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Outline of the talk

@ What are log-correlated Gaussian fields?
@ Examples of log-correlated fields in RMT.

@ Connection between log-correlated fields in RMT and CLTs for linear
statistics.

@ A sketch of a proof for a CLT for the circular 3-ensemble.
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What is a log-correlated Gaussian field?

Basically a centered Gaussian process X(x) on a subset of RY with a
logarithmic singularity in its covariance:

EX(x)X(y) ~ —log |x — y|,

as

X =Y.

Doesn't make sense as an honest random function.

[m]

=
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Examples of log-correlated fields

o Let Ay ~ Nc(0,1) bei.i.d. and
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Examples of log-correlated fields

o Let Ay ~ Nc(0,1) bei.i.d. and

[e.9]

1 1 ik9 * _—ik6
EZ |: +Ake .

k=
Then formally EX(0)X (') = — 3 log | — e'|.
@ Let By ~ N(0,1) be i.i.d. and for x € (—1,1)

= /1
= kz; \/;Bk Tk(X)

where Ty(cosf) = cos k) (Chebyshev polynomial). Then formally
EY(x)Y(y) = —3 log(2lx — y|).

p—l
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Examples of log-correlated fields

o Let C, ~ N(0,1) bei.i.d., D C R? nice enough, and Adyx = — Ao«

on D with zero Dirichlet boundary conditions. Then define the GFF:

Again formally EZ(x)Z(y) = Gp(x,y) ~ —log |x — y| as x — y.
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Examples of log-correlated fields

o Let C, ~ N(0,1) bei.i.d., D C R? nice enough, and Adyx = — Ao«
on D with zero Dirichlet boundary conditions. Then define the GFF:

Again formally EZ(x)Z(y) = Gp(x,y) ~ —log |x — y| as x — y.

All of these series converge almost surely in suitable spaces of generalized
functions (e.g. Sobolev spaces) and one can make precise sense of
everything above.
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Why care about log-correlated fields?

@ Universal objects - show up as asymptotic fluctuations in various
models: RMT, growth models, combinatorial models, number theory,
lattice models, ...
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@ Play a critical role in the mathematics of 2-d quantum gravity
(Liouville quantum gravity) - conjectured to be related to a suitable
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Why care about log-correlated fields?

@ Universal objects - show up as asymptotic fluctuations in various
models: RMT, growth models, combinatorial models, number theory,
lattice models, ...

@ Play a critical role in the mathematics of 2-d quantum gravity
(Liouville quantum gravity) - conjectured to be related to a suitable
scaling limit of random planar maps.

@ Can be used to construct conformally invariant random planar curves
(SLE type objects).
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Characteristic polynomial of the CUE

Let Uy ~ CUE(N), and
Xn(8) = log | det(l — e Uy)|

K —k
_ikg TrUpy 1 ikt TrUy
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Characteristic polynomial of the CUE

Let Uy ~ CUE(N), and

Xn(8) = log | det(l — e Uy)|

Lo~ | s TrUf e TrUy"
= —— — | e +e .
DI AL vk

Theorem (Diaconis and Shahshahani '94)
For any fixed K, (TrUS/VK)K_ | & (A)K_,, where Ag ~ Ng(0,1) i.id.. J
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Characteristic polynomial of the CUE

Let Uy ~ CUE(N), and

Xn(8) = log | det(l — e Uy)|
2o TrUK o TrU K
—ike HTYn elk9 Uy ] )

1en 1
R P Dl L Vk

Theorem (Diaconis and Shahshahani '94)
For any fixed K, (TrUS/VK)K_ | & (A)K_,, where Ag ~ Ng(0,1) i.id.. J

Thus (Hughes, Keating, and O'Connell '01), Xy 4 x (in a suitable
space).
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Characteristic polynomial of the GUE

Let Hy ~ GUE(N) (with a suitable normalization). For x € (—1,1), on
the event that o(Hy) C (—1,1), one has

Yn(x) = log | det(x/ — Hy)|

- ki_o; \/sz(x)Tr [\jﬁ Tk(HN)] :
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Characteristic polynomial of the GUE
Let Hy ~ GUE(N) (with a suitable normalization). For x € (—1,1), on

the event that o(Hy) C (—1,1), one has

Yn(x) = log | det(xI — Hy)|
:_Z\[Tk [ (HN)].

Theorem (Johansson '98)

After centering, the random variables Tr[\/i; Tx(Hn)] converge jointly in
law to i.i.d. standard Gaussians for k < K fixed.
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Characteristic polynomial of the GUE

Let Hy ~ GUE(N) (with a suitable normalization). For x € (—1,1), on
the event that o(Hy) C (—1,1), one has

Yn(x) = log | det(xI — Hy)|
:_Z[Tk [ (HN)].

Theorem (Johansson '98)

After centering, the random variables Tr[% Tx(Hn)] converge jointly in
law to i.i.d. standard Gaussians for k < K fixed.

Fyodorov, Khoruzhenko, and Simm '13: Yy(x) — EYy(x) < Y (x) (in a
suitable space).
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Characteristic polynomial of the Ginibre ensemble

Let Wy ~ Ginibre(/N) (with a suitable normalization). For |z| < 1, on the

event that o(Wy) C U := {|w| < 1},

— W)

Zn(z) = log | det(zl
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Characteristic polynomial of the Ginibre ensemble

Theorem (Rider and Virdg '06)
After centering, Trf(Wy) converges in law to N(0,o?),

1 / 1 ~

2 2 2
o-=— [ |[VfI*+ = E |k||f (k)|
47'[' U| | 2kEZ

10/24



Characteristic polynomial of the Ginibre ensemble

Theorem (Rider and Virdg '06)

After centering, Trf(Wy) converges in law to N(0,o?),

1 1 ~
2_ 1 2, 1 2
o _4Tr/U|Vf| +5 SRR

keZ

From this, after centering, Zy converges in law (in a suitable space) to 7
with covariance

EZ(2)Z(w) = —% log |z — wl.
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The eigenvalue counting function for the GUE

For Hy ~ GUE(N) (normalized as before) and

N
Xn(x) = Imlogdet(xl — Hy) =7 > 1(x < \)).
j=1
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The eigenvalue counting function for the GUE

For Hy ~ GUE(N) (normalized as before) and

N
Xn(x) = Imlogdet(xl — Hy) =7 > 1(x < \)).
j=1

As

N

/ Xn(x)F ()dx =3 F()

j=1
t~he CLT implies again that after centering, in the bulk of the spectrum,
Xy converges to a log-correlated field X.
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The eigenvalue fluctuation field for the GUE

@ Idea: look at \; — [E); "globally”.
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The eigenvalue fluctuation field for the GUE

@ Idea: look at \; — [E); "globally”.

o Let ~; be the classical locations: for o(y) = 2

/_ 71 o (x)dx =

1—y2

2|~
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The eigenvalue fluctuation field for the GUE

@ Idea: look at \; — [E); "globally”.

o Let ~; be the classical locations: for o(y) = 2

/_ 71 o (x)dx =

@ Then define the "fluctuation field”: for x € (vj—1,7l,

1—y2

2|~

SV/N(X) = No(v))

J

i
Aj — N/ yo(y)dy| .
Yj—-1
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The eigenvalue fluctuation field for the GUE
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The eigenvalue fluctuation field for the GUE

One can then show that

/ Z[f — Ef(\j)] + error,

which implies Yy — ¢X in a suitable sense (for some constant ¢ > 0).
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The eigenvalue fluctuation field for the GUE

One can then show that

/ Z[f — Ef(\j)] + error,

which implies Yy — ¢X in a suitable sense (for some constant ¢ > 0).
Moral of the story: CLTs equivalent to log-correlated fields describing
global fluctuations.
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Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the

construction of SLE type curves through random measures of the form
eX(X)—%]EX(X)z dx.
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Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the

construction of SLE type curves through random measures of the form
eX(X)—%]EX(X)z dx.

Rigorously defined through a limiting procedure.
Theorem (W '14, Berestycki, W, Wong '16)

For small enough v > 0, e:)'(\’ @ d0 (CUE) and ewﬂ',\’(zx dx (GUE) converge
to chaos measures.
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Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the

construction of SLE type curves through random measures of the form
eX(X)—%]EX(X)z dx.

Rigorously defined through a limiting procedure.
Theorem (W '14, Berestycki, W, Wong '16)
YN (X)

For small enough v > 0, e:)'(\’ @d0 (CUE) and == 5 dx (GUE) converge
to chaos measures.

Proof through RHP estimates (due to Deift, Its, and Kraosvsky; and
others).
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Gaussian multiplicative chaos

DA
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Central limit theorems

@ CLTs proven in great generality and with different methods for
one-cut regular S-ensembles - even in the discrete case (Diaconis and
Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virag;
Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu
and Paquette; Dobler and Stolz; Forrester and Witte; Jiang and
Matsumoto; Borodin, Gorin, and Guionnet,...).
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Central limit theorems

@ CLTs proven in great generality and with different methods for
one-cut regular S-ensembles - even in the discrete case (Diaconis and
Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virag;
Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu
and Paquette; Dobler and Stolz; Forrester and Witte; Jiang and
Matsumoto; Borodin, Gorin, and Guionnet,...).

o Log-correlated objects appearing generically in S-ensembles (though
2d for 8 # 2 open?).

@ Chaos measures and behavior of the maximum of the fields universal?

@ | can’t prove it, but the following came out of an attempt.
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A Gaussian approximation result

o Assume that W ~ N(0,02) and W' is a "small perturbation” of this
preserving the law: W’ ~ N(0,02) and E(WW') = 02(1 — ¢).
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A Gaussian approximation result

o Assume that W ~ N(0,02) and W' is a "small perturbation” of this
preserving the law: W’ ~ N(0,02) and E(WW') = 02(1 — ¢).

@ Then one has

E(W — W|W) = —eW (1)
E[(W' — W)?|W] = 2e0? + O(€?) (2)
ElW — W)? = O(/?) (3)

@ Perhaps if this nearly holds, W is nearly Gaussian?
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A Gaussian approximation result

Theorem (Meckes '09;Dobler and Stolz '11)

Assume: (W, W,;) € C?? exchangeable, Z ~ Ng(0, lyx4), 3 deterministic
A € C9%9 and ¥ € C9*9 positive definite, and random F € C? and
S, T e Cdxd:

lim %E(Wt _ WW) = —AW + (1)
lim %E((Wt ~ W) (Wi — W) W) =2A% + S 2)
lim TE((We — W)(W; — W)T|W) = )
lim %E]Wt - WP =0 (3)

= d(W,VEZ) S INYlop [EIIRIl2 + 1Z72]10pE(I Sl 1s + [T []1s)]-
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A CLT for the CSE

e Fulman "10: apply to linear statistics of the CUE (and other classical
groups) with W; coming from heat kernel dynamics on the group.
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A CLT for the CSE

e Fulman "10: apply to linear statistics of the CUE (and other classical
groups) with W; coming from heat kernel dynamics on the group.

@ Dobler and Stolz '11: multivariate generalization.
Theorem (W '15)
N 'k- K
Let (e™)[Ly ~ CBE(N) (8> 0), T = (XL ), and
(1/ Z) (Zi ~ N(0,1) iid.). Then

K7/2
d(Ti, ) = 0 [ =~ |
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Remarks

Gives a (far from optimal?) rate of convergence for the CLT.
K can increase with N!
Implies CLTs for smooth functions through Fourier expanding.

For the proof, only need to estimate (mixed) moments up to order 4.

e 6 6 o o

Not strong enough to estimate maximum of Xp: would need to have
K ~ N for this.
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Sketch of proof

, K
o Take W = Tk, and W; = (ZJNZI e’ka(t)>k g where

dx;(t) Zcot i ()dt—i-\de()
I#J

(circular DBM) started from (x;).
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Sketch of proof

, K
o Take W = Tk, and W; = (ZJNZI e’ka(t)>k X where

dx;(t) Zcot i ()dt—i-\de()
I#J
(circular DBM) started from (x;).
o (W, W;) exchangeable as CSE is reversible for the dynamics.

@ Limits of the conditional expectations can be expressed in terms of
the generator of cDBM

ﬂZZcot i 8XJ+Z

Joi#

acting on power sums py(x) = ZJN L e®9 (and their products).
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Sketch of proof

e.g. lim EE(Wt — WIW) = (Lgpx(x))i, -

t—0 t
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Sketch of proof

.1 K
e.g. tll_r;rg) ?E( W: — WIW) = (Lgpk(x)),_; -
Doing the calculations:

B

Aki = 5k,lNk§ (1)
Y= ;k5k,l (2)

= K2 [g } — k= ZP/ X)pk—1(x) (3)
Skt = (1= dk,1)2klpr—i(x) (4)

k) = —2kIpg41(x). (5)

23/24



Sketch of proof

@ One concludes by bounding relevant moments.
@ Best ones | know of (for the CSE): Jiang and Matsumoto '11.
@ Weaker ones would suffice if you're happy with weaker K.

@ Approach should work for other models too (works at least for the
Gaussian J-ensemble).
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