Log-correlated Gaussian fields and linear statistics of β-ensembles

Christian Webb
Aalto University, Finland

Beta Ensembles: Universality, Integrability, and Asymptotics April 12, 2016

Outline of the talk

- What are log-correlated Gaussian fields?
- Examples of log-correlated fields in RMT.
- Connection between log-correlated fields in RMT and CLTs for linear statistics.
- A sketch of a proof for a CLT for the circular β-ensemble.

What is a log-correlated Gaussian field?

Basically a centered Gaussian process $X(x)$ on a subset of \mathbb{R}^{d} with a logarithmic singularity in its covariance:

$$
\mathbb{E} X(x) X(y) \sim-\log |x-y|, \quad \text { as } \quad x \rightarrow y
$$

Doesn't make sense as an honest random function.

Examples of log-correlated fields

- Let $A_{k} \sim N_{\mathbb{C}}(0,1)$ be i.i.d. and

$$
X(\theta)=\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}\left[A_{k} e^{i k \theta}+A_{k}^{*} e^{-i k \theta}\right]
$$

Then formally $\mathbb{E} X(\theta) X\left(\theta^{\prime}\right)=-\frac{1}{2} \log \left|e^{i \theta}-e^{i \theta^{\prime}}\right|$.

Examples of log-correlated fields

- Let $A_{k} \sim N_{\mathbb{C}}(0,1)$ be i.i.d. and

$$
X(\theta)=\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}\left[A_{k} e^{i k \theta}+A_{k}^{*} e^{-i k \theta}\right]
$$

Then formally $\mathbb{E} X(\theta) X\left(\theta^{\prime}\right)=-\frac{1}{2} \log \left|e^{i \theta}-e^{i \theta^{\prime}}\right|$.

- Let $B_{k} \sim N(0,1)$ be i.i.d. and for $x \in(-1,1)$

$$
Y(x)=\sum_{k=1}^{\infty} \sqrt{\frac{1}{k}} B_{k} T_{k}(x)
$$

where $T_{k}(\cos \theta)=\cos k \theta$ (Chebyshev polynomial). Then formally $\mathbb{E} Y(x) Y(y)=-\frac{1}{2} \log (2|x-y|)$.

Examples of log-correlated fields

- Let $C_{k} \sim N(0,1)$ be i.i.d., $D \subset \mathbb{R}^{2}$ nice enough, and $\Delta \phi_{k}=-\lambda_{k} \phi_{k}$ on D with zero Dirichlet boundary conditions. Then define the GFF:

$$
Z(x)=\sum_{k=1}^{\infty} \frac{C_{k}}{\sqrt{\lambda_{k}}} \phi_{k}(x)
$$

Again formally $\mathbb{E} Z(x) Z(y)=G_{D}(x, y) \sim-\log |x-y|$ as $x \rightarrow y$.

Examples of log-correlated fields

- Let $C_{k} \sim N(0,1)$ be i.i.d., $D \subset \mathbb{R}^{2}$ nice enough, and $\Delta \phi_{k}=-\lambda_{k} \phi_{k}$ on D with zero Dirichlet boundary conditions. Then define the GFF:

$$
Z(x)=\sum_{k=1}^{\infty} \frac{C_{k}}{\sqrt{\lambda_{k}}} \phi_{k}(x)
$$

Again formally $\mathbb{E} Z(x) Z(y)=G_{D}(x, y) \sim-\log |x-y|$ as $x \rightarrow y$.
All of these series converge almost surely in suitable spaces of generalized functions (e.g. Sobolev spaces) and one can make precise sense of everything above.

Why care about log-correlated fields?

- Universal objects - show up as asymptotic fluctuations in various models: RMT, growth models, combinatorial models, number theory, lattice models, ...

Why care about log-correlated fields?

- Universal objects - show up as asymptotic fluctuations in various models: RMT, growth models, combinatorial models, number theory, lattice models, ...
- Play a critical role in the mathematics of 2-d quantum gravity (Liouville quantum gravity) - conjectured to be related to a suitable scaling limit of random planar maps.

Why care about log-correlated fields?

- Universal objects - show up as asymptotic fluctuations in various models: RMT, growth models, combinatorial models, number theory, lattice models, ...
- Play a critical role in the mathematics of 2-d quantum gravity (Liouville quantum gravity) - conjectured to be related to a suitable scaling limit of random planar maps.
- Can be used to construct conformally invariant random planar curves (SLE type objects).

Characteristic polynomial of the CUE

Let $U_{N} \sim \operatorname{CUE}(N)$, and

$$
\begin{aligned}
X_{N}(\theta) & =\log \left|\operatorname{det}\left(I-e^{-i \theta} U_{N}\right)\right| \\
& =-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}\left[e^{-i k \theta} \frac{\operatorname{Tr} U_{N}^{k}}{\sqrt{k}}+e^{i k \theta} \frac{\operatorname{Tr} U_{N}^{-k}}{\sqrt{k}}\right] .
\end{aligned}
$$

Characteristic polynomial of the CUE

Let $U_{N} \sim \operatorname{CUE}(N)$, and

$$
\begin{aligned}
X_{N}(\theta) & =\log \left|\operatorname{det}\left(I-e^{-i \theta} U_{N}\right)\right| \\
& =-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}\left[e^{-i k \theta} \frac{\operatorname{Tr} U_{N}^{k}}{\sqrt{k}}+e^{i k \theta} \frac{\operatorname{Tr} U_{N}^{-k}}{\sqrt{k}}\right] .
\end{aligned}
$$

Theorem (Diaconis and Shahshahani '94)
For any fixed $K,\left(\operatorname{Tr} U_{N}^{k} / \sqrt{k}\right)_{k=1}^{K} \xrightarrow{d}\left(A_{k}\right)_{k=1}^{K}$, where $A_{k} \sim N_{\mathbb{C}}(0,1)$ i.i.d..

Characteristic polynomial of the CUE

Let $U_{N} \sim \operatorname{CUE}(N)$, and

$$
\begin{aligned}
X_{N}(\theta) & =\log \left|\operatorname{det}\left(I-e^{-i \theta} U_{N}\right)\right| \\
& =-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}\left[e^{-i k \theta} \frac{\operatorname{Tr} U_{N}^{k}}{\sqrt{k}}+e^{i k \theta} \frac{\operatorname{Tr} U_{N}^{-k}}{\sqrt{k}}\right] .
\end{aligned}
$$

Theorem (Diaconis and Shahshahani '94)
For any fixed $K,\left(\operatorname{Tr} U_{N}^{k} / \sqrt{k}\right)_{k=1}^{K} \xrightarrow{d}\left(A_{k}\right)_{k=1}^{K}$, where $A_{k} \sim N_{\mathbb{C}}(0,1)$ i.i.d..
Thus (Hughes, Keating, and O^{\prime} Connell ' 01), $X_{N} \xrightarrow{d} X$ (in a suitable space).

Characteristic polynomial of the GUE

Let $H_{N} \sim \operatorname{GUE}(N)$ (with a suitable normalization). For $x \in(-1,1)$, on the event that $\sigma\left(H_{N}\right) \subset(-1,1)$, one has

$$
\begin{aligned}
Y_{N}(x) & =\log \left|\operatorname{det}\left(x I-H_{N}\right)\right| \\
& =-\sum_{k=1}^{\infty} \sqrt{\frac{1}{k}} T_{k}(x) \operatorname{Tr}\left[\frac{2}{\sqrt{k}} T_{k}\left(H_{N}\right)\right] .
\end{aligned}
$$

Characteristic polynomial of the GUE

Let $H_{N} \sim \operatorname{GUE}(N)$ (with a suitable normalization). For $x \in(-1,1)$, on the event that $\sigma\left(H_{N}\right) \subset(-1,1)$, one has

$$
\begin{aligned}
Y_{N}(x) & =\log \left|\operatorname{det}\left(x I-H_{N}\right)\right| \\
& =-\sum_{k=1}^{\infty} \sqrt{\frac{1}{k}} T_{k}(x) \operatorname{Tr}\left[\frac{2}{\sqrt{k}} T_{k}\left(H_{N}\right)\right] .
\end{aligned}
$$

Theorem (Johansson '98)

After centering, the random variables $\operatorname{Tr}\left[\frac{2}{\sqrt{k}} T_{k}\left(H_{N}\right)\right]$ converge jointly in law to i.i.d. standard Gaussians for $k \leq K$ fixed.

Characteristic polynomial of the GUE

Let $H_{N} \sim \operatorname{GUE}(N)$ (with a suitable normalization). For $x \in(-1,1)$, on the event that $\sigma\left(H_{N}\right) \subset(-1,1)$, one has

$$
\begin{aligned}
Y_{N}(x) & =\log \left|\operatorname{det}\left(x \mid-H_{N}\right)\right| \\
& =-\sum_{k=1}^{\infty} \sqrt{\frac{1}{k}} T_{k}(x) \operatorname{Tr}\left[\frac{2}{\sqrt{k}} T_{k}\left(H_{N}\right)\right] .
\end{aligned}
$$

Theorem (Johansson '98)

After centering, the random variables $\operatorname{Tr}\left[\frac{2}{\sqrt{k}} T_{k}\left(H_{N}\right)\right]$ converge jointly in law to i.i.d. standard Gaussians for $k \leq K$ fixed.

Fyodorov, Khoruzhenko, and Simm '13: $Y_{N}(x)-\mathbb{E} Y_{N}(x) \xrightarrow{d} Y(x)$ (in a suitable space).

Characteristic polynomial of the Ginibre ensemble

Let $W_{N} \sim \operatorname{Ginibre}(N)$ (with a suitable normalization). For $|z|<1$, on the event that $\sigma\left(W_{N}\right) \subset \mathbb{U}:=\{|w|<1\}$,

$$
\begin{aligned}
Z_{N}(z) & =\log \left|\operatorname{det}\left(z I-W_{N}\right)\right| \\
& =-2 \pi \sum_{k=1}^{\infty} \frac{1}{\sqrt{\lambda_{k}}} \phi_{k}(z) \operatorname{Tr} \frac{\phi_{k}\left(W_{N}\right)}{\sqrt{\lambda_{k}}}-\operatorname{Re} \sum_{k=1}^{\infty} \frac{1}{k} \bar{z}^{k} \operatorname{Tr} W_{N}^{k} .
\end{aligned}
$$

Characteristic polynomial of the Ginibre ensemble

Theorem (Rider and Virág '06)

After centering, $\operatorname{Tr} f\left(W_{N}\right)$ converges in law to $N\left(0, \sigma^{2}\right)$,

$$
\sigma^{2}=\frac{1}{4 \pi} \int_{\mathbb{U}}|\nabla f|^{2}+\frac{1}{2} \sum_{k \in \mathbb{Z}}|k||\widehat{f}(k)|^{2}
$$

Characteristic polynomial of the Ginibre ensemble

Theorem (Rider and Virág '06)

After centering, $\operatorname{Tr} f\left(W_{N}\right)$ converges in law to $N\left(0, \sigma^{2}\right)$,

$$
\sigma^{2}=\frac{1}{4 \pi} \int_{\mathbb{U}}|\nabla f|^{2}+\frac{1}{2} \sum_{k \in \mathbb{Z}}|k||\widehat{f}(k)|^{2}
$$

From this, after centering, Z_{N} converges in law (in a suitable space) to \tilde{Z} with covariance

$$
\mathbb{E} \tilde{Z}(z) \widetilde{Z}(w)=-\frac{1}{2} \log |z-w|
$$

The eigenvalue counting function for the GUE

For $H_{N} \sim G U E(N)$ (normalized as before) and

$$
\widetilde{X}_{N}(x)=\operatorname{Im} \log \operatorname{det}\left(x I-H_{N}\right)=\pi \sum_{j=1}^{N} \mathbf{1}\left(x<\lambda_{j}\right)
$$

The eigenvalue counting function for the GUE

For $H_{N} \sim G U E(N)$ (normalized as before) and

$$
\widetilde{X}_{N}(x)=I m \log \operatorname{det}\left(x I-H_{N}\right)=\pi \sum_{j=1}^{N} \mathbf{1}\left(x<\lambda_{j}\right)
$$

As

$$
\int \widetilde{X}_{N}(x) f^{\prime}(x) d x=\pi \sum_{j=1}^{N} f\left(\lambda_{j}\right)
$$

the CLT implies again that after centering, in the bulk of the spectrum, \widetilde{X}_{N} converges to a log-correlated field \widetilde{X}.

The eigenvalue fluctuation field for the GUE

- Idea: look at $\lambda_{j}-\mathbb{E} \lambda_{j}$ "globally".

The eigenvalue fluctuation field for the GUE

- Idea: look at $\lambda_{j}-\mathbb{E} \lambda_{j}$ "globally".
- Let γ_{j} be the classical locations: for $\sigma(y)=\frac{2}{\pi} \sqrt{1-y^{2}}$

$$
\int_{-1}^{\gamma_{j}} \sigma(x) d x=\frac{j}{N}
$$

The eigenvalue fluctuation field for the GUE

- Idea: look at $\lambda_{j}-\mathbb{E} \lambda_{j}$ "globally".
- Let γ_{j} be the classical locations: for $\sigma(y)=\frac{2}{\pi} \sqrt{1-y^{2}}$

$$
\int_{-1}^{\gamma_{j}} \sigma(x) d x=\frac{j}{N}
$$

- Then define the "fluctuation field": for $x \in\left(\gamma_{j-1}, \gamma_{j}\right]$,

$$
\widetilde{Y}_{N}(x)=N \sigma\left(\gamma_{j}\right)\left[\lambda_{j}-N \int_{\gamma_{j-1}}^{\gamma_{j}} y \sigma(y) d y\right] .
$$

The eigenvalue fluctuation field for the GUE

The eigenvalue fluctuation field for the GUE

One can then show that

$$
\int \widetilde{Y}_{N}(x) f^{\prime}(x)=\sum_{j=1}^{N}\left[f\left(\lambda_{j}\right)-\mathbb{E} f\left(\lambda_{j}\right)\right]+\text { error }
$$

which implies $Y_{N} \rightarrow c \widetilde{X}$ in a suitable sense (for some constant $c>0$).

The eigenvalue fluctuation field for the GUE

One can then show that

$$
\int \widetilde{Y}_{N}(x) f^{\prime}(x)=\sum_{j=1}^{N}\left[f\left(\lambda_{j}\right)-\mathbb{E} f\left(\lambda_{j}\right)\right]+\text { error }
$$

which implies $Y_{N} \rightarrow c \widetilde{X}$ in a suitable sense (for some constant $c>0$). Moral of the story: CLTs equivalent to log-correlated fields describing global fluctuations.

Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the construction of SLE type curves through random measures of the form $e^{X(x)-\frac{1}{2} \mathbb{E} X(x)^{2}} d x$.

Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the construction of SLE type curves through random measures of the form $e^{X(x)-\frac{1}{2} \mathbb{E} X(x)^{2}} d x$.

Rigorously defined through a limiting procedure.

Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the construction of SLE type curves through random measures of the form $e^{X(x)-\frac{1}{2} \mathbb{E} X(x)^{2}} d x$.

Rigorously defined through a limiting procedure.

Theorem (W '14, Berestycki, W, Wong '16)

For small enough $\gamma>0, \frac{e^{\gamma X_{N}(\theta)}}{\mathbb{E} e^{\gamma X_{N}(\theta)}} d \theta$ (CUE) and $\frac{e^{\gamma \gamma_{N}(x)}}{\mathbb{E} e^{\gamma Y_{N}(x)}} d x$ (GUE) converge to chaos measures.

Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the construction of SLE type curves through random measures of the form $e^{X(x)-\frac{1}{2} \mathbb{E} X(x)^{2}} d x$.

Rigorously defined through a limiting procedure.

Theorem (W '14, Berestycki, W, Wong '16)

For small enough $\gamma>0, \frac{e^{\gamma X_{N}(\theta)}}{\mathbb{E} e^{\gamma X_{N}(\theta)}} d \theta$ (CUE) and $\frac{e^{\gamma \gamma_{N}(x)}}{\mathbb{E} e^{\gamma Y_{N}(x)}} d x$ (GUE) converge to chaos measures.

Proof through RHP estimates (due to Deift, Its, and Kraosvsky; and others).

Gaussian multiplicative chaos

Central limit theorems

- CLTs proven in great generality and with different methods for one-cut regular β-ensembles - even in the discrete case (Diaconis and Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virág; Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu and Paquette; Döbler and Stolz; Forrester and Witte; Jiang and Matsumoto; Borodin, Gorin, and Guionnet, ...).

Central limit theorems

- CLTs proven in great generality and with different methods for one-cut regular β-ensembles - even in the discrete case (Diaconis and Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virág; Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu and Paquette; Döbler and Stolz; Forrester and Witte; Jiang and Matsumoto; Borodin, Gorin, and Guionnet, ...).
- Log-correlated objects appearing generically in β-ensembles (though 2 d for $\beta \neq 2$ open?).

Central limit theorems

- CLTs proven in great generality and with different methods for one-cut regular β-ensembles - even in the discrete case (Diaconis and Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virág; Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu and Paquette; Döbler and Stolz; Forrester and Witte; Jiang and Matsumoto; Borodin, Gorin, and Guionnet,...).
- Log-correlated objects appearing generically in β-ensembles (though 2d for $\beta \neq 2$ open?).
- Chaos measures and behavior of the maximum of the fields universal?

Central limit theorems

- CLTs proven in great generality and with different methods for one-cut regular β-ensembles - even in the discrete case (Diaconis and Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virág; Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu and Paquette; Döbler and Stolz; Forrester and Witte; Jiang and Matsumoto; Borodin, Gorin, and Guionnet,...).
- Log-correlated objects appearing generically in β-ensembles (though 2d for $\beta \neq 2$ open?).
- Chaos measures and behavior of the maximum of the fields universal?
- I can't prove it, but the following came out of an attempt.

A Gaussian approximation result

- Assume that $W \sim N\left(0, \sigma^{2}\right)$ and W^{\prime} is a "small perturbation" of this preserving the law: $W^{\prime} \sim N\left(0, \sigma^{2}\right)$ and $\mathbb{E}\left(W W^{\prime}\right)=\sigma^{2}(1-\epsilon)$.

A Gaussian approximation result

- Assume that $W \sim N\left(0, \sigma^{2}\right)$ and W^{\prime} is a "small perturbation" of this preserving the law: $W^{\prime} \sim N\left(0, \sigma^{2}\right)$ and $\mathbb{E}\left(W W^{\prime}\right)=\sigma^{2}(1-\epsilon)$.
- Then one has

$$
\begin{align*}
& \mathbb{E}\left(W^{\prime}-W \mid W\right)=-\epsilon W \tag{1}\\
& \mathbb{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right]=2 \epsilon \sigma^{2}+\mathcal{O}\left(\epsilon^{2}\right) \tag{2}\\
& \mathbb{E}\left|W^{\prime}-W\right|^{3}=\mathcal{O}\left(\epsilon^{3 / 2}\right) \tag{3}
\end{align*}
$$

A Gaussian approximation result

- Assume that $W \sim N\left(0, \sigma^{2}\right)$ and W^{\prime} is a "small perturbation" of this preserving the law: $W^{\prime} \sim N\left(0, \sigma^{2}\right)$ and $\mathbb{E}\left(W W^{\prime}\right)=\sigma^{2}(1-\epsilon)$.
- Then one has

$$
\begin{align*}
& \mathbb{E}\left(W^{\prime}-W \mid W\right)=-\epsilon W \tag{1}\\
& \mathbb{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right]=2 \epsilon \sigma^{2}+\mathcal{O}\left(\epsilon^{2}\right) \tag{2}\\
& \mathbb{E}\left|W^{\prime}-W\right|^{3}=\mathcal{O}\left(\epsilon^{3 / 2}\right) \tag{3}
\end{align*}
$$

- Perhaps if this nearly holds, W is nearly Gaussian?

A Gaussian approximation result

Theorem (Meckes '09;Döbler and Stolz '11)

Assume: $\left(W, W_{t}\right) \in \mathbb{C}^{2 d}$ exchangeable, $Z \sim N_{\mathbb{C}}\left(0, I_{d \times d}\right), \exists$ deterministic $\Lambda \in \mathbb{C}^{d \times d}$ and $\Sigma \in \mathbb{C}^{d \times d}$ positive definite, and random $R \in \mathbb{C}^{d}$ and $S, T \in \mathbb{C}^{d \times d}$:

$$
\begin{gather*}
\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left(W_{t}-W \mid W\right)=-\Lambda W+R \tag{1}\\
\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left(\left(W_{t}-W\right)\left(W_{t}-W\right)^{*} \mid W\right)=2 \wedge \Sigma+S \tag{2}\\
\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left(\left(W_{t}-W\right)\left(W_{t}-W\right)^{T} \mid W\right)=T \tag{2'}\\
\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left|W_{t}-W\right|^{3}=0 . \tag{3}\\
\Rightarrow d(W, \sqrt{\Sigma} Z) \lesssim\left\|\Lambda^{-1}\right\|_{o p}\left[\mathbb{E}\|R\|_{2}+\left\|\Sigma^{-1 / 2}\right\|_{o p} \mathbb{E}\left(\|S\|_{H S}+\|T\|_{H S}\right)\right] .
\end{gather*}
$$

A CLT for the $\mathrm{C} \beta \mathrm{E}$

- Fulman '10: apply to linear statistics of the CUE (and other classical groups) with W_{t} coming from heat kernel dynamics on the group.

A CLT for the $\mathrm{C} \beta \mathrm{E}$

- Fulman '10: apply to linear statistics of the CUE (and other classical groups) with W_{t} coming from heat kernel dynamics on the group.
- Döbler and Stolz '11: multivariate generalization.

A CLT for the $\mathrm{C} \beta \mathrm{E}$

- Fulman '10: apply to linear statistics of the CUE (and other classical groups) with W_{t} coming from heat kernel dynamics on the group.
- Döbler and Stolz '11: multivariate generalization.

Theorem (W '15)

Let $\left(e^{i x_{j}}\right)_{j=1}^{N} \sim C \beta E(N)(\beta>0), T_{K}=\left(\sum_{j=1}^{N} e^{i k x_{j}}\right)_{k=1}^{K}$, and
$G_{K}=\left(\sqrt{\frac{2}{\beta} j} Z_{j}\right)_{j=1}^{K}\left(Z_{j} \sim N_{\mathbb{C}}(0,1)\right.$ i.i.d. $)$. Then

$$
d\left(T_{K}, G_{K}\right)=\mathcal{O}\left(\frac{K^{7 / 2}}{N}\right)
$$

Remarks

- Gives a (far from optimal?) rate of convergence for the CLT.
- K can increase with N !
- Implies CLTs for smooth functions through Fourier expanding.
- For the proof, only need to estimate (mixed) moments up to order 4.
- Not strong enough to estimate maximum of X_{N} : would need to have $K \sim N$ for this.

Sketch of proof

- Take $W=T_{K}$, and $W_{t}=\left(\sum_{j=1}^{N} e^{i k x_{j}(t)}\right)_{k=1}^{K}$, where

$$
d x_{j}(t)=\frac{\beta}{2} \sum_{i \neq j} \cot \frac{x_{j}(t)-x_{i}(t)}{2} d t+\sqrt{2} d B_{j}(t)
$$

(circular DBM) started from $\left(x_{j}\right)$.

Sketch of proof

- Take $W=T_{K}$, and $W_{t}=\left(\sum_{j=1}^{N} e^{i k x_{j}(t)}\right)_{k=1}^{K}$, where

$$
d x_{j}(t)=\frac{\beta}{2} \sum_{i \neq j} \cot \frac{x_{j}(t)-x_{i}(t)}{2} d t+\sqrt{2} d B_{j}(t)
$$

(circular DBM) started from $\left(x_{j}\right)$.

- (W, W_{t}) exchangeable as $\mathrm{C} \beta \mathrm{E}$ is reversible for the dynamics.

Sketch of proof

- Take $W=T_{K}$, and $W_{t}=\left(\sum_{j=1}^{N} e^{i k x_{j}(t)}\right)_{k=1}^{K}$, where

$$
d x_{j}(t)=\frac{\beta}{2} \sum_{i \neq j} \cot \frac{x_{j}(t)-x_{i}(t)}{2} d t+\sqrt{2} d B_{j}(t)
$$

(circular DBM) started from $\left(x_{j}\right)$.

- (W, W_{t}) exchangeable as $\mathrm{C} \beta \mathrm{E}$ is reversible for the dynamics.
- Limits of the conditional expectations can be expressed in terms of the generator of cDBM

$$
L_{\beta}=\frac{\beta}{2} \sum_{j} \sum_{i \neq j} \cot \frac{x_{j}-x_{i}}{2} \partial_{x_{j}}+\sum_{j=1}^{N} \partial_{x_{j}}^{2}
$$

acting on power sums $p_{k}(x)=\sum_{j=1}^{N} e^{i k x_{j}}$ (and their products).

Sketch of proof

$$
\text { e.g. } \quad \lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left(W_{t}-W \mid W\right)=\left(L_{\beta} p_{k}(x)\right)_{k=1}^{K}
$$

Sketch of proof

$$
\text { e.g. } \quad \lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}\left(W_{t}-W \mid W\right)=\left(L_{\beta} p_{k}(x)\right)_{k=1}^{K}
$$

Doing the calculations:

$$
\begin{align*}
\Lambda_{k, l} & =\delta_{k, l} N k \frac{\beta}{2} \tag{1}\\
\Sigma_{k, l} & =\frac{2}{\beta} k \delta_{k, l} \tag{2}\\
R_{k} & =-k^{2}\left[\frac{\beta}{2}-1\right] p_{k}(x)-k \frac{\beta}{2} \sum_{l=1}^{k-1} p_{l}(x) p_{k-l}(x) \tag{3}\\
S_{k, l} & =\left(1-\delta_{k, l}\right) 2 k l p_{k-l}(x) \tag{4}\\
T_{k, l} & =-2 k l p_{k+l}(x) \tag{5}
\end{align*}
$$

Sketch of proof

- One concludes by bounding relevant moments.
- Best ones I know of (for the $\mathrm{C} \beta \mathrm{E}$): Jiang and Matsumoto '11.
- Weaker ones would suffice if you're happy with weaker K.
- Approach should work for other models too (works at least for the Gaussian β-ensemble).

