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The push&pull rumour spreading protocol
[Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,

Terry, Woods’87]

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumour to a random
neighbour (PUSH);
and every uninformed vertex queries a random neighbour
about the rumour (PULL).













Some known results

Has lots of applications in distributed computing.

Spread Time: the first time everyone knows the rumour,
assuming the worst starting vertex.

Some examples

X A star graph has spread time 2.

X A.a.s. an n-vertex path has spread time Θ(n).

X A.a.s. an n-vertex complete graph has spread time
(1+ o(1)) log3(n) [Karp,Schindelhauer,Shenker,Vöcking’00]

X Many random graph models have been analyzed, including
Erdős-Rényi model, random regular graphs, random
geometric graphs, Barabási-Albert model, Chung-Lu
model. In all of them spread time is Θ(diameter).

X For a survey, see “On the push&pull rumour spreading
protocol,” [Acan, Collevecchio, Mehrabian, Wormald’15]
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Connections with the diameter

X Clearly, spread time ≥ diameter

X Easy to see a.a.s. spread time ≤ 6∆ (diameter + logn)
[Feige,Peleg,Raghavan,Upfal’90]

X In a (vertex-wise) expander graph, a.a.s.
spread time ≤ C log2 n ≤ C log2 n× diameter [Giakkoupis’14]

Question: is there a graph with tiny diameter and huge spread time?
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Our main contribution

is to show that a certain model for complex networks
has polylogarithmic diameter but polynomial spread time
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Spatial Preferential Attachment (SPA) model

Evolving model for generating random directed graphs
Introduced by Aiello, Bonato, Cooper, Janssen, and Prałat’08.

X Parameters A1,A2 > 0.

X Vertices are embedded uniformly at random in [0, 1]d .

X At a given time t , each vertex v has a sphere of influence
S(v , t) centered at v with volume

volS(v , t) =
A1 × in-deg(v , t) +A2

t

X In each time-step a new vertex is born.

X The new vertex links to an existing vertex v if it falls
within the sphere of influence of v .
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Implicit preferential attachment

The positions of the vertices are uniformly random,
the space has volume 1, so the probability that v receives a link
at time t is

volS(v , t)
1

=
A1 × in-deg(v , t) +A2

t

X Rich get richer: with every link v receives, its sphere of
influence grows and thus its link probability increases.

X At time t , our graph contains a random geometric graph
with t vertices and radius cd(A2/t)1/d .

X Original model has parameter p, we consider p = 1 only.
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SPA model: example in 2D

5000 vertices, A1 = A2 = 1 [Cooper,Frieze,Prałat’14]



Known results

X Power law degree distribution. If A1 < 1, the in-degree
distribution has a power law tail with exponent 1+ 1

A1

[Aiello,Bonato,Cooper,Janssen,Prałat’08]

X Sparse graph. If A1 < 1, a.a.s. the average out-degree is
A2

1−A1
[Aiello,Bonato,Cooper,Janssen,Prałat’08]

X Small world. A.a.s. any directed geodesic path has length
O(logn) [Cooper,Frieze,Prałat’14]

X Good clustering

X Large maximum degree. A.a.s. maximum total degree is
nΩ(1) [Aiello,Bonato,Cooper,Janssen,Prałat’08]

X Not an expander. A.a.s. the minimum bisection has size
o(n) [Cooper,Frieze,Prałat’14]
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Our results

Consider the giant component of the undirected underlying
graph generated by the SPA model;

Theorem (upper bound for the diameter)
If A2 is sufficiently large, a.a.s. the graph has diameter
O(log2 n).

Note: Result of Cooper-Frieze-Prałat does not apply, as they consider
directed paths only.

Theorem (lower bound for rumour spreading)
A.a.s. it takes nΩ(1) rounds to spread the rumour.





Proof sketch of the upper bound for diameter

Say n is a power of 2

1. Gt := subgraph induced by first t vertices
2. Since A2 is large, Gn ,Gn/2, . . . ,G1 have giant components

3. Idea: find a path of length O(logn) from arbitrary vertex v
in giant of Gn to some vertex in giant of Gn/2, and iterate.

� Gn/2 contains a random geometric graph.
� By known results on RGG’s, any point not in the giant of
Gn/2 is within logn/

√
n Euclidean distance to some vertex

in the giant of Gn/2. [Ganesan’13]
log n/

√
n

log n/
√
n
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Proof sketch of the upper bound for diameter

Say n is a power of 2

1. Gt := subgraph induced by first t vertices

2. Since A2 is large, Gn ,Gn/2, . . . ,G1 have giant components

3. Idea: find a path of length O(logn) from arbitrary vertex v
in giant of Gn to some vertex in giant of Gn/2, and iterate.

� Gn/2 contains a random geometric graph.
� By known results on RGG’s, any point not in the giant of
Gn/2 is within logn/

√
n Euclidean distance to some vertex

in the giant of Gn/2. [Ganesan’13]
� By known results on stretch factor of RGG’s, this leads to a

path of length O(logn) from v to some vertex in the giant
of Gn/2. [Bradonjic, Elsasser, Friedrich, Sauerwald, Stauffer’13]



Upper bound for diameter (the catch)

Gn ⊇
n⋃
i=1

Ri ,

where each Ri is a RGG.
We showed diameter of giant of

⋃n
i=1 Ri = O(log2 n).

diameter of giant(
⋃n
i=1Ri) = 1 diameter of giant(Gn) = 3
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Upper bound for diameter (the catch)

Gn ⊇
n⋃
i=1

Ri ,

where each Ri is a RGG. We showed diameter of giant of⋃n
i=1 Ri = O(log2 n).

By [Penrose’03], 99% of vertices lie in the giant.

Theorem (Janssen, M’15)
In the SPA model graph with p = 1 and A2 sufficiently
large, a.a.s. 99% of vertices are within distance O(log2 n) of
each other, in dimension 2.

Further questions. . .



Proof sketch of the lower bound for rumour spreading

1. Categorize the edges into short and long, and prove that
no long edge is used during the first nO(1) rounds.

2. Vertices that are born late, have small spheres of influence

volS(v , t) =
A1 × in-deg(v , t) +A2

t

so no incident long edges anyway.

3. Vertices that are born early, accumulate a lot of neighbours,
so the proportion of long incident edges is pretty small,
so they tend not to send the rumour along such edges.

Proof technique: Old and new concentration inequalities for
vertices’ degrees.
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Wrap up

Consider the giant component of the undirected underlying
graph generated by the SPA model

Theorem (Janssen, M’15)
If p = 1 and A2 is sufficiently large, a.a.s. 99% of vertices
are within distance O(log2 n) of each other, in dimension 2.

Theorem (Janssen, M’15)
Suppose pA1 < 1. If rumour starts from a random vertex,
a.a.s. after nα rounds, number of informed vertices is o(n).
α = pA1(1−pA1)

(3+pA1)×dimension+1−pA1


