New well-posedness results for perfectly matched layers

Laurence HALPERN, Collaboration with Jeffrey RAUCH

$$
\text { LAGA - Université Paris } 13
$$

BIRS Workshop Computational and Numerical Analysis of Transient

 Problems in Acoustics, Elasticity, and Electromagnetism, january 19, 2016

Outline

1 Introduction

2 The Cauchy problem for constant coefficients

3 Smooth absorption (HPR, CM 2011)

4 Transmission problem, one absorption (HPR, CM 2011)

5 The 2D transmission problem for elliptic generator (HR, X-EDP 2013)

6 The full 3D analysis for Maxwell (HR,AIMS, 2016)

Bérenger, 1994 1996, Maxwell 2D and 3D.

Properties : Perfect matching, exponential decay.

$$
\begin{aligned}
L \mathcal{U}:= & \partial_{t} \mathcal{U}+A_{1} \partial_{x_{1}} \mathcal{U}+A_{2} \partial_{x_{2}} \mathcal{U}+A_{3} \partial_{x_{3}} \mathcal{U}=F, U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{N} \\
& L U:=\partial_{t} U+A_{1} \partial_{x_{1}} U+A_{2} \partial_{x_{2}} U+A_{3} \partial_{x_{3}} U=0
\end{aligned}
$$

Splitting \downarrow

$$
\begin{cases}\partial_{t} U^{1}+A_{1} \partial_{x_{1}}\left(U^{1}+U^{2}+U^{3}\right) & =0 \\ \partial_{t} U^{2}+A_{2} \partial_{x_{2}}\left(U^{1}+U^{2}+U^{3}\right) & =0 \\ \partial_{t} U^{3}+A_{3} \partial_{x_{3}}\left(U^{1}+U^{2}+U^{3}\right) & =0 \\ U=U^{1}+U^{2}+U^{3} & \end{cases}
$$

$$
\begin{gathered}
L \mathcal{U}:=\partial_{t} \mathcal{U}+A_{1} \partial_{x_{1}} \mathcal{U}+A_{2} \partial_{x_{2}} \mathcal{U}+A_{3} \partial_{x_{3}} \mathcal{U}=F, U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{N} \\
\partial_{t} U+A_{1} \partial_{x_{1}} U+A_{2} \partial_{x_{2}} U+A_{3} \partial_{x_{3}} U=0
\end{gathered}
$$

Splitting \downarrow Absorption

$$
\left\{\begin{array}{l}
\partial_{t} U^{1}+A_{1} \partial_{x_{1}}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{1}\left(x_{1}\right) U^{1}=0 \\
\partial_{t} U^{2}+A_{2} \partial_{x_{2}}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{2}\left(x_{2}\right) U^{2}=0 \\
\partial_{t} U^{3}+A_{3} \partial_{x_{3}}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{3}\left(x_{3}\right) U^{3}=0 \\
U=U^{1}+U^{2}+U^{3}
\end{array}\right.
$$

Outline

1. Introduction

2 The Cauchy problem for constant coefficients

3 Smooth absorption (HPR, CM 2011)

4 Transmission problem, one absorption (HPR, CM 2011)

5 The 2D transmission problem for elliptic generator (HR, X-EDP 2013)

6 The full 3D analysis for Maxwell (HR,AIMS, 2016)

$$
\begin{gathered}
L\left(\partial_{t}, \partial_{x}\right) U:=\partial_{t} U+\sum A_{j} \partial_{j} U=0 \\
L(0, k)=\sum k_{j} A_{j}, \quad \hat{U}(t)=e^{-i L(0, k) t} \hat{U}_{0}
\end{gathered}
$$

Cauchy problem strongly well-posed (Maxwell symmetric hyperbolic)

$$
\|U(t, .)\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq K e^{\alpha t}\left\|U^{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

$$
\begin{gathered}
L\left(\partial_{t}, \partial_{x}\right) U:=\partial_{t} U+\sum A_{j} \partial_{j} U=0 \\
L(0, k)=\sum k_{j} A_{j}, \quad \hat{U}(t)=e^{-i L(0, k) t} \hat{U}_{0}
\end{gathered}
$$

Cauchy problem strongly well-posed (Maxwell symmetric hyperbolic)

$$
\begin{gathered}
\|U(t, .)\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq K e^{\alpha t}\left\|U^{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \\
\widetilde{L}_{1}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)\right\}_{j=1, \ldots 3}=0 \\
\widetilde{L}_{1}(0, k)=\left(\begin{array}{lll}
k_{1} A_{1} & k_{1} A_{1} & k_{1} A_{1} \\
k_{2} A_{2} & k_{2} A_{2} & k_{2} A_{2} \\
k_{3} A_{3} & k_{3} A_{3} & k_{3} A_{3}
\end{array}\right), \quad \widetilde{U}(t)=e^{-i \tilde{L}(0, k) t} \widetilde{U}_{0}
\end{gathered}
$$

$$
\begin{gathered}
L\left(\partial_{t}, \partial_{x}\right) U:=\partial_{t} U+\sum A_{j} \partial_{j} U=0 \\
L(0, k)=\sum k_{j} A_{j}, \quad \hat{U}(t)=e^{-i L(0, k) t} \hat{U}_{0}
\end{gathered}
$$

Cauchy problem strongly well-posed (Maxwell symmetric hyperbolic)

$$
\begin{gathered}
\|U(t, .)\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq K e^{\alpha t}\left\|U^{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \\
\tilde{L}_{1}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)\right\}_{j=1, \ldots 3}=0 \\
\widetilde{L}_{1}(0, k)=\left(\begin{array}{lll}
k_{1} A_{1} & k_{1} A_{1} & k_{1} A_{1} \\
k_{2} A_{2} & k_{2} A_{2} & k_{2} A_{2} \\
k_{3} A_{3} & k_{3} A_{3} & k_{3} A_{3}
\end{array}\right), \quad \widetilde{U}(t)=e^{-\tilde{L}(0, k) t} \widetilde{U}_{0}
\end{gathered}
$$

Cauchy problem only weakly well-posed

$$
\left\|\left(U^{1}(t, .), U^{2}(t, .), U^{3}(t, .)\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq K(1+t) e^{\alpha t}\left\|U^{0}\right\|_{H^{1}\left(\mathbb{R}^{2}\right)}
$$

Tools: Gårding and Kreiss

PMLs[vereØriginally[ntroduced[for[Maxwell's[equations[by[Bérenger[8].]Well-

 was■only[weakly■well-posed】 .DSimilar \square

 Appelö-Hagström-Kreiss(Gunilla), 2006

PMLs[were@riginally[ntroduced[for[Maxwell's[equations[by[Bérenger $\square 8]$.]Well-
 For[example[Abarbanel[and[Gottlieb[1][showed_that[B'erenger's["split-field"[PML] was \square only \square weakly \square well-posed

 Appelö-Hagström-Kreiss(Gunilla), 2006
[6] : From [9] we know that the corresponding Cauchy problem is weakly well-posed but not strongly well-posed: there is necessarily a loss of regularity, at least for some initial data.

$$
\text { Prediction }\left\|\left(H_{x}, H_{y}\right)(t, .)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq K(1+t) e^{\alpha t}\left\|U^{0}\right\|_{H^{1}\left(\mathbb{R}^{2}\right)}
$$

Initial data $\mathbf{E}^{0}=\mathbf{a}(x, y) e^{2 \pi i \omega \mathbf{v} \cdot(x, y)}, \mathbf{v}=\frac{1}{\sqrt{2}}(1,-1), \omega=5 \times 2^{n}, 0 \leq n \leq 5$.
Maxwell system: $\|(\mathbf{E}, H)\|_{L_{t, x}^{2}}$, Bérenger system $\left\|\left(\mathbf{E}, H_{x}, H_{y}, H\right)\right\|_{L_{t, x}^{2}}$. Normalized by $\|(E, H)\|_{L_{x}^{2}}$ at initial time.

Frequency	10	20	40	80	160
Maxwell	0.1702	0.1703	0.1703	0.1703	0.1703
Berenger	0.2121	0.3012	0.5247	1.0036	1.9546

Table : L^{2} norm as a function of the frequency. General case

Prediction $\left\|\left(H_{x}, H_{y}\right)(t, .)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq K(1+t) e^{\alpha t}\left\|U^{0}\right\|_{H^{1}\left(\mathbb{R}^{2}\right)}$

Initial data $\mathbf{E}^{0}=\mathbf{a}(x, y) e^{2 \pi i \omega v \cdot(x, y)}, \mathbf{v}=\frac{1}{\sqrt{2}}(1,-1), \omega=5 \times 2^{n}, 0 \leq n \leq 5$.
Maxwell system: $\|(\mathbf{E}, H)\|_{L_{t, x}^{2}}$, Bérenger system $\left\|\left(\mathbf{E}, H_{x}, H_{y}, H\right)\right\|_{L_{t, x}^{2}}$. Normalized by $\|(E, H)\|_{L_{x}^{2}}$ at initial time.

Frequency	10	20	40	80	160
Maxwell	0.1702	0.1703	0.1703	0.1703	0.1703
Berenger	0.2121	0.3012	0.5247	1.0036	1.9546

Table : L^{2} norm as a function of the frequency. General case

Frequency	10	20	40	80	160
Maxwell	0.1269	0.1132	0.1162	0.1226	0.1266
Berenger	0.0642	0.0568	0.0581	0.0613	0.0633

Table : L^{2} norm as a function of the frequency. $\operatorname{div}\left(E_{0}\right)=0$

- For solenoidal initial data ($\operatorname{div} \mathbf{E}=0$),

$$
\begin{gathered}
\|(\mathbf{E}, H)\|_{L^{2}((0, T) \times \Omega)}=C(T)\|(\mathbf{E}, H)(0)\|_{L^{2}(\Omega)} \\
\left\|\left(H_{x}, H_{y}\right)\right\|_{L^{2}((0, T) \times \Omega)}=C(T)\|(\mathbf{E}, H)(0)\|_{L^{2}(\Omega)}
\end{gathered}
$$

- For non solenoidal initial data ($\operatorname{div} \mathbf{E} \neq 0$)

$$
\begin{aligned}
&\|(\mathbf{E}, H)\|_{L^{2}((0, T) \times \Omega)}=C(T)\|(\mathbf{E}, H)(0)\|_{L^{2}(\Omega)} \\
&\left\|\left(H_{x}, H_{y}\right)\right\|_{L^{2}((0, T) \times \Omega)} \simeq C(T) \omega\|(\mathbf{E}, H)(0)\|_{L^{2}(\Omega)}
\end{aligned}
$$

$\sigma=0$, STRONG WELL-POSEDNESS FOR PHYSICAL SOLUTIONS.

Proof (Abarbanel-Gottlieb)

Abarbanel/Gottlieb's solution

$$
\begin{aligned}
& \hat{E}_{x}= \frac{\omega_{1}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{e}_{0}+\frac{\omega_{1} \omega_{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{g}_{0} \\
&+\frac{i \omega_{2}}{\varepsilon_{0} c \sqrt{\omega_{1}^{2}+\omega_{2}^{2}}}\left(\hat{h}_{0} \sin \nu t-\beta \cos \nu t\right) \\
& \hat{E}_{y}= \frac{\omega_{1} \omega_{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{e}_{0}+\frac{\omega_{2}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{g}_{0} \\
&-\frac{i \omega_{1}}{\varepsilon_{0} c \sqrt{\omega_{1}^{2}+\omega_{2}^{2}}}\left(\hat{h}_{0} \sin \nu t-\beta \cos \nu t\right) \\
& \hat{H}_{x}= \frac{\omega_{2}^{2} \hat{h}_{0}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \hat{l}_{0}}{\omega_{1}^{2}+\omega_{2}^{2}}-\frac{i \omega_{1} \omega_{2}\left(\omega_{1} \hat{e}_{0}+\omega_{2} \hat{g}_{0}\right)}{\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \mu_{0}} t \\
&+\frac{\omega_{1}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \cos \nu t+\omega \sin \nu t\right) \\
& \hat{H}_{y}=-\frac{\omega_{2}^{2} \hat{h}_{0}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \hat{l}_{0}}{\omega_{1}^{2}+\omega_{2}^{2}}+\frac{i \omega_{1} \omega_{2}\left(\omega_{1} \hat{e}_{0}+\omega_{2} \hat{g}_{0}\right)}{\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \mu_{0}} t \\
& \omega_{2}^{2}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\hat{E}_{x}= & \frac{\omega_{1}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{e}_{0}+\frac{\omega_{1} \omega_{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{g}_{0} & \hat{E}_{x}(0)=\hat{e}_{0}, \quad \hat{E}_{y}(0)=\hat{g}_{0} \\
& +\frac{i \omega_{2}}{\varepsilon_{0} c \sqrt{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \sin \nu t-\beta \cos \nu t\right)} \hat{H}_{x}(0)=\hat{h}_{0}-\iota_{0}, \quad \hat{H}_{y}(0)=\iota_{0} \\
\hat{E}_{y}= & \frac{\omega_{1} \omega_{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{e}_{0}+\frac{\omega_{2}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{g}_{0} \\
& -\frac{i \omega_{1}}{\varepsilon_{0} c \sqrt{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \sin \nu t-\beta \cos \nu t\right)} \\
\hat{H}_{x}= & \frac{\omega_{2}^{2} \hat{h}_{0}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \hat{l}_{0}}{\omega_{1}^{2}+\omega_{2}^{2}}-\frac{i \omega_{1} \omega_{2}\left(\omega_{1} \hat{e}_{0}+\omega_{2} \hat{g}_{0}\right)}{\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \mu_{0}} t & & \\
& +\frac{\omega_{1}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \cos \nu t+\omega \sin \nu t\right) & \\
\hat{H}_{y}= & -\frac{\omega_{2}^{2} \hat{h}_{0}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \hat{\ell}_{0}}{\omega_{1}^{2}+\omega_{2}^{2}}+\frac{i \omega_{1} \omega_{2}\left(\omega_{1} \hat{0}_{0}+\omega_{2} \hat{g}_{0}\right)}{\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \mu_{0}} t & \\
& +\frac{\omega_{2}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \cos \nu t+\beta \sin \nu t\right),
\end{array}
$$

$$
\begin{aligned}
\hat{E}_{x}= & \frac{\omega_{1}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{c}_{0}+\frac{\omega_{1} \omega_{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{g}_{0} \\
& +\frac{i \omega_{2}}{\varepsilon_{0} c \sqrt{\omega_{1}^{2}+\omega_{2}^{2}}}\left(\hat{h}_{0} \sin \nu t-\beta \cos \nu t\right)
\end{aligned}
$$

For a physical solution,

$$
\begin{aligned}
\hat{E}_{y}= & \frac{\omega_{1} \omega_{2}}{\omega_{1}^{2}+\omega_{2}^{2}} \hat{e}_{0}+\frac{\omega_{2}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}} g_{0} \\
& -\frac{i \omega_{1}}{\varepsilon_{0} c \sqrt{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \sin \nu t-\beta \cos \nu t\right)} \\
\hat{H}_{x}= & \frac{\omega_{2}^{2} \hat{h}_{0}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \hat{\iota}_{0}}{\omega_{1}^{2}+\omega_{2}^{2}}-\frac{i \omega_{1} \omega_{2}\left(\omega_{1} \hat{e}_{0}+\omega_{2} \hat{g}_{0}\right)}{\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \mu_{0}} \\
& +\frac{\omega_{1}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \cos \nu t+\omega \sin \nu t\right) \\
\hat{H}_{y}= & -\frac{\omega_{2}^{2} \hat{h}_{0}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \hat{\ell_{0}}}{\omega_{1}^{2}+\omega_{2}^{2}}+\frac{i \omega_{1} \omega_{2}\left(\omega_{1} \hat{e}_{0}+\omega_{2} \hat{g}_{0}\right)}{\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \mu_{0}} \\
& +\frac{\omega_{2}^{2}}{\omega_{1}^{2}+\omega_{2}^{2}}\left(\hat{h}_{0} \cos \nu t+\beta \sin \nu t\right),
\end{aligned}
$$

- For solenoidal initial data ($\operatorname{div} \mathbf{E}=0$),

$$
\begin{gathered}
\left\|\left(\mathbf{E}, B_{z}\right)\right\|_{L^{2}((0, T) \times \Omega)}=C(T)\left\|\left(\mathbf{E}, B_{z}\right)\right\|_{L^{2}(\Omega)} \\
\left\|\left(B_{z x}, B_{z y}\right)\right\|_{L^{2}((0, T) \times \Omega)}=C(T)\left\|\left(\mathbf{E}, B_{z}\right)\right\|_{L^{2}(\Omega)}
\end{gathered}
$$

- For non solenoidal initial data ($\operatorname{div} \mathbf{E} \neq 0$)

$$
\begin{gathered}
\left\|\left(\mathbf{E}, B_{z}\right)\right\|_{L^{2}((0, T) \times \Omega)}=C(T)\left\|\left(\mathbf{E}, B_{z}\right)\right\|_{L^{2}(\Omega)} \\
\left\|\left(B_{z x}, B_{z y}\right)\right\|_{L^{2}((0, T) \times \Omega)} \simeq C(T) k\left\|\left(\mathbf{E}, B_{z}\right)\right\|_{L^{2}(\Omega)} \\
\sigma=0, \text { STRONG WELL-POSEDNESS FOR PHYSICAL SOLUTIONS. }
\end{gathered}
$$

$$
\widetilde{L}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{j} U^{j}\right\}_{j=1, \ldots 3}=0
$$

Theorem

1 The Cauchy problem for L_{1} is weakly well posed if and only if for each $\xi \in \mathbb{R}^{d}$, the eigenvalues of $L_{1}(0, \xi)$ are real.
2 The Cauchy problem for L_{1} is strongly well posed if and only if for each $\xi \in \mathbb{R}^{d}$, the eigenvalues of $L_{1}(0, \xi)$ are real and $L_{1}(0, \xi)$ is uniformly diagonalisable, there is an invertible $S(\xi)$ satisfying,

$$
S(\xi)^{-1} L_{1}(0, \xi) S(\xi)=\text { diagonal, } \quad S, S^{-1} \in L^{\infty}\left(\mathbb{R}_{\xi}^{d}\right)
$$

3 If \mathcal{B} has constant coefficients, then the Cauchy problem for $L=L_{1}+B$ is weakly well posed if and only if there exists $M \geq 0$ such that for any $\xi \in \mathbb{R}^{d}$, $\operatorname{det} L(\tau, \xi)=0 \Longrightarrow|\Im \tau| \leq M$.

$$
\widetilde{L}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{j} U^{j}\right\}_{j=1, \ldots .3}=0
$$

Theorem(HRP,Confluentes Mathematicii 2011. Generalizing several papers) Suppose that $\tau=0$ is an isolated root of constant multiplicity m of $\operatorname{det} L_{1}(\tau, \xi)=0$.

1 If the Cauchy problem for L_{1} is strongly well posed, then for arbitrary constant absorptions $\sigma_{j} \in \mathbb{C}$, the Cauchy problem for $\tilde{L}_{1}+B$ is weakly well posed.

$$
\widetilde{L}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{j} U^{j}\right\}_{j=1, \ldots 3}=0
$$

Theorem(HRP,Confluentes Mathematicii 2011. Generalizing several papers) Suppose that $\tau=0$ is an isolated root of constant multiplicity m of $\operatorname{det} L_{1}(\tau, \xi)=0$.

1 If the Cauchy problem for L_{1} is strongly well posed, then for arbitrary constant absorptions $\sigma_{j} \in \mathbb{C}$, the Cauchy problem for $\widetilde{L}_{1}+B$ is weakly well posed.

2 If the Cauchy problem for L_{1} is strongly well posed, and if there is a $\xi \neq 0$ such that $\operatorname{ker} L(0, \xi) \neq \cap \operatorname{ker} A_{j}$, then $\widetilde{L}_{1}(0, \xi)$ is not diagonaliza'te. Therefore the Cauchyprobtem for L is not stiongly well posed

$$
\widetilde{L}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{j} U^{j}\right\}_{j=1, \ldots 3}=0
$$

Theorem(HRP,Confluentes Mathematicii 2011. Generalizing several papers) Suppose that $\tau=0$ is an isolated root of constant multiplicity m of $\operatorname{det} L_{1}(\tau, \xi)=0$.
1 If the Cauchy problem for L_{1} is strongly well posed, then for arbitrary constant absorptions $\sigma_{j} \in \mathbb{C}$, the Cauchy problem for $\widetilde{L}_{1}+B$ is weakly well posed.
2 If the Cauchy problem for L_{1} is strongly well posed, and if there is a $\xi \neq 0$ such that $\operatorname{ker} L(0, \xi) \neq \underset{\xi_{j} \neq 0}{\cap} \operatorname{ker} A_{j}$, then $\widetilde{L}_{1}(0, \xi)$ is not diagonalizable. Therefore the Cauchy problem for \widetilde{L} is not strongly well posed.

$$
\widetilde{L}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{j} U^{j}\right\}_{j=1, \ldots .3}=0
$$

Theorem(HRP,Confluentes Mathematicii 2011. Generalizing several papers) Suppose that $\tau=0$ is an isolated root of constant multiplicity m of $\operatorname{det} L_{1}(\tau, \xi)=0$.
1 If the Cauchy problem for L_{1} is strongly well posed, then for arbitrary constant absorptions $\sigma_{j} \in \mathbb{C}$, the Cauchy problem for $\widetilde{L}_{1}+B$ is weakly well posed.
2 If the Cauchy problem for L_{1} is strongly well posed, and if there is a $\xi \neq 0$ such that $\operatorname{ker} L(0, \xi) \neq \underset{\xi_{j} \neq 0}{\cap} \operatorname{ker} A_{j}$, then $\widetilde{L}_{1}(0, \xi)$ is not diagonalizable. Therefore the Cauchy problem for \widetilde{L} is not strongly well posed.
3 If the Cauchy problem for L is strongly well posed and for all ξ, $\operatorname{ker} L_{1}(0, \xi)=\bigcap_{\xi_{j} \neq 0}^{\cap} \operatorname{ker} A_{j}$, then the Cauchy problem for \widetilde{L} is strongly well posed. This condition holds if $L_{1}\left(0, \partial_{x}\right)$ is elliptic, that is $\operatorname{det} L_{1}(0, \xi) \neq 0$ for all real ξ.

$$
\widetilde{L}\left(\partial_{t}, \partial_{x}\right) \widetilde{U}:=\left\{\partial_{t} U^{j}+A_{j} \partial_{j}\left(U^{1}+U^{2}+U^{3}\right)+\sigma_{j} U^{j}\right\}_{j=1, \ldots 3}=0
$$

Theorem(HRP,Confluentes Mathematicii 2011. Generalizing several papers) Suppose that $\tau=0$ is an isolated root of constant multiplicity m of $\operatorname{det} L_{1}(\tau, \xi)=0$.
1 If the Cauchy problem for L_{1} is strongly well posed, then for arbitrary constant absorptions $\sigma_{j} \in \mathbb{C}$, the Cauchy problem for $\widetilde{L}_{1}+B$ is weakly well posed.
2 If the Cauchy problem for L_{1} is strongly well posed, and if there is a $\xi \neq 0$ such that $\operatorname{ker} L(0, \xi) \neq \underset{\xi_{j} \neq 0}{\cap} \operatorname{ker} A_{j}$, then $\widetilde{L}_{1}(0, \xi)$ is not diagonalizable. Therefore the Cauchy problem for \tilde{L} is not strongly well posed.

Applies to Maxwell

1: Seidenberg-Tarski Theorem (on the roots of the characteristic

Outline

1. Introduction

2 The Cauchy problem for constant coefficients

3 Smooth absorption (HPR, CM 2011)

4 Transmission problem, one absorption (HPR, CM 2011)

5 The 2D transmission problem for elliptic generator (HR, X-EDP 2013)

6 The full 3D analysis for Maxwell (HR,AIMS, 2016)

$$
\begin{aligned}
& U=E+i H, \\
& \left.\mathcal{H}:=\left\{\widetilde{U}=\left(U^{1}, U^{2}, U^{3}\right) \in H^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)^{3}\right\}: \quad U_{1}^{1}=0, \quad U_{2}^{2}=0, \quad U_{3}^{3}=0\right\} .
\end{aligned}
$$

$U=E+i H$,
$\left.\mathcal{H}:=\left\{\widetilde{U}=\left(U^{1}, U^{2}, U^{3}\right) \in H^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)^{3}\right\}: \quad U_{1}^{1}=0, \quad U_{2}^{2}=0, \quad U_{3}^{3}=0\right\}$.

Theorem If σ_{j}, for $j=1,2,3$, belong to $W^{2, \infty}(\mathbb{R})$, then for any $\widetilde{U}_{0}=\left(U_{0}^{1}, U_{0}^{2}, U_{0}^{3}\right)$ in \mathcal{H} there is a unique solution \widetilde{U} in $L^{2}(0, T ; \mathcal{H})$ of the split Cauchy problem with initial value \widetilde{U}_{0}. Furthermore there is a $C_{1}>0$ independent of \widetilde{U}_{0} so that for all positive time t,

$$
\|\widetilde{U}(t, \cdot)\|_{\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{9}} \leq C_{1} e^{C_{1} t}\left\|\widetilde{U}_{0}\right\|_{\left(H^{2}\left(\mathbb{R}^{3}\right)\right)^{9}} .
$$

- 2D estimates: JLLions-Metral-Vacus
- Full proof in 2D with the Yee scheme: Sabrina Petit thesis.
- 3D : HPR.
- Get estimates on a larger vector \mathbb{V} for which a strongly hyperbolic problem holds.
- Semi-discretize in space and obtain similar discrete estimates
- Pass to the limit.
- Uniqueness goes through the estimates.

$$
\begin{gathered}
\mathbb{V}:=\left(U, V^{i}, V^{i, j}, W^{j}, U^{j}, W, Z^{j}\right) \in \mathbb{C}^{54} . \\
U:=U^{1}+U^{2}+U^{3}, \quad V^{j}:=\partial_{j} U, \quad V^{i, j}:=\partial_{i j} U, \\
W:=\sum_{k} \sigma_{k}\left(x_{k}\right) U^{k}, W^{j}:=\partial_{j} W, \\
Z:=\sum_{k} \partial_{k}\left(W_{k}+\sigma_{k}\left(x_{k}\right) U_{k}\right), \quad Z^{j}:=\partial_{j} Z, \\
\partial_{t} \mathbb{V}+P(\partial) \mathbb{V}+\mathbb{B}\left(\sigma, D \sigma, D^{2} \sigma\right) \mathbb{V}=0
\end{gathered}
$$

LemmaThis problem is strongly well-posed (symmetrizable).

$$
\begin{array}{ccccc}
P(\partial)=\left(\begin{array}{cccc}
I_{4} \otimes L(0, \partial) & 0_{4,6} \otimes 0_{3,3} & 0_{4,3} \otimes 0_{3,3} & 0_{4,3} \otimes 0_{3,3} \\
0_{6,4} \otimes 0_{3,3} \otimes 0_{3,3} & I_{6} \otimes L(0, \partial) & \left(I_{6} \otimes L(0, \partial)\right) M & 0_{6,3} \otimes 0_{3,3} \\
0_{6,4} \otimes 0_{3,3} \\
0_{3,4} \otimes 0_{3,3} & 0_{3,6} \otimes 0_{3,3} & 0_{3,3} \otimes 0_{3,3} & 0_{3,3} \otimes 0_{3,3} \\
0_{3,4} \otimes 0_{3,3} \\
0_{3,4} \otimes 0_{3,3} & 0_{3,6} \otimes 0_{3,3} & 0_{3,3} \otimes 0_{3,3} & 0_{3,3} \otimes 0_{3,3} \\
0_{3,4} \otimes 0_{3,3} & 0_{4,6} \otimes 0_{3,3} & 0_{4,3} \otimes 0_{3,3} & 0_{4,3} \otimes 0_{3,3} \\
0_{4,4} \otimes 0_{3,3}
\end{array}\right) \\
& M:=\left(\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & A_{1} & 0 \\
0 & 0 & A_{1} \\
0 & A_{2} & 0 \\
0 & 0 & A_{2} \\
0 & 0 & A_{3}
\end{array}\right) . & & \\
\end{array}
$$

Outline

1. Introduction

2 The Cauchy problem for constant coefficients

3 Smooth absorption (HPR, CM 2011)

4 Transmission problem, one absorption (HPR, CM 2011)

5 The 2D transmission problem for elliptic generator (HR, X-EDP 2013)

б The full 3D analysis for Maxwell (HR,AIMS, 2016)

Theorem

1 If $\sigma\left(x_{1}\right)$ = constant $\times 1_{x_{1}>0}$ and $\tilde{L}(\partial)$ is hyperbolic, non degenerate with respect to x_{1}, then the constant coefficient transmission problem is weakly well posed.
2 If $\sigma(0)=0, \sigma\left(x_{1}\right) \in W^{1, \infty}(\mathbb{R}), \tilde{L}(\partial)$ is hyperbolic for some constant σ, non degenerate with respect to x_{1}, then the transmission problem is weakly well posed.

Proof. For 1 Verify the criterion of R. Hersh.
For 2 the problem can be nearly conjugated to the constant coefficient case.

$\partial_{t} E=\sum C_{j} \partial_{j} B-\mathbf{j}$,

$$
\begin{aligned}
& \partial_{t} E^{j}+\sigma_{j}\left(x_{j}\right) E^{j}=C_{j} \partial_{j} B, \\
& \partial_{t} B^{j}+\sigma_{j}\left(x_{j}\right) E^{j}=-\sum C_{j} \partial_{j} E . \\
& E=E^{1}+E^{2}+E^{3} \\
& B=B^{1}+B^{2}+B^{3} \\
& 18 \text { unknowns }
\end{aligned}
$$

Transmission conditions at $x_{1}=0:\left[C_{1} E\right]=0,\left[C_{1} B\right]=0$.

$$
C_{1}:=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \longrightarrow\left[\left(E_{2}, E_{3}\right)\right]=0, \quad\left[\left(B_{2}, B_{3}\right)\right]=0 .
$$

$$
\begin{gathered}
(U, \widetilde{U})-g \in \mathcal{N} \\
L\left(\partial_{t}, \partial_{1}, \partial^{\prime}\right) U=F
\end{gathered} \begin{gathered}
\widetilde{L}\left(\partial_{t}, \partial_{1}, \partial^{\prime}\right) \widetilde{U}=0
\end{gathered}
$$

$G_{L}^{ \pm}(\tau, \eta)=\left\{V\left(x_{1}\right)\right.$ solution of $L\left(\tau, \partial_{1}, i \eta\right) V=0, V \rightarrow 0$ when $\left.x_{1} \rightarrow \pm \infty\right\}$

$$
\dot{G}_{L}^{ \pm}(\tau, \eta)=\left\{\text { trace at } x_{1}=0 \text { of elements in } G_{L}^{ \pm}(\tau, \eta)\right\}
$$

Uniqueness

$$
\Longleftrightarrow \forall(\tau, \eta), \Re \tau>0,\left(\dot{G}_{L}^{-}(\tau, \eta), \dot{G}_{L}^{+}(\tau, \eta)\right) \cap \mathcal{N}=\{0\}
$$

Well-posedness $\Longleftrightarrow \forall(\tau, \eta), \Re \tau>0,\left(\dot{G}_{L}^{-}(\tau, \eta), \dot{G}_{L}^{+}(\tau, \eta)\right) \oplus \mathcal{N}=\{0\}$

Outline

1 Introduction

2 The Cauchy problem for constant coefficients

3 Smooth absorption (HPR, CM 2011)

4 Transmission problem, one absorption (HPR, CM 2011)

5 The 2D transmission problem for elliptic generator (HR, X-EDP 2013)

6 The full 3D analysis for Maxwell (HR,AIMS, 2016)

$$
\begin{gathered}
L_{1}\left(\partial_{t}, \partial_{x}\right) U:=\partial_{t} U+\sum A_{j} \partial_{j} U=0 \\
L_{1}(0, k)=\sum k_{j} A_{j}, \quad U(t)=e^{-i L(0, k) t} U_{0}
\end{gathered}
$$

If the Cauchy problem for L_{1} is strongly well posed and for all ξ, $\operatorname{ker} L_{1}(0, \xi)=\bigcap_{\xi_{j} \neq 0}^{\cap} \operatorname{ker} A_{j}$, then the Cauchy problem for \widetilde{L} is strongly well posed. This condition holds if $L_{1}\left(0, \partial_{x}\right)$ is elliptic, that is $\operatorname{det} L_{1}(0, \xi) \neq 0$ for all real ξ.

Warm-up for the 3 - D Bérenger-Maxwell problem
Halpern \& J. Rauch, Bérenger/Maxwell with Discontinous Absorptions:
Existence, Perfection, and No Loss. Séminaire Laurent Schwartz-2012-2013, Exp. No. 10.

Outline

1 Introduction

2 The Cauchy problem for constant coefficients

3 Smooth absorption (HPR, CM 2011)

4 Transmission problem, one absorption (HPR, CM 2011)

5 The 2D transmission problem for elliptic generator (HR, X-EDP 2013)

б The full 3D analysis for Maxwell (HR,AIMS, 2016)

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \varepsilon \partial _ { t } E = \sum C _ { j } \partial _ { j } B - \mathbf { j } , } \\
{ \mu \partial _ { t } B = - \sum C _ { j } \partial _ { j } E . }
\end{array} \quad \left\{\begin{array}{l}
\varepsilon\left(\partial_{t} E^{j}+\sigma_{j}\left(x_{j}\right) E^{j}\right)=C_{j} \partial_{j}\left(\sum B_{k}\right), \\
\mu\left(\partial_{t} B^{j}+\sigma_{j}\left(x_{j}\right) E^{j}\right)=-\sum C_{j} \partial_{j}\left(\sum E_{k}\right) .
\end{array}\right.\right. \\
(E, B)=\left\{\begin{array}{l}
(E, B) \text { in } \mathcal{O}, \\
\left(\sum E_{k}, \sum B_{k}\right) \text { in } \Omega \backslash \mathcal{O} .
\end{array}\right.
\end{gathered}
$$

Theorem $\exists C, \lambda_{0}$, depending on $\bar{\omega}$. If $\lambda>\lambda_{0}$, supp $\mathbf{j} \subset[0, \infty[\times \bar{\omega}$, and

$$
\forall|\alpha| \leq 1, \quad \partial_{t, x}^{\alpha} \mathbf{j} \in e^{\lambda t} L^{2}\left(\mathbb{R} ; L^{2}\left(\mathbb{R}^{3}\right)\right)
$$

then there are E, B defined on $\mathbb{R}_{t} \times \mathcal{O}$ and split functions E^{j}, B^{j} defined on $\mathbb{R}_{t} \times \cup \mathcal{O}_{\kappa}$, supported in $t \geq 0$, so that the total field
$U=(E, B) \in e^{\lambda t} H^{1}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ and satisfies the Bérenger differential equations. Any solution with $U \in e^{\lambda t} H^{1}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ satisfies for $\lambda>\lambda_{0}$

$$
\begin{align*}
\int e^{-2 \lambda t} \| \lambda U, \nabla_{t, x} U, & \left.\lambda \nabla_{t, x} U\right|_{\bar{\omega}} \|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d t \\
& \leq C \int e^{-2 \lambda t} \sum_{|\alpha| \leq 1}\left\|\partial_{t, x}^{\alpha} \mathbf{j}(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d t \tag{1}
\end{align*}
$$

On each octant \mathcal{O}_{κ}, the split fields satisfy $E_{j}^{j}=B_{j}^{j}=0$ for all j, and

$$
\begin{align*}
& \int e^{-2 \lambda t}\left\|E^{j}, B^{j}, \partial_{t} E^{j}, \partial_{t} B^{j}\right\|_{L^{2}\left(\mathcal{O}_{\kappa}\right)}^{2} d t \\
& \leq C \int e^{-2 \lambda t} \sum_{|\alpha| \leq 1}\left\|\partial_{t, x}^{\alpha} j(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d t \tag{2}
\end{align*}
$$

In particular there is uniqueness for such solutions.

- USE THE DIVERGENCE EQUATION.
- Existence of smooth solutions by the result above for $\sigma \in W^{2, \infty}$.
- Laplace transform+ Paley-Wiener. Passing to the limit needs H^{1} estimates. Partition of unity.
- Standard estimates in \mathcal{O}.
- Estimates in $\mathbb{R}^{3} \backslash \bar{\omega}$.
- Well adapted operator in all of \mathbb{R}^{3}.

■ Use the estimates to have weak convergence of a family of solutions with regular σ.

- Uniqueness through the estimates.

Relies on the "tilde" operators of the type

$$
\widetilde{\operatorname{div} u}=\sum_{j} \frac{\tau}{\tau+\sigma_{j}} \partial_{j} u_{j}
$$

and algebras like

$$
\widetilde{\operatorname{div}} \widetilde{\text { curl }}=0, \quad \widetilde{\operatorname{div}} \widetilde{\operatorname{grad}}=\widetilde{\Delta}
$$

$$
P_{E}:=\varepsilon \mu \frac{\prod_{j}\left(\tau+\sigma_{j}\left(x_{j}\right)\right)}{\tau}-\sum_{j} \partial_{j} \frac{1}{\varepsilon} \frac{\left(\tau+\sigma_{j+1}\right)\left(\tau+\sigma_{j+2}\right)}{\tau\left(\tau+\sigma_{j}\right)} \partial_{j}(\varepsilon E)+\ell_{E}
$$

Transmission problem

Perfect matching (Appelo-Hagstrom-Kreiss) is $V=U$ in \mathcal{O}.

Perfect matching (Appelo-Hagstrom-Kreiss) is $V=U$ in \mathcal{O}.
Follows from well-posedness by change of coordinates (Diaz-Joly) thanks to holomorphy.

- The first proof of well-posedness for the full 3D Maxwell-Berenger problem with (discontinuous) matrix coefficients. Hyperbolic Boundary Value Problems with Trihedral Corners to appear in special issue of AIMS for Peter Lax's 90's birthday.

- The first proof of well-posedness for the full 3D Maxwell-Berenger problem with (discontinuous) matrix coefficients. Hyperbolic Boundary Value Problems with Trihedral Corners to appear in special issue of AIMS for Peter Lax's 90's birthday.

- The first proof of well-posedness for the full 3D Maxwell-Berenger problem with (discontinuous) matrix coefficients. Hyperbolic Boundary Value Problems with Trihedral Corners to appear in special issue of AIMS for Peter Lax's 90's birthday.
- The boundary value problem

- Maxwell + dissipative boundary conditions : done in AIMS paper.
- The first proof of well-posedness for the full 3D Maxwell-Berenger problem with (discontinuous) matrix coefficients. Hyperbolic Boundary Value Problems with Trihedral Corners to appear in special issue of AIMS for Peter Lax's 90's birthday.
- The boundary value problem

- Maxwell + dissipative boundary conditions : done in AIMS paper.
- Berenger Maxwell : poses real difficulties.

Thank you for your attention

Calculs pour Maxwell 2D

Calculs Maple Abarbane/Gotticb

$$
\text { Maxwell: }\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H
\end{array}\right)(t)=e^{t A}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H
\end{array}\right)(0)=P e^{t D} P^{-1}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H
\end{array}\right)(0)
$$

$$
A:=\left(\begin{array}{ccc}
0 & 0 & i \omega_{2} \\
0 & 0 & -i \omega_{1} \\
i \omega_{2} & -i \omega_{1} & 0
\end{array}\right), \quad D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & i|\omega| & 0 \\
0 & 0 & -i|\omega|
\end{array}\right)
$$

Calculs Maple

$$
\text { Maxwell: }\left(\begin{array}{c}
E_{x} \tag{0}\\
E_{y} \\
H
\end{array}\right)(t)=e^{t A}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H
\end{array}\right)(0)=P e^{t D} P^{-1}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H
\end{array}\right)
$$

Bérenger-Maxwell : $\left(\begin{array}{c}E_{x} \\ E_{y} \\ H_{x} \\ H_{y}\end{array}\right)(t)=e^{t M}\left(\begin{array}{c}E_{x} \\ E_{y} \\ H_{x} \\ H_{y}\end{array}\right)(0)=P e^{t J} P^{-1}\left(\begin{array}{c}E_{x} \\ E_{y} \\ H_{x} \\ H_{y}\end{array}\right)$

$$
\begin{gathered}
A:=\left(\begin{array}{ccc}
0 & 0 & i \omega_{2} \\
0 & 0 & -i \omega_{1} \\
i \omega_{2} & -i \omega_{1} & 0
\end{array}\right), D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & i|\omega| & 0 \\
0 & 0 & -i|\omega|
\end{array}\right) \\
M=\left(\begin{array}{cccc}
0 & 0 & i \omega_{2} & i \omega_{2} \\
0 & 0 & -i \omega_{1} & -i \omega_{1} \\
0 & -i \omega_{1} & 0 & 0 \\
i \omega_{2} & 0 & 0 & 0
\end{array}\right), J=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & i|\omega| & 0 \\
0 & 0 & 0 & -i|\omega|
\end{array}\right)
\end{gathered}
$$

Calculs Maple

$$
\text { Maxwell: }\left(\begin{array}{c}
E_{x} \tag{0}\\
E_{y} \\
H
\end{array}\right)(t)=e^{t A}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H
\end{array}\right)(0)=P e^{t D} P^{-1}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H
\end{array}\right)
$$

$$
\text { Bérenger-Maxwell : }\left(\begin{array}{c}
E_{x} \tag{0}\\
E_{y} \\
H_{x} \\
H_{y}
\end{array}\right)(t)=e^{t M}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H_{x} \\
H_{y}
\end{array}\right)(0)=P e^{t J} P^{-1}\left(\begin{array}{c}
E_{x} \\
E_{y} \\
H_{x} \\
H_{y}
\end{array}\right)
$$

$$
\begin{gathered}
A:=\left(\begin{array}{ccc}
0 & 0 & i \omega_{2} \\
0 & 0 & -i \omega_{1} \\
i \omega_{2} & -i \omega_{1} & 0
\end{array}\right), D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & i|\omega| & 0 \\
0 & 0 & -i|\omega|
\end{array}\right) \\
M=\left(\begin{array}{cccc}
0 & 0 & i \omega_{2} & i \omega_{2} \\
0 & 0 & -i \omega_{1} & -i \omega_{1} \\
0 & -i \omega_{1} & 0 & 0 \\
i \omega_{2} & 0 & 0 & 0
\end{array}\right), J=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & i|\omega| & 0 \\
0 & 0 & 0 & -i|\omega|
\end{array}\right) \\
e^{t D}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & e^{i|\omega| t} & 0 \\
0 & 0 & e^{-i|\omega| t}
\end{array}\right), e^{t J}=\left(\begin{array}{cccc}
1 & t & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{i|\omega| t} & 0 \\
0 & 0 & 0 & e^{-i|\omega| t}
\end{array}\right)
\end{gathered}
$$

the factor t will factorize the second component of $P^{-1} U(0)$, $\left(\omega_{1} E_{x}+\omega_{2} E_{y}\right)(0)=\operatorname{div}(E)(0)$.

