Asymptotic syzygies of Stanley-Reisner rings of iterated subdivisions

Martina Juhnke-Kubitzke
Institut für Mathematik, Universität Osnabrück
Joint work with: Aldo Conca and Volkmar Welker

April 5th, 2016

Outline

(1) Motivation
(2) The simplex case

- Barycentric subdivisions
- Edgewise subdivisions
(3) Asymptotic behavior

Notation

- \mathbb{K} field, $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
- $A=\bigoplus_{i \geq 0} A_{i}$ standard graded \mathbb{K}-algebra

Notation

- \mathbb{K} field, $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
- $A=\bigoplus_{i \geq 0} A_{i}$ standard graded \mathbb{K}-algebra
- graded Betti numbers of A :
$\beta_{i, i+j}(A):=\operatorname{dim}_{\mathbb{K}} \operatorname{Tor}_{i}^{S}(A, \mathbb{K})_{i+j}$

Notation

- \mathbb{K} field, $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
- $A=\bigoplus_{i \geq 0} A_{i}$ standard graded \mathbb{K}-algebra
- graded Betti numbers of A :
$\beta_{i, i+j}(A):=\operatorname{dim}_{\mathbb{K}} \operatorname{Tor}_{i}^{S}(A, \mathbb{K})_{i+j}$
- Castelnuovo-Mumford regularity of A :
$\operatorname{reg}(A):=\max \left\{j: \beta_{i, i+j}(A) \neq 0\right.$ for some $\left.i\right\}$

Notation

- \mathbb{K} field, $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
- $A=\bigoplus_{i \geq 0} A_{i}$ standard graded \mathbb{K}-algebra
- graded Betti numbers of A :
$\beta_{i, i+j}(A):=\operatorname{dim}_{\mathbb{K}} \operatorname{Tor}_{i}^{S}(A, \mathbb{K})_{i+j}$
- Castelnuovo-Mumford regularity of A :
$\operatorname{reg}(A):=\max \left\{j: \beta_{i, i+j}(A) \neq 0\right.$ for some $\left.i\right\}$
- projective dimension of A : $\operatorname{pdim}(A)=\max \left\{i: \beta_{i, i+j}(A) \neq 0\right.$ for some $\left.j\right\}$

Starting point

Study of syzygies of Veronese embeddings of algebraic varieties.

Starting point

Study of syzygies of Veronese embeddings of algebraic varieties.
Recall: The $r^{\text {th }}$ Veronese algebra of $A=\bigoplus_{i \geq 0} A_{i}$ is $A^{(r)}=\bigoplus_{i \geq 0} A_{i r}$.

Starting point

Study of syzygies of Veronese embeddings of algebraic varieties.
Recall: The $r^{\text {th }}$ Veronese algebra of $A=\bigoplus_{i \geq 0} A_{i}$ is $A^{(r)}=\bigoplus_{i \geq 0} A_{i r}$.
Ein/Lazarsfeld:

- Considered the case $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Starting point

Study of syzygies of Veronese embeddings of algebraic varieties.
Recall: The $r^{\text {th }}$ Veronese algebra of $A=\bigoplus_{i \geq 0} A_{i}$ is $A^{(r)}=\bigoplus_{i \geq 0} A_{i r}$.
Ein/Lazarsfeld:

- Considered the case $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Showed:
- For r sufficiently large

$$
\beta_{i, i+j}\left(A^{(r)}\right) \neq 0 \text { for all } 1 \leq j \leq n-1 \text { and } i \in\left[a_{j}, b_{j}\right]
$$

with endpoints a_{j}, b_{j} depending on j.

Starting point

Study of syzygies of Veronese embeddings of algebraic varieties.
Recall: The $r^{\text {th }}$ Veronese algebra of $A=\bigoplus_{i \geq 0} A_{i}$ is $A^{(r)}=\bigoplus_{i \geq 0} A_{i r}$.
Ein/Lazarsfeld:

- Considered the case $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Showed:
- For r sufficiently large

$$
\beta_{i, i+j}\left(A^{(r)}\right) \neq 0 \text { for all } 1 \leq j \leq n-1 \text { and } i \in\left[a_{j}, b_{j}\right]
$$

with endpoints a_{j}, b_{j} depending on j.

- Moreover,

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+j}\left(A^{(r)}\right) \neq 0\right\}}{\operatorname{pdim} A^{(r)}}=1
$$

Starting point

Study of syzygies of Veronese embeddings of algebraic varieties.
Recall: The $r^{\text {th }}$ Veronese algebra of $A=\bigoplus_{i \geq 0} A_{i}$ is $A^{(r)}=\bigoplus_{i \geq 0} A_{i r}$.
Ein/Erman/Lazarsfeld:

- Considered Cohen-Macaulay algebras A :
- For $1 \leq j \leq \operatorname{dim} A-1$ and r sufficiently large

$$
\beta_{i, i+j}\left(A^{(r)}\right) \neq 0 \text { for all } i \in\left[c_{j}, d_{j}\right]
$$

with endpoints c_{j}, d_{j} depending on j.

- For $1 \leq j \leq \operatorname{dim} A-1$

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+j}\left(A^{(r)}\right) \neq 0\right\}}{\operatorname{pdim} A^{(r)}}=1 .
$$

On the road towards Combinatorics

On the road towards Combinatorics

Theorem (Sturmfels)

Let $\mathcal{A}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n}: i_{1}+\cdots+i_{n}=r\right\}, A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $A^{(r)} \cong \mathbb{K}\left[x_{i_{1}}, \ldots, i_{n} \quad:\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{A}\right] / I_{r}$.

On the road towards Combinatorics

Theorem (Sturmfels)

Let $\mathcal{A}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n}: i_{1}+\cdots+i_{n}=r\right\}, A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $A^{(r)} \cong \mathbb{K}\left[x_{i_{1}, \ldots, i_{n}}:\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{A}\right] / I_{r}$.
Given a term order \preceq, there exists a regular triangulation Δ of the point set $\mathcal{A} \subseteq \mathbb{R}^{n}$ such that

$$
\mathrm{in}_{\preceq}\left(I_{r}\right)=I_{\Delta} .
$$

Here: Δ is the projection of the lower hull of the "lifted" point set \mathcal{A}.

On the road towards Combinatorics

Theorem (Sturmfels)

Let $\mathcal{A}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n}: i_{1}+\cdots+i_{n}=r\right\}, A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $A^{(r)} \cong \mathbb{K}\left[x_{i_{1}, \ldots, i_{n}}:\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{A}\right] / I_{r}$.
Given a term order \preceq, there exists a regular triangulation Δ of the point set $\mathcal{A} \subseteq \mathbb{R}^{n}$ such that

$$
\operatorname{in}_{\preceq}\left(I_{r}\right)=I_{\Delta} .
$$

Here: Δ is the projection of the lower hull of the "lifted" point set \mathcal{A}.

Theorem

If I is a homogeneous ideal in $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\beta_{i, j}(A / I) \leq \beta_{i, j}\left(A / \mathrm{in}_{\preceq}(I)\right) .
$$

More Combinatorics

A subdivision of a geometric simplicial complex Δ is a geometric simplicial complex Γ such that

More Combinatorics

A subdivision of a geometric simplicial complex Δ is a geometric simplicial complex 「 such that

- each simplex of Γ is contained in a simplex of Δ, and
- the union of the simplices in Γ is equal to the union of the simplices in Δ.

More Combinatorics

A subdivision of a geometric simplicial complex Δ is a geometric simplicial complex Γ such that

- each simplex of Γ is contained in a simplex of Δ, and
- the union of the simplices in Γ is equal to the union of the simplices in Δ.

Questions:
$(\Delta(r))_{r \in \mathbb{N}}$ sequence of subdivisions of a simplicial complex Δ

More Combinatorics

A subdivision of a geometric simplicial complex Δ is a geometric simplicial complex Γ such that

- each simplex of Γ is contained in a simplex of Δ, and
- the union of the simplices in Γ is equal to the union of the simplices in Δ.

Questions:
$(\Delta(r))_{r \in \mathbb{N}}$ sequence of subdivisions of a simplicial complex Δ
1.) Let $\Delta=\Delta_{d-1}$ be the ($d-1$)-simplex. Which Betti numbers $\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}(r)\right]\right)$ are non-zero?

More Combinatorics

A subdivision of a geometric simplicial complex Δ is a geometric simplicial complex Γ such that

- each simplex of Γ is contained in a simplex of Δ, and
- the union of the simplices in Γ is equal to the union of the simplices in Δ.

Questions:

$(\Delta(r))_{r \in \mathbb{N}}$ sequence of subdivisions of a simplicial complex Δ
1.) Let $\Delta=\Delta_{d-1}$ be the $(d-1)$-simplex. Which Betti numbers $\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}(r)\right]\right)$ are non-zero?
2.) What happens asymptotically? I.e., for $r \rightarrow \infty$ study

$$
\frac{\#\left\{i: \beta_{i, i+j}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}
$$

Outline

(1) Motivation

(2) The simplex case

- Barycentric subdivisions
- Edgewise subdivisions

The barycentric subdivision

Δ simplicial complex
The barycentric subdivision of Δ is the simplicial complex $\operatorname{sd}(\Delta)$ on vertex set $\Delta \backslash\{\emptyset\}$, whose faces are chains

$$
\emptyset \neq A_{0} \subsetneq A_{1} \subsetneq \cdots \subsetneq A_{r}
$$

with $A_{i} \in \Delta \backslash\{\emptyset\}$ for $0 \leq i \leq r$.

The barycentric subdivision

Δ simplicial complex
The barycentric subdivision of Δ is the simplicial complex $\operatorname{sd}(\Delta)$ on vertex set $\Delta \backslash\{\emptyset\}$, whose faces are chains

$$
\emptyset \neq A_{0} \subsetneq A_{1} \subsetneq \cdots \subsetneq A_{r}
$$

with $A_{i} \in \Delta \backslash\{\emptyset\}$ for $0 \leq i \leq r$.

Hochster's formula

Let Δ be a simplicial complex on vertex set $[n]:=\{1,2, \ldots, n\}$ and let $\mathbb{K}[\Delta]$ be the Stanley-Reisner ring of Δ. Then:

$$
\beta_{i, i+j}(\mathbb{K}[\Delta])=\sum_{\substack{W \subseteq[n] \\ \# W=i+j}} \operatorname{dim}_{\mathbb{K}} \widetilde{H}_{j-1}\left(\Delta_{W} ; \mathbb{K}\right),
$$

where

$$
\Delta_{w}=\{F \in \Delta: F \subseteq W\}
$$

Hochster's formula

Let Δ be a simplicial complex on vertex set $[n]:=\{1,2, \ldots, n\}$ and let $\mathbb{K}[\Delta]$ be the Stanley-Reisner ring of Δ. Then:

$$
\beta_{i, i+j}(\mathbb{K}[\Delta])=\sum_{\substack{W \subseteq[n] \\ \# W=i+j}} \operatorname{dim}_{\mathbb{K}} \widetilde{H}_{j-1}\left(\Delta_{W} ; \mathbb{K}\right),
$$

where

$$
\Delta_{w}=\{F \in \Delta: F \subseteq W\} .
$$

$$
\beta_{i, i+j}(\mathbb{K}[\Delta]) \neq 0 .
$$

\Leftrightarrow There exists $W \subseteq[n], \# W=i+j$ and $\widetilde{H}_{j-1}\left(\Delta_{W} ; \mathbb{K}\right) \neq 0$.

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
First case: $\widetilde{H}_{d-1}(\Delta ; \mathbb{K})=0$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:

Let $d-1=\operatorname{dim} \Delta$.
First case: $\widetilde{H}_{d-1}(\Delta ; \mathbb{K})=0$
$\Rightarrow \widetilde{H}_{d-1}(\operatorname{sd}(\Delta) ; \mathbb{K})=0$
$\Rightarrow \widetilde{H}_{d-1}\left(\operatorname{sd}(\Delta)_{w} ; \mathbb{K}\right)=0$ for subsets W of the vertices of $\operatorname{sd}(\Delta)$
$\Rightarrow \operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)] \leq d-1$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
Consider the boundary $\partial(F)$ of a $(d-1)$-face $F \in \Delta$.

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
Consider the boundary $\partial(F)$ of a $(d-1)$-face $F \in \Delta$.

$$
\Rightarrow \operatorname{sd}(\Delta)_{\{\emptyset \neq G \in \partial(F)\}}=\operatorname{sd}(\partial(F)) \cong \mathbb{S}^{d-2}
$$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
Consider the boundary $\partial(F)$ of a $(d-1)$-face $F \in \Delta$.

$$
\begin{aligned}
& \Rightarrow \operatorname{sd}(\Delta)_{\{\emptyset \neq G \in \partial(F)\}}=\operatorname{sd}(\partial(F)) \cong \mathbb{S}^{d-2} \\
& \Rightarrow \beta_{2^{d}-2-(d-1), 2^{d}-2}(\mathbb{K}[\operatorname{sd}(\Delta)]) \neq 0 \\
& \Rightarrow \operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)] \geq d-1
\end{aligned}
$$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
Second case: $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
Second case: $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

- Note: $\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)] \leq \operatorname{dim} \operatorname{sd}(\Delta)+1=d$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim} \Delta}(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim} \Delta}(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
Second case: $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

- Note: reg $\mathbb{K}[\operatorname{sd}(\Delta)] \leq \operatorname{dim} \operatorname{sd}(\Delta)+1=d$
- Since Δ and $\operatorname{sd}(\Delta)$ have homeomorphic geometric realizations, we have

$$
\widetilde{H}_{d-1}(\operatorname{sd}(\Delta) ; \mathbb{K}) \neq 0
$$

The Castelnuovo-Mumford regularity of $\mathbb{K}[\operatorname{sd}(\Delta)]$

$$
\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]= \begin{cases}\operatorname{dim} \Delta, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K})=0 \\ \operatorname{dim} \Delta+1, & \text { if } \widetilde{H}_{\operatorname{dim}} \Delta(\Delta ; \mathbb{K}) \neq 0\end{cases}
$$

Proof:
Let $d-1=\operatorname{dim} \Delta$.
Second case: $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

- Note: $\operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)] \leq \operatorname{dim} \operatorname{sd}(\Delta)+1=d$
- Since Δ and $\operatorname{sd}(\Delta)$ have homeomorphic geometric realizations, we have

$$
\widetilde{H}_{d-1}(\operatorname{sd}(\Delta) ; \mathbb{K}) \neq 0
$$

$\Rightarrow \beta_{\#\{\emptyset \neq F \in \Delta\}-d, \#\{\emptyset \neq F \in \Delta\}}(\mathbb{K}[\operatorname{sd}(\Delta)]) \neq 0$
$\Rightarrow \operatorname{reg} \mathbb{K}[\operatorname{sd}(\Delta)]=d$

The barycentric subdivision of the simplex

Theorem (Conca, J.-K., Welker)
Let $d \geq 1$ and Δ_{d-1} be the $(d-1)$-simplex. Then:

The barycentric subdivision of the simplex

Theorem (Conca, J.-K., Welker)

Let $d \geq 1$ and Δ_{d-1} be the $(d-1)$-simplex. Then:
(i) If $1 \leq j \leq \frac{d}{2}$, then

$$
\beta_{i, i+j}\left(\operatorname{sd}\left(\Delta_{d-1}\right)\right)\left\{\begin{array}{l}
\neq 0 \text { for } j \leq i \leq 2^{d}-d-1-m_{d-j-1}, \\
=0 \text { for } 0 \leq i \leq j-1 \text { and } 2^{d}-2 d+j<i \leq 2^{d}-d-1 .
\end{array}\right.
$$

$m_{j}:=2^{a+2}(c+d-j)-2 d+j$, where $(2 j-d)=a(d-j)+c$ for $0 \leq c<d-j$.

The barycentric subdivision of the simplex

Theorem (Conca, J.-K., Welker)

Let $d \geq 1$ and Δ_{d-1} be the $(d-1)$-simplex. Then:
(i) If $1 \leq j \leq \frac{d}{2}$, then

$$
\beta_{i, i+j}\left(\operatorname{sd}\left(\Delta_{d-1}\right)\right)\left\{\begin{array}{l}
\neq 0 \text { for } j \leq i \leq 2^{d}-d-1-m_{d-j-1}, \\
=0 \text { for } 0 \leq i \leq j-1 \text { and } 2^{d}-2 d+j<i \leq 2^{d}-d-1 .
\end{array}\right.
$$

(ii) If $\frac{d}{2}<j \leq d-2$, then

$$
\beta_{i, i+j}\left(\operatorname{sd}\left(\Delta_{d-1}\right)\right)\left\{\begin{array}{l}
\neq 0 \text { for } m_{j} \leq i \leq 2^{d}-2 d+j, \\
=0 \text { for } 0 \leq i \leq j-1 \text { and } 2^{d}-2 d+j<i \leq 2^{d}-d-1 .
\end{array}\right.
$$

$m_{j}:=2^{a+2}(c+d-j)-2 d+j$, where $(2 j-d)=a(d-j)+c$ for $0 \leq c<d-j$.

The barycentric subdivision of the simplex

Theorem (Conca, J.-K., Welker)

Let $d \geq 1$ and Δ_{d-1} be the $(d-1)$-simplex. Then:
(i) If $1 \leq j \leq \frac{d}{2}$, then

$$
\beta_{i, i+j}\left(\operatorname{sd}\left(\Delta_{d-1}\right)\right)\left\{\begin{array}{l}
\neq 0 \text { for } j \leq i \leq 2^{d}-d-1-m_{d-j-1}, \\
=0 \text { for } 0 \leq i \leq j-1 \text { and } 2^{d}-2 d+j<i \leq 2^{d}-d-1 .
\end{array}\right.
$$

(ii) If $\frac{d}{2}<j \leq d-2$, then

$$
\beta_{i, i+j}\left(\operatorname{sd}\left(\Delta_{d-1}\right)\right)\left\{\begin{array}{l}
\neq 0 \text { for } m_{j} \leq i \leq 2^{d}-2 d+j, \\
=0 \text { for } 0 \leq i \leq j-1 \text { and } 2^{d}-2 d+j<i \leq 2^{d}-d-1 .
\end{array}\right.
$$

(iii) $\beta_{i, i+d-1}\left(\operatorname{sd}\left(\Delta_{d-1}\right)\right) \neq 0$ if and only if $i=2^{d}-d-1$.
$m_{j}:=2^{a+2}(c+d-j)-2 d+j$, where $(2 j-d)=a(d-j)+c$ for $0 \leq c<d-j$.

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

Naïve idea: Let $F \in \Delta$ with $\operatorname{dim} F=j$.

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

Naïve idea: Let $F \in \Delta$ with $\operatorname{dim} F=j$.

$$
\begin{array}{ll}
\Rightarrow & \operatorname{sd}(\Delta)_{\{\emptyset \neq G \subsetneq F\}}=\operatorname{sd}(\partial(F)) \cong \mathbb{S}^{j-1} \\
\Rightarrow & \beta_{2^{j+1}-2-j, 2^{j+1}-2}(\mathbb{K}[\operatorname{sd}(\Delta)]) \neq 0
\end{array}
$$

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

Naïve idea: Let $F \in \Delta$ with $\operatorname{dim} F=j$.

$$
\begin{array}{ll}
\Rightarrow & \operatorname{sd}(\Delta)_{\{\emptyset \neq G \subsetneq F\}}=\operatorname{sd}(\partial(F)) \cong \mathbb{S}^{j-1} \\
\Rightarrow & \beta_{2^{j+1}-2-j, 2^{j+1}-2}(\mathbb{K}[\operatorname{sd}(\Delta)]) \neq 0
\end{array}
$$

But: $2^{j+1}-2-j>j$ is not good enough!

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

How can we do better?

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

How can we do better?

- Induced subcomplexes of $\operatorname{sd}\left(\Delta_{d-1}\right)$ are flag.

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

How can we do better?

- Induced subcomplexes of $\operatorname{sd}\left(\Delta_{d-1}\right)$ are flag.
- A flag $(j-1)$-sphere has at least $2 j$ vertices (realized by the boundary of the cross polytope).

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

How can we do better?

- Induced subcomplexes of $\operatorname{sd}\left(\Delta_{d-1}\right)$ are flag.
- A flag $(j-1)$-sphere has at least $2 j$ vertices (realized by the boundary of the cross polytope).
$\Rightarrow \beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right)=0$ for $1 \leq i \leq j-1$.

Proof of the lower bound

Let $1 \leq j \leq \frac{d}{2}$. Need to show

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \begin{cases}=0 & \text { for } 1 \leq i \leq j-1 \\ \neq 0 & \text { for } i=j .\end{cases}
$$

How can we do better?

- Induced subcomplexes of $\operatorname{sd}\left(\Delta_{d-1}\right)$ are flag.
- A flag $(j-1)$-sphere has at least $2 j$ vertices (realized by the boundary of the cross polytope).

$$
\Rightarrow \beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right)=0 \text { for } 1 \leq i \leq j-1 .
$$

Idea:
Construct induced subcomplexes that are boundaries of cross polytopes.

Minimal spheres: Cross polytopes

Recall:

The boundary of the j-dimensional cross polytope is the join of $j 0$-spheres.

Minimal spheres: Cross polytopes

Recall:

The boundary of the j-dimensional cross polytope is the join of $j 0$-spheres.
Example:

- $j=1$:
$1 \bullet \quad 2$

Minimal spheres: Cross polytopes

Recall:

The boundary of the j-dimensional cross polytope is the join of $j 0$-spheres.
Example:

- $j=1$:

- $j=2$:

Minimal spheres: Cross polytopes

Recall:

The boundary of the j-dimensional cross polytope is the join of $j 0$-spheres.
Example:

- $j=3$:

Outline

(1) Motivation

(2) The simplex case

- Barycentric subdivisions
- Edgewise subdivisions

Edgewise subdivisions

Edgewise subdivisions

- Basic idea: Edges are subdivided into r pieces.

Edgewise subdivisions

- Basic idea: Edges are subdivided into r pieces.
- Special regular subdivision of a simplicial complex.

Edgewise subdivisions

- Basic idea: Edges are subdivided into r pieces.
- Special regular subdivision of a simplicial complex.
- Δ and its $r^{\text {th }}$ edgewise subdivision $\Delta^{\langle r\rangle}$ have homeomorphic geometric realizations.

Edgewise subdivisions

- Basic idea: Edges are subdivided into r pieces.
- Special regular subdivision of a simplicial complex.
- Δ and its $r^{\text {th }}$ edgewise subdivision $\Delta^{\langle r\rangle}$ have homeomorphic geometric realizations.
- Δ flag $\Rightarrow \Delta^{\langle r\rangle}$ flag.

From edgewise subdivisions to Veronese algebras

Theorem (Brun, Römer)

Δ simplicial complex on vertex set $[n], r \geq 1$.
Let

$$
A^{\langle r\rangle}=\mathbb{K}\left[x_{i_{1}, \ldots, i_{n}}: i_{1}+\cdots+i_{n}=r\right] .
$$

From edgewise subdivisions to Veronese algebras

Theorem (Brun, Römer)

Δ simplicial complex on vertex set $[n], r \geq 1$.
Let

$$
A^{\langle r\rangle}=\mathbb{K}\left[x_{i_{1}, \ldots, i_{n}}: i_{1}+\cdots+i_{n}=r\right] .
$$

Let $I^{(r)} \subseteq A^{\langle r\rangle}$ such that $\mathbb{K}[\Delta]^{(r)} \cong A^{\langle r\rangle} / I^{(r)}$.

From edgewise subdivisions to Veronese algebras

Theorem (Brun, Römer)

Δ simplicial complex on vertex set $[n], r \geq 1$.
Let

$$
A^{\langle r\rangle}=\mathbb{K}\left[x_{i_{1}, \ldots, i_{n}}: i_{1}+\cdots+i_{n}=r\right] .
$$

Let $I^{(r)} \subseteq A^{\langle r\rangle}$ such that $\mathbb{K}[\Delta]^{(r)} \cong A^{\langle r\rangle} / I^{(r)}$.
Then there exists a term order \preceq such that $I_{\Delta^{(r)}}=\operatorname{in}_{\preceq}\left(I^{(r)}\right)$.

From edgewise subdivisions to Veronese algebras

Theorem (Brun, Römer)

Δ simplicial complex on vertex set $[n], r \geq 1$.
Let

$$
A^{\langle r\rangle}=\mathbb{K}\left[x_{i_{1}, \ldots, i_{n}}: i_{1}+\cdots+i_{n}=r\right] .
$$

Let $I^{(r)} \subseteq A^{\langle r\rangle}$ such that $\mathbb{K}[\Delta]^{(r)} \cong A^{\langle r\rangle} / I^{(r)}$.
Then there exists a term order \preceq such that $I_{\Delta^{(r)}}=\operatorname{in}_{\preceq}\left(I^{(r)}\right)$.

$$
\Rightarrow \beta_{i, i+j}\left(\mathbb{K}\left[\Delta^{\langle r\rangle}\right]\right) \geq \beta_{i, i+j}\left(\mathbb{K}[\Delta]^{(r)}\right)
$$

From edgewise subdivisions to Veronese algebras

Theorem (Brun, Römer)

Δ simplicial complex on vertex set $[n], r \geq 1$.
Let

$$
A^{\langle r\rangle}=\mathbb{K}\left[x_{i_{1}, \ldots, i_{n}}: i_{1}+\cdots+i_{n}=r\right] .
$$

Let $I^{(r)} \subseteq A^{\langle r\rangle}$ such that $\mathbb{K}[\Delta]^{(r)} \cong A^{\langle r\rangle} / I^{(r)}$.
Then there exists a term order \preceq such that $I_{\Delta(r)}=\operatorname{in}_{\preceq}\left(I^{(r)}\right)$.

$$
\Rightarrow \beta_{i, i+j}\left(\mathbb{K}\left[\Delta^{\langle r\rangle}\right]\right) \geq \beta_{i, i+j}\left(\mathbb{K}[\Delta]^{(r)}\right) .
$$

We can apply the results of Ein, Lazarsfeld and Erman if Δ is Cohen-Macaulay.

The edgewise subdivision of the simplex

For edgewise subdivisions ($r \geq d$) we have

Theorem (Conca, J.-K., Welker)

(i) If $1 \leq j \leq \frac{d}{2}$, then

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right)\left\{\begin{array}{l}
\neq 0 \text { for } j \leq i \leq \operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right], \\
=0 \text { for } 0 \leq i \leq j-1 .
\end{array}\right.
$$

The edgewise subdivision of the simplex

For edgewise subdivisions ($r \geq d$) we have

Theorem (Conca, J.-K., Welker)

(i) If $1 \leq j \leq \frac{d}{2}$, then

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right)\left\{\begin{array}{l}
\neq 0 \text { for } j \leq i \leq \operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right] \\
=0 \text { for } 0 \leq i \leq j-1
\end{array}\right.
$$

(ii) If $\frac{d}{2}<j \leq d-2$, then

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right)\left\{\begin{array}{l}
\neq 0 \text { for } m_{j} \leq i \leq \operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right], \\
=0 \text { for } 0 \leq i \leq j-1 .
\end{array}\right.
$$

$m_{j}:=2^{a+2}(c+d-j)-2 d+j$, where $(2 j-d)=a(d-j)+c$ for $0 \leq c<d-j$.

The edgewise subdivision of the simplex

For edgewise subdivisions ($r \geq d$) we have

Theorem (Conca, J.-K., Welker)

(i) If $1 \leq j \leq \frac{d}{2}$, then

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right)\left\{\begin{array}{l}
\neq 0 \text { for } j \leq i \leq \operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right] \\
=0 \text { for } 0 \leq i \leq j-1
\end{array}\right.
$$

(ii) If $\frac{d}{2}<j \leq d-2$, then

$$
\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right)\left\{\begin{array}{l}
\neq 0 \text { for } m_{j} \leq i \leq \operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right], \\
=0 \text { for } 0 \leq i \leq j-1 .
\end{array}\right.
$$

(iii) $\beta_{i, i+d-1}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right) \neq 0$ for $2^{d}-d-1 \leq i \leq \operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]$.
$m_{j}:=2^{a+2}(c+d-j)-2 d+j$, where $(2 j-d)=a(d-j)+c$ for $0 \leq c<d-j$.

The edgewise subdivision of the simplex

Note

We have the same lower bounds as for the barycentric subdivision.

The edgewise subdivision of the simplex

Note

We have the same lower bounds as for the barycentric subdivision. Why?

The edgewise subdivision of the simplex

Note

We have the same lower bounds as for the barycentric subdivision. Why?
The strands in the Betti table go until the very end!

Proof of the lower bound

Key observation:

Proof of the lower bound

Key observation:
Let $r \geq d$ and let v be a vertex in the interior of $\Delta_{d-1}^{\langle r\rangle}$.

Proof of the lower bound

Key observation:
Let $r \geq d$ and let v be a vertex in the interior of $\Delta_{d-1}^{\langle r\rangle}$. Then

$$
\mathrm{lk}_{\Delta_{d-1}^{\langle r\rangle}}(v)=\left\{F: F \cup\{v\} \in \Delta_{d-1}^{\langle r\rangle}, v \notin F\right\}
$$

is isomorphic to the boundary of the barycentric subdivision of Δ_{d-1}.

Proof of the lower bound

Key observation:
Let $r \geq d$ and let v be a vertex in the interior of $\Delta_{d-1}^{\langle r\rangle}$. Then

$$
\mathrm{lk}_{\Delta_{d-1}^{\langle r\rangle}}(v)=\left\{F: F \cup\{v\} \in \Delta_{d-1}^{\langle r\rangle}, v \notin F\right\}
$$

is isomorphic to the boundary of the barycentric subdivision of Δ_{d-1}.
Idea: Consider restrictions of this subcomplex.

Proof of the lower bound

Key observation:
Let $r \geq d$ and let v be a vertex in the interior of $\Delta_{d-1}^{\langle r\rangle}$. Then

$$
\mathrm{lk}_{\Delta_{d-1}^{\langle r\rangle}}(v)=\left\{F: F \cup\{v\} \in \Delta_{d-1}^{\langle r\rangle}, v \notin F\right\}
$$

is isomorphic to the boundary of the barycentric subdivision of Δ_{d-1}.
Idea: Consider restrictions of this subcomplex.
\Rightarrow If $\beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{sd}\left(\Delta_{d-1}\right)\right]\right) \neq 0$, then $\beta_{i, i+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right) \neq 0$.
\Rightarrow We obtain the same lower bounds.

Proof of the upper bound

Let $1 \leq j \leq d-1, r \geq d$.
$p=\operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]$.

Proof of the upper bound

Let $1 \leq j \leq d-1, r \geq d$.
$p=\operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]$.
Need to show:

$$
\beta_{p, p+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right) \neq 0 .
$$

Proof of the upper bound

Let $1 \leq j \leq d-1, r \geq d$.
$p=\operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]$.
Need to show:

$$
\beta_{p, p+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right) \neq 0 .
$$

For this we show the following:

Topological lemma (Conca, J.-K., Welker)

Let Δ be a simplicial complex on vertex set Ω such that $|\Delta|$ is a regular triangulation of a $(d-1)$-ball.

Proof of the upper bound

Let $1 \leq j \leq d-1, r \geq d$.
$p=\operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]$.
Need to show:

$$
\beta_{p, p+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right) \neq 0 .
$$

For this we show the following:

Topological lemma (Conca, J.-K., Welker)

Let Δ be a simplicial complex on vertex set Ω such that $|\Delta|$ is a regular triangulation of a $(d-1)$-ball.
Let $F \in \Delta$ such that $\partial|F|=|F| \cap \partial|\Delta|$.

Proof of the upper bound

Let $1 \leq j \leq d-1, r \geq d$.
$p=\operatorname{pdim} \mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]$.
Need to show:

$$
\beta_{p, p+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right) \neq 0 .
$$

For this we show the following:

Topological lemma (Conca, J.-K., Welker)

Let Δ be a simplicial complex on vertex set Ω such that $|\Delta|$ is a regular triangulation of a $(d-1)$-ball.
Let $F \in \Delta$ such that $\partial|F|=|F| \cap \partial|\Delta|$.
Then,

$$
\widetilde{H}_{d-1-\# F}\left(\left|\Delta_{\Omega \backslash F}\right| ; \mathbb{K}\right) \neq 0 .
$$

Proof of the upper bound (cont'd)

- There exists $F \in \Delta_{d-1}^{\langle r\rangle}$ such that
- $\# F=d-j$ and
- $\partial|F|=|F| \cap \partial|\Delta|$.

Proof of the upper bound (cont'd)

- There exists $F \in \Delta_{d-1}^{\langle r\rangle}$ such that
- \#F $=d-j$ and
- $\partial|F|=|F| \cap \partial|\Delta|$.
- Apply the topological lemma to conclude:

$$
\widetilde{H}_{d-1-(d-j)}\left(\left|\left(\Delta_{d-1}^{\langle r\rangle}\right)_{\Omega \backslash F}\right| ; \mathbb{K}\right) \neq 0
$$

where Ω is the vertex set of $\Delta_{d-1}^{\langle r\rangle}$.

Proof of the upper bound (cont'd)

- There exists $F \in \Delta_{d-1}^{\langle r\rangle}$ such that
- \#F $=d-j$ and
- $\partial|F|=|F| \cap \partial|\Delta|$.
- Apply the topological lemma to conclude:

$$
\widetilde{H}_{d-1-(d-j)}\left(\left|\left(\Delta_{d-1}^{\langle r\rangle}\right)_{\Omega \backslash F}\right| ; \mathbb{K}\right) \neq 0
$$

where Ω is the vertex set of $\Delta_{d-1}^{\langle r\rangle}$.
$\Rightarrow \beta_{p, p+j}\left(\mathbb{K}\left[\Delta_{d-1}^{\langle r\rangle}\right]\right) \neq 0$

Outline

(1) Motivation

(2) The simplex case

- Barycentric subclivisions
- Edgewise subdivisions
(3) Asymptotic behavior

Asymptotic behavior

$\Delta(d-1)$-dimensional simplicial complex
$\Delta(r) r^{\text {th }}$ barycentric or $r^{\text {th }}$ edgewise subdivision of Δ

Asymptotic behavior

$\Delta(d-1)$-dimensional simplicial complex
$\Delta(r) r^{\text {th }}$ barycentric or $r^{\text {th }}$ edgewise subdivision of Δ
Theorem (Conca, J.-K., Welker)
For $1 \leq j \leq d-1$:

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+j}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim}(\mathbb{K}[\Delta(r)])}=1 .
$$

Strategy of the proof

- "Isolate" the barycentric subdivision of a $(d-1)$-simplex F from the rest of $\operatorname{sd}^{r}(\Delta)$.

Strategy of the proof

- "Isolate" the barycentric subdivision of a ($d-1$)-simplex F from the rest of $\operatorname{sd}^{r}(\Delta)$.
- Consider subcomplexes $\operatorname{sd}(\Delta)_{A \cup B}$, where
- A is a subset of the vertices of $\operatorname{sd}(F)$,
- B is a subset of the vertices outside $\operatorname{sd}(F)$ that are not connected to any vertex of $\operatorname{sd}(F)$.

Strategy of the proof

- "Isolate" the barycentric subdivision of a $(d-1)$-simplex F from the rest of $\operatorname{sd}^{r}(\Delta)$.
- Consider subcomplexes $\operatorname{sd}(\Delta)_{A \cup B}$, where
- A is a subset of the vertices of $\operatorname{sd}(F)$,
- B is a subset of the vertices outside $\operatorname{sd}(F)$ that are not connected to any vertex of $\operatorname{sd}(F)$.
- Apply the results for the $(d-1)$-simplex to F and choose A such that $\operatorname{sd}(F)_{A} \cong \mathbb{S}^{j-1}$ for a fixed j.

The special case $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

$\Delta(d-1)$-dimensional simplicial complex
$\Delta(r) r^{\text {th }}$ barycentric or $r^{\text {th }}$ edgewise subdivision of Δ Then:

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+d}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}=1-\frac{f_{d-1}^{\sigma}}{f_{d-1}^{\Delta}},
$$

where

- σ is a minimal ($d-1$)-homology cycle,
- f_{d-1}^{Δ} is the number of $(d-1)$-faces of Δ,
- f_{d-1}^{σ} is the number of $(d-1)$-faces of σ.

The special case $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+d}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}=1-\frac{f_{d-1}^{\sigma}}{f_{d-1}^{\Delta}}
$$

The special case $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+d}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}=1-\frac{f_{d-1}^{\sigma}}{f_{d-1}^{\Delta}}
$$

Example:

- Let Δ_{1} be a triangulation of \mathbb{S}^{d-1} with p facets.

The special case $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+d}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}=1-\frac{f_{d-1}^{\sigma}}{f_{d-1}^{\Delta}}
$$

Example:

- Let Δ_{1} be a triangulation of \mathbb{S}^{d-1} with p facets.
- Let Δ_{2} consist of q disjoint $(d-1)$-simplices.

The special case $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+d}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}=1-\frac{f_{d-1}^{\sigma}}{f_{d-1}^{\Delta}}
$$

Example:

- Let Δ_{1} be a triangulation of \mathbb{S}^{d-1} with p facets.
- Let Δ_{2} consist of q disjoint ($d-1$)-simplices.
- $\Delta=\Delta_{1} \cup \Delta_{2}$

The special case $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+d}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}=1-\frac{f_{d-1}^{\sigma}}{f_{d-1}^{\Delta}}
$$

Example:

- Let Δ_{1} be a triangulation of \mathbb{S}^{d-1} with p facets.
- Let Δ_{2} consist of q disjoint $(d-1)$-simplices.
- $\Delta=\Delta_{1} \cup \Delta_{2}$
- Then Δ_{1} is a minimal homology $(d-1)$-cycle and the limit is

$$
1-\frac{p}{p+q}=\frac{q}{p+q} .
$$

The special case $\widetilde{H}_{d-1}(\Delta ; \mathbb{K}) \neq 0$

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+d}(\mathbb{K}[\Delta(r)]) \neq 0\right\}}{\operatorname{pdim} \mathbb{K}[\Delta(r)]}=1-\frac{f_{d-1}^{\sigma}}{f_{d-1}^{\Delta}}
$$

Example:

- Let Δ_{1} be a triangulation of \mathbb{S}^{d-1} with p facets.
- Let Δ_{2} consist of q disjoint $(d-1)$-simplices.
- $\Delta=\Delta_{1} \cup \Delta_{2}$
- Then Δ_{1} is a minimal homology $(d-1)$-cycle and the limit is

$$
1-\frac{p}{p+q}=\frac{q}{p+q} .
$$

In particular, any rational number $[0,1)$ can occur as limit.

General Subdivisions

Theorem:

Let Δ be a $(d-1)$-dimensional simplicial complex und Sub be a subdivision operation that
(i) can be applied iteratively, and,
(ii) creates sufficiently many vertices inside a ($d-1$)-simplex.

General Subdivisions

Theorem:

Let Δ be a $(d-1)$-dimensional simplicial complex und Sub be a subdivision operation that
(i) can be applied iteratively, and,
(ii) creates sufficiently many vertices inside a ($d-1$)-simplex.

If for some $1 \leq j \leq d-1$ there are $i_{0}, r_{0} \geq 1$ such that $\beta_{i_{0}, i_{0}+j}\left(\mathbb{K}\left[\operatorname{Sub}^{r_{0}}(\Delta)\right]\right) \neq 0$, then

General Subdivisions

Theorem:

Let Δ be a $(d-1)$-dimensional simplicial complex und Sub be a subdivision operation that
(i) can be applied iteratively, and,
(ii) creates sufficiently many vertices inside a ($d-1$)-simplex.

If for some $1 \leq j \leq d-1$ there are $i_{0}, r_{0} \geq 1$ such that $\beta_{i_{0}, i_{0}+j}\left(\mathbb{K}\left[\operatorname{Sub}^{r_{0}}(\Delta)\right]\right) \neq 0$, then

$$
\lim _{r \rightarrow \infty} \frac{\#\left\{i: \beta_{i, i+j}\left(\mathbb{K}\left[\operatorname{Sub}^{r}(\Delta)\right]\right) \neq 0\right\}}{\operatorname{pdim}\left(\mathbb{K}\left[\operatorname{Sub}^{r}(\Delta)\right]\right)}=1 .
$$

Thank you for your attention!

