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Outline of the talk

What are log-correlated Gaussian fields?

Examples of log-correlated fields in RMT.

Connection between log-correlated fields in RMT and CLTs for linear
statistics.

A sketch of a proof for a CLT for the circular β-ensemble.
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What is a log-correlated Gaussian field?

Basically a centered Gaussian process X (x) on a subset of Rd with a
logarithmic singularity in its covariance:

EX (x)X (y) ∼ − log |x − y |, as x → y .

Doesn’t make sense as an honest random function.
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Examples of log-correlated fields

Let Ak ∼ NC(0, 1) be i.i.d. and

X (θ) =
1

2

∞∑
k=1

1√
k

[
Ake ikθ + A∗ke−ikθ

]
.

Then formally EX (θ)X (θ′) = −1
2 log |e iθ − e iθ

′ |.

Let Bk ∼ N(0, 1) be i.i.d. and for x ∈ (−1, 1)

Y (x) =
∞∑
k=1

√
1

k
BkTk(x),

where Tk(cos θ) = cos kθ (Chebyshev polynomial). Then formally
EY (x)Y (y) = −1

2 log(2|x − y |).
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Examples of log-correlated fields

Let Ck ∼ N(0, 1) be i.i.d., D ⊂ R2 nice enough, and ∆φk = −λkφk
on D with zero Dirichlet boundary conditions. Then define the GFF:

Z (x) =
∞∑
k=1

Ck√
λk
φk(x),

Again formally EZ (x)Z (y) = GD(x , y) ∼ − log |x − y | as x → y .

All of these series converge almost surely in suitable spaces of generalized
functions (e.g. Sobolev spaces) and one can make precise sense of
everything above.
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Why care about log-correlated fields?

Universal objects - show up as asymptotic fluctuations in various
models: RMT, growth models, combinatorial models, number theory,
lattice models, ...

Play a critical role in the mathematics of 2-d quantum gravity
(Liouville quantum gravity) - conjectured to be related to a suitable
scaling limit of random planar maps.

Can be used to construct conformally invariant random planar curves
(SLE type objects).

6/24



Why care about log-correlated fields?

Universal objects - show up as asymptotic fluctuations in various
models: RMT, growth models, combinatorial models, number theory,
lattice models, ...

Play a critical role in the mathematics of 2-d quantum gravity
(Liouville quantum gravity) - conjectured to be related to a suitable
scaling limit of random planar maps.

Can be used to construct conformally invariant random planar curves
(SLE type objects).

6/24



Why care about log-correlated fields?

Universal objects - show up as asymptotic fluctuations in various
models: RMT, growth models, combinatorial models, number theory,
lattice models, ...

Play a critical role in the mathematics of 2-d quantum gravity
(Liouville quantum gravity) - conjectured to be related to a suitable
scaling limit of random planar maps.

Can be used to construct conformally invariant random planar curves
(SLE type objects).

6/24



Characteristic polynomial of the CUE

Let UN ∼ CUE (N), and

XN(θ) = log | det(I − e−iθUN)|

= −1

2

∞∑
k=1

1√
k

[
e−ikθ

TrUk
N√

k
+ e ikθ

TrU−kN√
k

]
.

Theorem (Diaconis and Shahshahani ’94)

For any fixed K , (TrUk
N/
√

k)Kk=1
d→ (Ak)Kk=1, where Ak ∼ NC(0, 1) i.i.d..

Thus (Hughes, Keating, and O’Connell ’01), XN
d→ X (in a suitable

space).
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Characteristic polynomial of the GUE

Let HN ∼ GUE (N) (with a suitable normalization). For x ∈ (−1, 1), on
the event that σ(HN) ⊂ (−1, 1), one has

YN(x) = log | det(xI − HN)|

= −
∞∑
k=1

√
1

k
Tk(x)Tr

[
2√
k

Tk(HN)

]
.

Theorem (Johansson ’98)

After centering, the random variables Tr[ 2√
k

Tk(HN)] converge jointly in

law to i.i.d. standard Gaussians for k ≤ K fixed.

Fyodorov, Khoruzhenko, and Simm ’13: YN(x)− EYN(x)
d→ Y (x) (in a

suitable space).
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Characteristic polynomial of the Ginibre ensemble
Let WN ∼ Ginibre(N) (with a suitable normalization). For |z | < 1, on the
event that σ(WN) ⊂ U := {|w | < 1},

ZN(z) = log | det(zI −WN)|

= −2π
∞∑
k=1

1√
λk
φk(z)Tr

φk(WN)√
λk

− Re

∞∑
k=1

1

k
zkTrW k

N .
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Characteristic polynomial of the Ginibre ensemble

Theorem (Rider and Virág ’06)

After centering, Trf (WN) converges in law to N(0, σ2),

σ2 =
1

4π

∫
U
|∇f |2 +

1

2

∑
k∈Z
|k||f̂ (k)|2.

From this, after centering, ZN converges in law (in a suitable space) to Z̃
with covariance

EZ̃ (z)Z̃ (w) = −1

2
log |z − w |.
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The eigenvalue counting function for the GUE

For HN ∼ GUE (N) (normalized as before) and

X̃N(x) = Im log det(xI − HN) = π

N∑
j=1

1(x < λj).

As ∫
X̃N(x)f ′(x)dx = π

N∑
j=1

f (λj)

the CLT implies again that after centering, in the bulk of the spectrum,
X̃N converges to a log-correlated field X̃ .
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The eigenvalue fluctuation field for the GUE

Idea: look at λj − Eλj ”globally”.

Let γj be the classical locations: for σ(y) = 2
π

√
1− y2∫ γj

−1
σ(x)dx =

j

N
.

Then define the ”fluctuation field”: for x ∈ (γj−1, γj ],

ỸN(x) = Nσ(γj)

[
λj − N

∫ γj

γj−1

yσ(y)dy

]
.
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The eigenvalue fluctuation field for the GUE
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The eigenvalue fluctuation field for the GUE

One can then show that∫
ỸN(x)f ′(x) =

N∑
j=1

[f (λj)− Ef (λj)] + error ,

which implies YN → cX̃ in a suitable sense (for some constant c > 0).

Moral of the story: CLTs equivalent to log-correlated fields describing
global fluctuations.

14/24



The eigenvalue fluctuation field for the GUE

One can then show that∫
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Gaussian multiplicative chaos

Log-correlated fields relevant to Liouville quantum gravity and the
construction of SLE type curves through random measures of the form

eX (x)− 1
2
EX (x)2dx .

Rigorously defined through a limiting procedure.

Theorem (W ’14, Berestycki, W, Wong ’16)

For small enough γ > 0, eγXN (θ)

EeγXN (θ) dθ (CUE) and eγYN (x)

EeγYN (x) dx (GUE) converge
to chaos measures.

Proof through RHP estimates (due to Deift, Its, and Kraosvsky; and
others).
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Gaussian multiplicative chaos
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Central limit theorems

CLTs proven in great generality and with different methods for
one-cut regular β-ensembles - even in the discrete case (Diaconis and
Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virág;
Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu
and Paquette; Döbler and Stolz; Forrester and Witte; Jiang and
Matsumoto; Borodin, Gorin, and Guionnet,...).

Log-correlated objects appearing generically in β-ensembles (though
2d for β 6= 2 open?).

Chaos measures and behavior of the maximum of the fields universal?

I can’t prove it, but the following came out of an attempt.

17/24



Central limit theorems

CLTs proven in great generality and with different methods for
one-cut regular β-ensembles - even in the discrete case (Diaconis and
Shahshahani; Johansson; Pastur; Shcherbina; Rider and Virág;
Ameur, Hedenmalm, and Makarov; Borot and Guionnet; Dumitriu
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A Gaussian approximation result

Assume that W ∼ N(0, σ2) and W ′ is a ”small perturbation” of this
preserving the law: W ′ ∼ N(0, σ2) and E(WW ′) = σ2(1− ε).

Then one has

E(W ′ −W |W ) = −εW (1)

E[(W ′ −W )2|W ] = 2εσ2 +O(ε2) (2)

E|W ′ −W |3 = O(ε3/2) (3)

Perhaps if this nearly holds, W is nearly Gaussian?
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A Gaussian approximation result

Theorem (Meckes ’09;Döbler and Stolz ’11)

Assume: (W ,Wt) ∈ C2d exchangeable, Z ∼ NC(0, Id×d), ∃ deterministic
Λ ∈ Cd×d and Σ ∈ Cd×d positive definite, and random R ∈ Cd and
S ,T ∈ Cd×d :

lim
t→0

1

t
E(Wt −W |W ) = −ΛW + R (1)

lim
t→0

1

t
E((Wt −W )(Wt −W )∗|W ) = 2ΛΣ + S (2)

lim
t→0

1

t
E((Wt −W )(Wt −W )T |W ) = T (2’)

lim
t→0

1

t
E|Wt −W |3 = 0. (3)

⇒ d(W ,
√

ΣZ ) . ||Λ−1||op
[
E||R||2 + ||Σ−1/2||opE(||S ||HS + ||T ||HS)

]
.
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A CLT for the CβE

Fulman ’10: apply to linear statistics of the CUE (and other classical
groups) with Wt coming from heat kernel dynamics on the group.

Döbler and Stolz ’11: multivariate generalization.

Theorem (W ’15)

Let (e ixj )Nj=1 ∼ CβE (N) (β > 0), TK =
(∑N

j=1 e ikxj
)K
k=1

, and

GK =
(√

2
β jZj

)K
j=1

(Zj ∼ NC(0, 1) i.i.d.). Then

d(TK ,GK ) = O

(
K 7/2

N

)
.
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Döbler and Stolz ’11: multivariate generalization.

Theorem (W ’15)

Let (e ixj )Nj=1 ∼ CβE (N) (β > 0), TK =
(∑N

j=1 e ikxj
)K
k=1

, and

GK =
(√

2
β jZj

)K
j=1

(Zj ∼ NC(0, 1) i.i.d.). Then

d(TK ,GK ) = O

(
K 7/2

N

)
.

20/24



Remarks

Gives a (far from optimal?) rate of convergence for the CLT.

K can increase with N!

Implies CLTs for smooth functions through Fourier expanding.

For the proof, only need to estimate (mixed) moments up to order 4.

Not strong enough to estimate maximum of XN : would need to have
K ∼ N for this.
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Sketch of proof

Take W = TK , and Wt =
(∑N

j=1 e ikxj (t)
)K
k=1

, where

dxj(t) =
β

2

∑
i 6=j

cot
xj(t)− xi (t)

2
dt +

√
2dBj(t)

(circular DBM) started from (xj).

(W ,Wt) exchangeable as CβE is reversible for the dynamics.

Limits of the conditional expectations can be expressed in terms of
the generator of cDBM

Lβ =
β

2

∑
j

∑
i 6=j

cot
xj − xi

2
∂xj +

N∑
j=1

∂2xj

acting on power sums pk(x) =
∑N

j=1 e ikxj (and their products).
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Sketch of proof

e.g . lim
t→0

1

t
E(Wt −W |W ) = (Lβpk(x))Kk=1 .

Doing the calculations:

Λk,l = δk,lNk
β

2
(1)

Σk,l =
2

β
kδk,l (2)

Rk = −k2

[
β

2
− 1

]
pk(x)− k

β

2

k−1∑
l=1

pl(x)pk−l(x) (3)

Sk,l = (1− δk,l)2klpk−l(x) (4)

T k,l = −2klpk+l(x). (5)
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T k,l = −2klpk+l(x). (5)
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Sketch of proof

One concludes by bounding relevant moments.

Best ones I know of (for the CβE): Jiang and Matsumoto ’11.

Weaker ones would suffice if you’re happy with weaker K .

Approach should work for other models too (works at least for the
Gaussian β-ensemble).
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