight

up to the implicit coefficient.
In almost every d-dimensional permutation the
length of the longest monotone subsequence is

Θd(n
d

d+1 ).
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The count - An interesting numerology

As we all know (Stirling’s formula)

n! =
(

(1 + o(1))
n

e

)n

As van Lint and Wilson showed, the number of
order-n Latin squares is

|Ln| =
(

(1 + o(1))
n

e2

)n2
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So, let us conecture

Conjecture
The number of d-dimensional permutations on [n] is

|Sd
n | =

(
(1 + o(1))

n

ed

)nd
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and what we actually know

At present we can only prove the upper bound

Theorem (NL, Zur Luria ’14)
The number of d-dimensional permutations on [n] is

|Sd
n | ≤

(
(1 + o(1))

n

ed

)nd
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How van Lint and Wilson enumerated
Latin Squares

Recall that the permanent of a square matrix is a
”determinant without signs”.

per(A) =
∑
σ∈Sn

∏
ai ,σ(i)
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This is a curious and fascinating object. E.g.

I It counts perfect matchings in bipartite graphs.

I In other words, it counts the generalized
diagonals included in a 0/1 matrix.

I It is #-P-hard to calculate the permanent
exactly, even for a 0/1 matrix.

I On the other hand, there is an efficient
approximation scheme for permanents of
nonnegative matrices.

I The most important open problem in algebraic
computational complexity is to separate
permanents from determinants.
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A lower bound on the permanent

We say that A is a doubly stochastic matrix
provided that

I Its entries are nonnegative.

I The sum of entries in every row is 1.

I The sum of entries in every column is 1.
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What is min per A over n × n doubly-stochastic
matrices?

As conjectured by van der Waerden in the
20’s and proved over 50 years later, in the
minimizing matrix all entries are 1

n .

Theorem (Falikman; Egorichev ’80-81)
The permanent of every n × n doubly stochastic
matrix is ≥ n!

nn .
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An upper bound on permanents

The following was conjectured by Minc

Theorem (Brégman ’73)
Let A be an n × n 0/1 matrix with ri ones in the
i-th row i = 1, . . . , n. Then per A ≤

∏
i(ri !)

1/ri .
The bound is tight.
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How we proved the upper bound on the
number of d -dimensional permutations

Our proof can be viewed as an extension of the
Minc-Brégman theorem. Specifically, we use ideas
from papers of Schrijver and Radhakrishnan
elaborating on Brégman’s proof.

This gave us an upper bound on the number of
d-dimensional permutations.
What about a matching lower bound?
The analog of the van der Waerden conjecture fails
in higher dimension
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Don’t panic

In a recent breakthrough P. Keevash solved a
160-years old problem and showed the existence of
combinatorial designs.

His work yields as well the tight lower bound on
|Ln|.
It is conceivable that an appropriate adaptation of
his method will prove the tight lower bound in all
dimensions.
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Approximately counting Latin squares

The general scheme: We consider a Latin square (=
a 2-dimensional permutation) A, layer by layer.

Namely, A is an n × n × n array of 0/1 where every
line has a single 1 entry.
Note that every layer in A is a permutation matrix.
Given several layers in A, how many permutation
matrices can play the role of the next layer?
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How many choices for the next layer?

Let B be a 0/1 matrix where bij = 1 iff in all
previous layers the ij entry is zero.

The set of all possible next layers coincides with the
collection of generalized diagonals in B . Therefore,
there are exactly perB possibilities for the next layer.
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How many choices for the next layer?

To estimate the number of Latin squares we bound
at each step the number of possibilities for the next
layer (=perB) from above and from below using
Minc-Brégman and van der Waerden, respectively.

Repeat....
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Our high-dim Minc-Brégman Theorem

Definition
Denote by perd(A) the number of d-dimensional
permutations contained in A, an [n]d+1 array of 0/1.

For d = 1 this reduces to the usual permanent.

Theorem

perd(A) ≤
∏
i

exp(f (d , ri)),

where ri is the number of 1’s in the line li. (All lines
in some specific direction).
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Our high-dimensional Minc-Brégman
Theorem (contd.)

We define f (d , r) via f (0, r) = log r , and

f (d , r) =
1

r

∑
k=1,...,r

f (d − 1, k).

Note that f (1, r) = log(r !)
r and we recover Brégman’s

inequality.

In general

f (d , r) = log r − d + Od(
logd r

r
)

Nati Linial High-dimensional permutations and discrepancy



Our high-dimensional Minc-Brégman
Theorem (contd.)

We define f (d , r) via f (0, r) = log r , and

f (d , r) =
1

r

∑
k=1,...,r

f (d − 1, k).

Note that f (1, r) = log(r !)
r and we recover Brégman’s

inequality. In general

f (d , r) = log r − d + Od(
logd r

r
)

Nati Linial High-dimensional permutations and discrepancy



Discrepancy and high-dimensional
expansion

There is much ongoing research seeking
high-dimensional expanders.

Many beautiful results
were already found, but I believe that the right
definition is still missing. It should be based on the
structure of random objects and the notions of
regularity, small discrepancy and sparsity.
High-dimensional permutations have something
interesting to offer here. If yo want to learn about
Discrepancy, the best place to go in Jirka’s beautiful
book.
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A little background - An example of
discrepancy in geometry

Theorem (van Aardenne-Ehrenfest ’45,

Schmidt ’75)

I There is a set of N points X ⊂ [0, 1]2, s.t.
||X ∩ R | − N · area(R)| ≤ O(log N) for every
axis-parallel rectangle R ⊆ [0, 1]2.

I On the other hand, for every set of N points
X ⊂ [0, 1]2 there is an axis-parallel rectangle R
for which ||X ∩ R | − N · area(R)| ≥ Ω(log N).
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X ⊂ [0, 1]2 there is an axis-parallel rectangle R
for which ||X ∩ R | − N · area(R)| ≥ Ω(log N).
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Discrepancy in graph theory

Theorem (Alon Chung, ’88 ”The expander

mixing lemma”)

Let G = (V ,E ) be an n-vertex d-regular graph, and
let λ be the largest absolute value of a nontrivial
eigenvalue of G ’s adjacency matrix. Then for every
A,B ⊂ V ,∣∣∣∣e(A,B)− d

n
|A||B |

∣∣∣∣ ≤ λ
√
|A||B |.
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Discrepancy in high-dimensional
permutations

Conjecture (NL and Zur Luria ’15)

There exist order-N Latin squares such that for
every A,B ,C ⊆ [N] there holds∣∣∣∣|L ∩ (A× B × C )| − |A||B ||C |

N

∣∣∣∣ ≤ O(
√
|A||B ||C |).

Moreover, this holds for almost every Latin square.
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Discrepancy in high-dimensional
permutations

It is interesting to restrict this conjecture to the
case of empty boxes, i.e., deal with the case where
L ∩ (A× B × C ) = ∅. The conjecture reads

Conjecture
There exist order-N Latin squares in which every
empty box has volume O(N2). Moreover, this
holds for almost every Latin square.

Note
Every Latin square has an empty box of volume
Ω(N2).
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Discrepancy in high-dimensional
permutations

Theorem (NL and Zur Luria)

I There exist order-N Latin squares in which
every empty box has volume O(N2).

I In almost every order-N Latin squares all empty
boxes have volume O(N2 log2 N).
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Discrepancy in high-dimensional
permutations

Can we explicitly construct such Latin squares?

The
multiplication table of a finite group is a Latin
square. However,

Theorem (Kedlaya ’95)
The Latin square of every order-N group contains
an empty box of volume ≥ Ω(N2.357...) (this
exponent is 33

14).

This line of work was started by Babai-Sos. There
exist groups where all empty boxes have volume
N8/3 (Gowers).
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Discrepancy in high-dimensional
permutations

Theorem (NL and Zur Luria)

I There exist order-N Latin squares in which
every empty box has volume O(N2).
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boxes have volume O(N2 log2 N).
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A word about the proof

We construct Latin squares with no large empty
boxes using Keevash’s construction of Steiner
systems.

I To every Steiner triple system X we associate a
Latin square L where {i , j , k} ∈ X implies
L(i , j , k) = . . . = L(k , j , i) = 1 (six terms).
Also, for all i , let L(i , i , i) = 1.

I Keevash’s method starts with a random greedy
choice of triples. His main argument shows
that whp this triple system can be completed
to an STS. We show that this initial phase
suffices to hit all boxes of volume above Cn2.
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A word about the proof

Why is it that in almost every order-N Latin squares
all empty boxes have volume O(N2 log2 N)?

Fix a box A× B × C and note that the probability
that it is empty in a random Latin square is:

perdX

|Ln|

where X is the n × n × n array whose entries are
zero in A× B × C and one otherwise. Our
Brégman-type upper bound on perdX yields the
conclusion fairly straightforwardly.
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Late breaking news

Theorem (Kwan and Sudakov)
The above conjecture holds, provided we increase
the upper bound to O(log n ·

√
|A||B ||C |+ n log2 n).

Wonderful! But now we want more....
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Refining our questions on small
discrepancy

In view of the progress made by Kwan and Sudakov
we can ask more daring questions:

A one factorization of the complete graph Kn (for
even n) can be viewed as a Latin square that is
symmetric and has n’s on the main diagonal. We
can now ask questions such as:

Open Problem
Do there exist one-factorizations in which the union
of any d (perhaps even d = d(n)?) color classes is
a Ramanujan graph?
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Many questions remain open....

I Find the asymptotic number of
high-dimensional permutations.

I Do Birkhoff von-Neumann in higher
dimensions.

I Settle the strong discrepancy and sparsity
problems.

I Find explicit constructions of low-discrepancy
high-dimensional permutations.

I Find how to sample high-dimensional
permutations and determine their typical
behavior.
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