Extreme eigenvalue distributions of β-Jacobi ensembles and an application

Ioana Dumitriu

Department of Mathematics
University of Washington (Seattle)

Banff International Research Centre

April 13, 2016
(1) Extreme value distributions for β-Hermite, -Laguerre, -Jacobi
(2) PDFs for special β-Jacobi $\left(\Sigma=I_{m}\right)$
(3) Application: RURV

- Efficiency
- Communication

4 More β-Jacobi eigenvalue calculations
(5) Numerics
(6) Conclusions

β-Hermite

- General $\beta>0$.
- $\lambda_{\text {max }}$
- Ramirez, Rider, Virag: asymptotic fluctuations given by stochastic Airy operator (following Edelman, Sutton).
- Explicit, exact distributions, n fixed?...
- Smallest (in absolute value) eigenvalues?...
- Perhaps not interesting; however, GUE absolute values (Edelman and La Croix) are a union of two Laguerre ensembles. What about β ?

β-Laguerre

- General $\beta>0$.
- $\lambda_{\text {max }}$
- Ramirez, Rider, Virag: asymptotic scaled fluctuations given by the stochastic Airy operator; scale depends on matrix dimensions.
- One size much larger than the other: Jiang and Li showed scaled fluctuation converges to stochastic Airy operator limit. (Also LDP.)
- CDF, PDF for $\lambda_{\max }$ in terms of hypergeometric functions of matrix argument (see Koev et al survey-like paper)
- $\lambda_{\text {min }}$
- Ramirez, Rider: asymptotic fluctuations given by stochastic Bessel operator (following Edelman, Sutton); when dimensions differ by a constant. Also tail analysis by Ramirez, Rider, Zeitouni.
- Asymptotics for some cases covered by Forrester through a hypergeometric function limit.
- Finite n : CDF for $\lambda_{\text {min }}$ in terms of a hypergeometric function, PDF only in certain cases (when the hypergeometric terminates)

β-Jacobi

- General $\beta>0$.
- CDF, PDF for $\lambda_{\text {min }}$ and $\lambda_{\max }$ (Koev and D., D., Koev et al.)
- $\lambda_{\text {max }}$
- RRV?
- Jiang: in special cases, stochastic Airy operator limits.
- Forrester: LD for asymptotic distribution for finite aspect ratio.
- $\lambda_{\text {min }}$
- D.: special cases, Tricomi/Bessel/hypegeometric function asymptotics.
- ?

β-Wishart, MANOVA $\left(\Sigma \neq I_{n}\right)$

- β-Wishart
- CDFs derived in Koev et al.
- No asymptotics.
- In special cases (spiked model); Bloemendal and Virag, Ramirez and Rider.
- β-MANOVA
- CDF for $\lambda_{\max }$ derived in Dubbs and Edelman.
- No asymptotics.

A quick demonstration for $\lambda_{\text {min }}$

Start off with the eigenvalue $\operatorname{pdf}\left(\lambda_{1} \geq \ldots \geq \lambda_{m}\right)$:

$$
\tilde{f}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \propto \prod_{i=1}^{m} \lambda_{i}^{\frac{\beta}{2}(a+1)-1}\left(1-\lambda_{i}\right)^{\frac{\beta}{2}(b+1)-1} \Delta^{\beta}\left(\lambda_{1}, \ldots, \lambda_{m}\right)
$$

then integrate out all but the first and get (with $\lambda=\lambda_{m}$ and $\left.d \lambda=d \lambda_{1} \ldots d \lambda_{m-1}\right)$:

$$
\begin{aligned}
f(\lambda) \propto & \lambda^{\frac{\beta}{2}(a+1)-1}(1-\lambda)^{\frac{\beta}{2}(b+1)-1} \times \\
& \int_{[\lambda, 1]^{m-1}} \prod_{i=1}^{m-1} \lambda_{i}^{\frac{\beta}{2}(a+1)-1}\left(1-\lambda_{i}\right)^{\frac{\beta}{2}(b+1)-1}\left(\lambda_{i}-\lambda\right)^{\beta} \Delta^{\beta}\left(\lambda_{1}, \ldots, \lambda_{m-1}\right) d \lambda .
\end{aligned}
$$

A quick demonstration for $\lambda_{\text {min }}$

Changing variables to $x_{i}=\frac{1-\lambda_{i}}{1-\lambda}$, mapping $[\lambda, 1]$ to $[0,1]$, we get $f(\lambda) \quad \propto \quad \lambda^{\frac{\beta}{2}(a+1)-1}(1-\lambda)^{\frac{\beta}{2}(b+1)-1} \times$

$$
\int_{[0,1]^{m-1}} \prod_{i=1}^{m-1} x_{i}^{\frac{\beta}{2}(b+1)-1}\left(1-x_{i}\right)^{\beta}\left(1-x_{i}(1-\lambda)\right)^{\frac{\beta}{2}(a+1)-1} \Delta^{\beta}\left(x_{1}, \ldots, x_{m-1}\right) d x .
$$

Crucially, following Forrester,

$$
\begin{gathered}
\int_{[0,1]^{m-1}} \prod_{i=1}^{m-1} x_{i}^{\frac{\beta}{2}(b+1)-1}\left(1-x_{i}\right)^{\beta}\left(1-x_{i}(1-\lambda)\right)^{\frac{\beta}{2}(a+1)-1} \Delta^{\beta}\left(x_{1}, \ldots, x_{m-1}\right) d x= \\
{ }_{2} F_{1}^{2 / \beta}\left(1-\frac{\beta}{2}(a+1), \frac{\beta}{2}(b+m-1) ; \frac{\beta}{2}(b+m-1)+1 ;(1-\lambda) I_{m-1}\right),
\end{gathered}
$$

A quick demonstration for $\lambda_{\text {min }}$

Therefore, thanks to the hypergeometric function, the pdf of $\lambda_{\text {min }}$ is

$$
\begin{aligned}
f(\lambda) \propto & \lambda^{\frac{\beta}{2}(a+1)-1}(1-\lambda)^{\frac{\beta}{2} m(b+m)-1} \times \\
& { }_{2} F_{1}^{2 / \beta}\left(1-\frac{\beta}{2}(a+1), \frac{\beta}{2}(b+m-1) ; \frac{\beta}{2}(b+m-1)+1 ;(1-\lambda) I_{m-1}\right) .
\end{aligned}
$$

As a corollary we can get the distribution of $\lambda_{\max }$ as well.

Why care?

Application: RURV, a randomized, efficient, communication-optimal, and very-likely-to-work way to find the numerical rank of a product of matrices and inverses. Part of a similarly bells-and-whistles Divide-and-Conquer algorithm for computing non-symmetric eigenvalues.

Why care?

Application: RURV, a randomized, efficient, communication-optimal, and very-likely-to-work way to find the numerical rank of a product of matrices and inverses. Part of a similarly bells-and-whistles Divide-and-Conquer algorithm for computing non-symmetric eigenvalues.

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two $n \times n$ matrices?

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two $n \times n$ matrices? undergraduate student answer: $O\left(n^{3}\right)$

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two $n \times n$ matrices?
undergraduate student answer: $O\left(n^{3}\right)$
graduate student answer: $O\left(n^{\omega}\right)$, where $\omega<2.3729$

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two $n \times n$ matrices?
undergraduate student answer: $O\left(n^{3}\right)$
graduate student answer: $O\left(n^{\omega}\right)$, where $\omega<2.3729$
But are the results of the fast algorithm accurate?

Efficiency: matrix multiplication exponent

How many ops involved in multiplying two $n \times n$ matrices?
undergraduate student answer: $O\left(n^{3}\right)$
graduate student answer: $O\left(n^{\omega}\right)$, where $\omega<2.3729$
But are the results of the fast algorithm accurate?
Demmel, D., Holtz: if the algorithm exists, we can make it stable.

Efficiency: rank-revealing algorithms

How many ops involved in rank-revealing?

All "serious" algorithms do at least one matrix multiplication, so at least $O\left(n^{\omega}\right)$.

Demmel, D. Holtz: RURV runs stably in $O\left(n^{\omega+\epsilon}\right)$ for any ϵ.

Why care?

Application: RURV, a randomized, efficient, communication-optimal, and very-likely-to-work way to find the numerical rank of a product of matrices and inverses. Part of a similarly bells-and-whistles Divide-and-Conquer algorithm for computing non-symmetric eigenvalues.

Communication Cost Model

Algorithms have two costs:
(1) arithmetic (flops)
(2) communication: moving data between

- levels of a memory hierarchy (sequential case)
- processors over a network (parallel case)

Communication Cost Model

- Running time of an algorithm is sum of 3 terms:
- \# flops * time per flop
- \# words moved / bandwidth
- \# messages * latency

Communication Cost Model

- Exponentially growing gaps between
- Sequentially:
time per flop $\ll 1 /$ network $\mathrm{BW} \ll$ network latency
improving 59% per year vs. 26% per year vs. 15% per year
- In parallel:
time per flop $\ll 1 /$ memory $\mathrm{BW} \ll$ memory latency improving 59% per year vs. 23% per year vs. 5.5% per year
- Need to reorganize linear algebra to avoid communication (\# words and \# messages moved)

Limits and optimality

There is such a thing as minimal cost for algorithms (Ballard, Demmel, Holtz, Schwartz), and RURV is nearly cost-optimal (and worth it for large matrices).

RURV

A rank-revealing decomposition $(A=U R V$ with U, V orthogonal/unitary and R upper triangular) that works on products of matrices and inverses, e.g. $A B^{-1}$, without forming the inverse.

RURV

Starting with a matrix A, generate a decomposition $A=U R V$ with R upper triangular, U, V orthogonal/unitary.

- Generate a random Gaussian B.
- $[V, \hat{R}]=\mathrm{QR}(B)$ (generate a Haar orthogonal/unitary V).
- $\hat{A}=A \cdot V^{H}$
- $[U, R]=\mathrm{QR}(\hat{A})$.
- Output U, R, V.

Why not QR outright?

Because

- if numerical rank is small, unless one does pivoting, not guaranteed to work well
- recall we want it to work on products of matrices and inverses; how to do QR on that without doing the product?

Generalized RURV (GRURV)

Want to find a rank-revealing factorization for $A^{-1} B$, but only need the left invariant spaces for our applications.

- $\left[U_{2}, R_{2}, V\right]=\operatorname{RURV}(B)$;
- $R_{1} U_{1}=\mathrm{RQ}\left(U_{2}^{H} A\right)$,
- Output U_{1}.

Note that

$$
A^{-1} B=\left(U_{2} R_{1} U_{1}\right)^{-1}\left(U_{2} R_{2} V\right)=U_{1}^{H}\left(R_{1}^{-1} R_{2}\right) V
$$

and we only need U_{1} for our applications.

Why it works

Theorem (Ballard, Demmel, D., Melgaard '16+)
GRURV computes the RURV for $A^{-1} B$ and it is backward stable.

Theorem (BDDM'16+)

RURV computes a strong rank-revealing decomposition for A and it is backward stable.

RURV is strong

Let A be of numerical rank k (with a large gap between σ_{k} and σ_{k+1}).
Pick a Haar matrix V and then do QR on $A V^{H}$ to get U, R. Then
$A=U R V ; R=\left[\begin{array}{ll}R_{11} & R_{12} \\ & R_{22}\end{array}\right]$ and the following

- $\sigma_{\min }\left(R_{11}\right)$ is a good approximation to σ_{k}
- $\sigma_{\max }\left(R_{22}\right)$ is a good approximation to σ_{k+1}
- $\left\|R_{11}^{-1} R_{12}\right\|$ is small

All this happens with probability $1-\delta$; making δ smaller increases the arithmetic costs.

The analysis hinges on knowing the distribution of the smallest singular value of the $k \times k$ principal minor for the Haar matrix V.

The smallest singular value of a $k \times k$ minor of V

It is known (Collins '03,'05, Sutton '06) that a $k \times k$ principal minor of a Haar matrix has eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ distributed like the Jacobi ensembles:

$$
f\left(\lambda_{1}, \ldots, \lambda_{k}\right) \propto \prod_{i=1}^{k} \lambda_{i}^{\beta / 2-1}\left(1-\lambda_{i}\right)^{\beta(n-2 k+1) / 2-1} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}
$$

where $\beta=1,2$ for real/complex.

The smallest singular value of a $k \times k$ minor of V

Theorem (D.)

The pdf of the smallest singular value for a Jacobi ensemble as above, $\beta=2$, is

$$
f_{k, n}(x) \propto x^{-1 / 2}(1-x)^{\frac{1}{2} k(n-k)-1}{ }_{2} F_{1}\left(\frac{1}{2}(n-k-1), \frac{1}{2}(k-1) ; \frac{1}{2}(n-1)+1 ;(1-x)\right) .
$$

How do we get usable formulae/asymptotics?

Recall that the pdf of $\lambda_{\text {min }}$ is

$$
\begin{aligned}
f(\lambda) \propto & \quad \lambda^{\frac{\beta}{2}(a+1)-1}(1-\lambda)^{\frac{\beta}{2} m(b+m)-1} \times \\
& { }_{2} F_{1}{ }^{2 / \beta}\left(1-\frac{\beta}{2}(a+1), \frac{\beta}{2}(b+m-1) ; \frac{\beta}{2}(b+m-1)+1 ;(1-\lambda) I_{m-1}\right) .
\end{aligned}
$$

The issue here is the $(1-\lambda)$.

Making the hypergeometric a polynomial, or simple

$$
{ }_{2} F_{1}{ }^{2 / \beta}\left(1-\frac{\beta}{2}(a+1), \frac{\beta}{2}(b+m-1) ; \frac{\beta}{2}(b+m-1)+1 ;(1-\lambda) I_{m-1}\right)
$$

- If $\frac{\beta}{2}(a+1)-1 \in \mathbb{Z}_{\geq 0}$, series terminates. Kummer relationships (Forrester) allow you to use a slightly different formula for the hypergeometric integral, which can be analyzed asymptotically
- If $1-\frac{\beta}{2}(a+1)=\frac{\beta}{2}$, then the hypergeometric becomes a classical one.
- It stands to reason that there may be other cases that are analyzable; the problem is open.

Case 1: $\frac{\beta}{2}(a+1)-1=k \in \mathbb{Z}_{\geq 0}$

Can obtain the distribution of the smallest eigenvalue:

$$
\begin{aligned}
f_{m}(\lambda) \propto & \lambda^{k-1}(1-\lambda)^{\frac{\beta}{2} m(b+m)-1} \\
& \times{ }_{2} F_{1}^{4 / \beta}\left(1-m,-m-b+1 ; 2+\frac{2}{\beta}(k-1) ;\{\lambda\}^{k-1}\right),
\end{aligned}
$$

Asymptotics: m fixed, $b \rightarrow \infty$; scale $y=(b+m) \lambda$ to get

$$
f_{m}(y) \propto y^{k-1} e^{-\beta m y / 2}{ }_{1} F_{1}{ }^{4 / \beta}\left(1-m, 2+\frac{2}{\beta}(k-1) ;\{-y\}^{k-1}\right) .
$$

If $\beta=2, k=1$ (Haar unitary matrix!), get exactly $f_{m}(y)=m e^{-m y / 2}$.

Case 1: $\frac{\beta}{2}(a+1)-1=k \in \mathbb{Z}_{\geq 0}$

Can obtain the distribution of the smallest eigenvalue:

$$
\begin{aligned}
f_{m}(\lambda) \propto & \lambda^{k-1}(1-\lambda)^{\frac{\beta}{2} m(b+m)-1} \\
& \times{ }_{2} F_{1}{ }^{4 / \beta}\left(1-m,-m-b+1 ; 2+\frac{2}{\beta}(k-1) ;\{\lambda\}^{k-1}\right),
\end{aligned}
$$

Asymptotics: $m,(b+m) \rightarrow \infty$; scale $y=m(b+m) \lambda$ to get

$$
f(y) \propto y^{k-1} e^{-\beta y / 2}{ }_{0} F_{1}^{4 / \beta}\left(2+\frac{2}{\beta}(k-1) ; y^{k-1}\right) .
$$

If $\beta=2, k=1$ (Haar unitary matrix!), get exactly $f(y)=e^{-y}$.

Case 2: $a=\frac{2}{\beta}-2$

After a bit of manipulation, can obtain that

$$
\begin{aligned}
f_{\beta, b, m}(\lambda) & =\tilde{C}_{\beta, b, m} \lambda^{-\beta / 2}(1-\lambda)^{\beta m(b+m) / 2-1} \\
& \times\left(\frac{1}{\Gamma\left(-\frac{\beta}{2}\right) \Gamma\left(\frac{\beta m}{2}+1\right)}{ }_{2} F_{1}\left(\frac{\beta(b+m-1)}{2}, \frac{\beta(m-1)}{2} ;-\frac{\beta}{2} ; \lambda\right)\right. \\
& \left.-\lambda^{1+\beta / 2} \frac{1}{\Gamma\left(\frac{\beta}{2}+2\right) \Gamma\left(\frac{\beta(m-1)}{2}\right)} \frac{\Gamma\left(\frac{\beta(b+m)}{2}+1\right)}{\Gamma\left(\frac{\beta(b+m-1)}{2}\right)}{ }_{2} F_{1}\left(\frac{\beta m}{2}+1, \frac{\beta(b+m)}{2}+1 ; 2+\frac{\beta}{2} ; \lambda\right)\right)
\end{aligned}
$$

Asymptotics: m fixed, $b \rightarrow \infty$; scale $y=(b+m) \lambda$ to get

$$
f_{m}(y) \propto y^{-\beta / 2} e^{-m y} U\left(\frac{\beta}{2}(m-1) ;-\frac{\beta}{2} ; y\right)
$$

with U the Tricomi function.

Case 2: $a=\frac{2}{\beta}-2$

After a bit of manipulation, can obtain that

$$
\begin{aligned}
f_{\beta, b, m}(\lambda) & =\tilde{C}_{\beta, b, m} \lambda^{-\beta / 2}(1-\lambda)^{\beta m(b+m) / 2-1} \\
& \times\left(\frac{1}{\Gamma\left(-\frac{\beta}{2}\right) \Gamma\left(\frac{\beta m}{2}+1\right)}{ }_{2} F_{1}\left(\frac{\beta(b+m-1)}{2}, \frac{\beta(m-1)}{2} ;-\frac{\beta}{2} ; \lambda\right)\right. \\
& \left.-\lambda^{1+\beta / 2} \frac{1}{\Gamma\left(\frac{\beta}{2}+2\right) \Gamma\left(\frac{\beta(m-1)}{2}\right)} \frac{\Gamma\left(\frac{\beta(b+m)}{2}+1\right)}{\Gamma\left(\frac{\beta(b+m-1)}{2}\right)}{ }_{2} F_{1}\left(\frac{\beta m}{2}+1, \frac{\beta(b+m)}{2}+1 ; 2+\frac{\beta}{2} ; \lambda\right)\right)
\end{aligned}
$$

Asymptotics: m fixed, $b+m \rightarrow \infty$; scale $y=\beta m(b+m) \lambda / 2$ to get

$$
f(y) \propto y^{\frac{1}{2}-\beta / 4} e^{-y} K_{1+\frac{\beta}{2}}(\sqrt{2 \beta y})
$$

with K the modified Bessel function. This corresponds to complex Haar and (if wanted) quaternion Haar matrices.

Pretty pictures

The following tests were made possible by the cool multivariate hypergeometric package $\mathbf{m g h}$, by Plamen Koev; and also by the β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

Figure: The solid red line represents the theoretical distribution; the normalized histogram represents the results of a Monte Carlo experiment with 10, 000 trials.

Pretty pictures

The following tests were made possible by the cool multivariate hypergeometric package $\mathbf{m g h}$, by Plamen Koev; and also by the β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

Figure: The solid red line represents the asymptotical $(b=\infty)$ distribution, while the normalized histogram represents the results of a Monte Carlo experiment for $b=10$, with 10,000 trials.

Pretty pictures

The following tests were made possible by the cool multivariate hypergeometric package $\mathbf{m g h}$, by Plamen Koev; and also by the β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

Figure: The solid red line represents the asymptotical $(m, b=\infty)$ distribution, while the normalized histogram represents the results of a Monte Carlo experiment for $m=5, b=5$, with 5,000 trials.

Pretty pictures

The following tests were made possible by the cool multivariate hypergeometric package $\mathbf{m g h}$, by Plamen Koev; and also by the β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

Figure: The solid red line represents the asymptotical $(b=\infty)$ distribution, while the normalized histogram represents the results of a Monte Carlo experiment for $b=50$, with 10,000 trials.

Pretty pictures

The following tests were made possible by the cool multivariate hypergeometric package $\mathbf{m g h}$, by Plamen Koev; and also by the β-Jacobi tridiagonal model due to Brian Sutton and Alan Edelman.

Figure: The solid red line represents the asymptotical $(m, b=\infty)$ distribution, while the normalized histogram represents the results of a Monte Carlo experiment for $m=15, b=50$, with 10,000 trials.

What to take home

- Still plenty of problems in computing extremal eigenvalue distributions, either for n fixed or asymptotically
- Hypergeometric functions are cool, but slightly unsatisfying; computable (but not for very large matrix sizes); work well in only some cases; more to uncover
- RMT has unexpected and interesting applications in scientific computing
- There's a world full of potential out-there.

