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Perfectly matched layers

Bérenger, 1994 1996, Maxwell 2D and 3D.
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PML (σ−
1 , σ−∗

1 , σ+
2 , σ+∗

2 )

PML (0, 0, σ+
2 , σ+∗

2 )

PML (σ+
1 , σ+∗

1 , σ+
2 , σ+∗

2 )

PML (σ+
1 , σ+∗

1 , 0, 0)

PML (σ+
1 , σ+∗

1 , σ−
2 , σ−∗

2 )

PML (0, 0, σ−
2 , σ−∗

2 )

PML (σ−
1 , σ−∗

1 , σ−
2 , σ−∗

2 )

PML (σ−
1 , σ−∗

1 , 0, 0)

vacuum

Wave source

Outgoing wave

Perfect conductor

1

Properties : Perfect matching, exponential decay.
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Construction
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1 , 0, 0)
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1 , σ−
2 , σ−∗
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2 , σ−∗

2 )

PML (σ−
1 , σ−∗

1 , σ−
2 , σ−∗

2 )

PML (σ−
1 , σ−∗

1 , 0, 0)

vacuum

Wave source
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1

LU := ∂tU + A1∂x1U + A2∂x2U + A3∂x3U = F , U : R3 → RN

Splitting ↓

Absorption





∂tU
1 + A1∂x1 (U1 + U2 + U3) +

σ1(x1)U1

= 0
∂tU

2 + A2∂x2 (U1 + U2 + U3) +

σ2(x2)U2

= 0
∂tU

3 + A2∂x3 (U1 + U2 + U3) +

σ2(x2)U2

= 0
U = U1 + U2 + U3

WP
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Well-posedness for the homogeneous operator

L(∂t , ∂x)U := ∂tU +
∑

Aj∂jU = 0

L(0, k) =
∑

kjAj , Û(t) = e−iL(0,k)t Û0

Cauchy problem strongly well-posed (Maxwell symmetric hyperbolic)

‖U(t, .)‖L2(R2) ≤ Keα t‖U0‖L2(R2)
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Well-posedness for the homogeneous operator
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 , Ũ(t) = e−i L̃(0,k)t Ũ0

Cauchy problem only weakly well-posed
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Tools: Gårding and Kreiss

Heinz-Otto Kreiss
12-2015
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Bérenger’s model is only weakly well-posed

2 D. APPELÖ AND T. HAGSTROM AND G. KREISS

stability.

PMLs were originally introduced for Maxwell’s equations by Bérenger [8]. Well-
posedness and stability of the B´erenger PML has been the topic of numerous works.
For example Abarbanel and Gottlieb [1] showed that B´erenger’s “split-field” PML
was only weakly well-posed and that it supported linearly growing modes. Similar
results were also obtained via Fourier and energy techniques by B´ecache and Joly in
[6]. The issue of weak well-posedness led to the development of various well-posed
”physical” or ”un-split” PMLs for Maxwell’s equations; see [2, 13, 24]. These “un-split”
PMLs were further improved by the inclusion of the so called complex frequency shift
(CFS) which has been used by B´ecache et al. [7] to remove late-time linear growth.

For other applications such as the linearized Euler equations [18], the linearized
shallow water equations [22], and anisotropic elasticity, [10], there have been reports
of exponentially growing solutions. In [3] Abarbanel et al. found that a stable PML
could be derived for the linearized Euler equations by transforming the equations into
a system whose dispersion relation resembled the dispersion relation of Maxwell’s
equations. The same transform was later used again to develop a stable PML for the
linearized Euler equations [19, 11] and for the linearized shallow water equations [22].

Today there exist stable PML models for many important problems but there
are also problems, e.g anisotropic elasticity and linearized MHD, for which stable
PMLs have not yet been found. An open issue, then, is whether stable PMLs can
be constructed in general. Also, stability and well-posedness for general hyperbolic
systems has received less attention than particular cases. One exception is the paper
[5] where Bécache et al. give necessary conditions for stability of the split-field PML in
terms of the geometrical properties of the dispersion relation. Also, in [4] we construct
stable PMLs for arbitrary 2× 2 symmetric hyperbolic systems in 2 + 1 dimensions.

In this work we generalize the formulation of PML models for hyperbolic systems
introduced in [16]. To make the model suitable for future applications, we introduce
a very general formulation including many free parameters. One of these parameters
adds a parabolic term in the tangential directions. By including this parameter we can
show that the equations of the PML are well-posed as long as the original hyperbolic
system is well posed. In addition we give a proof that the layer is perfectly matched.

We also study the stability of our PML model. The question of stability is not
trivial and in general it has to be investigated separately for each new application.
To simplify these investigations we introduce a technique, based on criteria for the
number of zeros of a polynomial in a half-plane, that can be used to derive necessary
and sufficient conditions for stability of any first order constant coefficient Cauchy
problem. Moreover, if these conditions are fulfilled there is also a local energy density
that decays with time (see [17]). This energy density is automatically generated from
the necessary and sufficient conditions. We use the technique to derive stability results
for three interesting applications of our general model.

The rest of this paper will be organized as follows. In §2 we present the general
PML model for symmetric hyperbolic systems and show that it is perfectly matched
and well-posed. In §3 we introduce techniques from [17] used to determine the stability
of a first order system with constant coefficients. If the system is stable the technique
will yield an energy with a local density that decays with time. In §4 we analyze
the stability of a PML model for Maxwell’s equation in 2D. The PML is constructed
by using the general PML model described in §2. We use the techniques from §3 to
establish the stability of the PML and list two associated energies. In §5 we analyze
a PML model for the linearized Euler equations and show that it is stable. In §6

Appelö-Hagström-Kreiss(Gunilla), 2006
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2 D. APPELÖ AND T. HAGSTROM AND G. KREISS

stability.

PMLs were originally introduced for Maxwell’s equations by Bérenger [8]. Well-
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[6] : From [9] we know that the corresponding Cauchy problem is
weakly well-posed but not strongly well-posed: there is necessarily

a loss of regularity, at least for some initial data.
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Closer look

2-D Maxwell

ε0∂tEx = ∂yH
ε0∂tEy = −∂xH
µ0∂tH = ∂yEx − ∂xEy

Aba
rba

ne
l-G

ott
lie

b
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Numerical experiments

Prediction ‖(Hx ,Hy )(t, .)‖L2(R2) ≤ K (1 + t)eαt‖U0‖H1(R2)

Initial data E0 = a(x , y) e2πi ω v·(x,y) , v =
1√
2

(
1,−1

)
, ω = 5×2n, 0 ≤ n ≤ 5.

Maxwell system: ‖(E,H)‖L2
t,x

, Bérenger system ‖(E,Hx ,Hy ,H)‖L2
t,x

.

Normalized by ‖(E ,H)‖L2
x

at initial time.

Frequency 10 20 40 80 160
Maxwell 0.1702 0.1703 0.1703 0.1703 0.1703
Berenger 0.2121 0.3012 0.5247 1.0036 1.9546

Table : L2 norm as a function of the frequency. General case
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Numerical experiments

Prediction ‖(Hx ,Hy )(t, .)‖L2(R2) ≤ K (1 + t)eαt‖U0‖H1(R2)

Initial data E0 = a(x , y) e2πi ω v·(x,y) , v =
1√
2

(
1,−1

)
, ω = 5×2n, 0 ≤ n ≤ 5.

Maxwell system: ‖(E,H)‖L2
t,x

, Bérenger system ‖(E,Hx ,Hy ,H)‖L2
t,x

.

Normalized by ‖(E ,H)‖L2
x

at initial time.

Frequency 10 20 40 80 160
Maxwell 0.1702 0.1703 0.1703 0.1703 0.1703
Berenger 0.2121 0.3012 0.5247 1.0036 1.9546

Table : L2 norm as a function of the frequency. General case

Frequency 10 20 40 80 160
Maxwell 0.1269 0.1132 0.1162 0.1226 0.1266
Berenger 0.0642 0.0568 0.0581 0.0613 0.0633

Table : L2 norm as a function of the frequency. div(E0) = 0
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Numerical experiments

For solenoidal initial data (divE = 0),

‖(E,H)‖L2((0,T )×Ω) = C (T )‖(E,H)(0)‖L2(Ω)

‖(Hx ,Hy )‖L2((0,T )×Ω) = C (T )‖(E,H)(0)‖L2(Ω)

For non solenoidal initial data (divE 6= 0)

‖(E,H)‖L2((0,T )×Ω) = C (T )‖(E,H)(0)‖L2(Ω)

‖(Hx ,Hy )‖L2((0,T )×Ω) ' C (T )ω‖(E,H)(0)‖L2(Ω)

σ = 0, strong well-posedness for physical solutions.
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Proof (Abarbanel-Gottlieb)

Abarbanel/Gottlieb’s solution Calculs Maple

Cauchy data

Fourier Solution
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Proof (Abarbanel-Gottlieb). Continue

\div(E)(!, t = 0)
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Proof (Abarbanel-Gottlieb). Continue

For a physical solution, 
 
 
 
div(E) = 0
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Numerical experiments

For solenoidal initial data (divE = 0),

‖(E,Bz)‖L2((0,T )×Ω) = C (T )‖(E,Bz)‖L2(Ω)

‖(Bzx ,Bzy )‖L2((0,T )×Ω) = C (T )‖(E,Bz)‖L2(Ω)

For non solenoidal initial data (divE 6= 0)

‖(E,Bz)‖L2((0,T )×Ω) = C (T )‖(E,Bz)‖L2(Ω)

‖(Bzx ,Bzy )‖L2((0,T )×Ω) ' C (T )k‖(E,Bz)‖L2(Ω)

σ = 0, strong well-posedness for physical solutions.
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Well-posedness for the full operator

Equations

L̃(∂t , ∂x)Ũ := {∂tU j + Aj∂j(U
1 + U2 + U3) + σjU

j}j=1,...3 = 0

Theorem

1 The Cauchy problem for L1 is weakly well posed if and only if for
each ξ ∈ Rd , the eigenvalues of L1(0, ξ) are real.

2 The Cauchy problem for L1 is strongly well posed if and only if for
each ξ ∈ Rd , the eigenvalues of L1(0, ξ) are real and L1(0, ξ) is
uniformly diagonalisable, there is an invertible S(ξ) satisfying,

S(ξ)−1L1(0, ξ)S(ξ) = diagonal, S , S−1 ∈ L∞(Rd
ξ ) .

3 If B has constant coefficients, then the Cauchy problem for
L = L1 + B is weakly well posed if and only if there exists M ≥ 0
such that for any ξ ∈ Rd , det L(τ, ξ) = 0 =⇒ |=τ | ≤ M.
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Results for constant absorption

L̃(∂t , ∂x)Ũ := {∂tU j + Aj∂j(U
1 + U2 + U3) + σjU

j}j=1,...3 = 0

Theorem(HRP,Confluentes Mathematicii 2011. Generalizing several
papers) Suppose that τ = 0 is an isolated root of constant multiplicity m
of det L1(τ, ξ) = 0.

1 If the Cauchy problem for L1 is strongly well posed, then for
arbitrary constant absorptions σj ∈ C, the Cauchy problem for

L̃1 + B is weakly well posed.

2 If the Cauchy problem for L1 is strongly well posed, and if there is a
ξ 6= 0 such that ker L(0, ξ) 6= ∩

ξj 6=0
kerAj , then L̃1(0, ξ) is not

diagonalizable. Therefore the Cauchy problem for L̃ is not strongly
well posed.

3 If the Cauchy problem for L is strongly well posed and for all ξ,
ker L1(0, ξ) = ∩

ξj 6=0
kerAj , then the Cauchy problem for L̃ is strongly

well posed. This condition holds if L1(0, ∂x) is elliptic, that is
det L1(0, ξ) 6= 0 for all real ξ.
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det L1(0, ξ) 6= 0 for all real ξ.

Applies to Maxwell

1: Seidenberg-Tarski Theorem (on the roots of the characteristic
equation),
2: count the dimensions.
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The result

U = E + iH,

H :=
{
Ũ = (U1,U2,U3) ∈ H2(R3 ; C3)3

}
: U1

1 = 0, U2
2 = 0, U3

3 = 0
}
.
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The result

U = E + iH,

H :=
{
Ũ = (U1,U2,U3) ∈ H2(R3 ; C3)3

}
: U1

1 = 0, U2
2 = 0, U3

3 = 0
}
.

Theorem If σj , for j = 1, 2, 3, belong to W 2,∞(R), then for any

Ũ0 = (U1
0 ,U

2
0 ,U

3
0 ) in H there is a unique solution Ũ in L2(0,T ;H) of the

split Cauchy problem with initial value Ũ0. Furthermore there is a C1 > 0
independent of Ũ0 so that for all positive time t,

‖Ũ(t, ·)‖(L2(R3))9 ≤ C1e
C1 t
∥∥Ũ0

∥∥
(H2(R3))9 .

2D estimates: JLLions-Metral-Vacus

Full proof in 2D with the Yee scheme : Sabrina Petit thesis.

3D : HPR.
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Elements of proof

Get estimates on a larger vector V for which a strongly hyperbolic
problem holds.

Semi-discretize in space and obtain similar discrete estimates

Pass to the limit.

Uniqueness goes through the estimates.

20 / 37



Estimates

V :=
(
U , V i ,V i,j , W j , U j , W , Z j

)
∈ C54.

U := U1 + U2 + U3, V j := ∂jU, V i,j := ∂ijU,

W :=
∑

k σk(xk)Uk ,W j := ∂jW ,

Z :=
∑

k ∂k(Wk + σk(xk)Uk), Z j := ∂jZ ,

∂tV + P(∂)V + B(σ,Dσ,D2σ)V = 0

LemmaThis problem is strongly well-posed (symmetrizable).
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Estimates

P(∂) =




I4 ⊗ L(0, ∂) 04,6 ⊗ 03,3 04,3 ⊗ 03,3 04,3 ⊗ 03,3 04,4 ⊗ 03,3

06,4 ⊗ 03,3 I6 ⊗ L(0, ∂) (I6 ⊗ L(0, ∂))M 06,3 ⊗ 03,3 06,4 ⊗ 03,3

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3 03,3 ⊗ 03,3 03,4 ⊗ 03,3

03,4 ⊗ 03,3 03,6 ⊗ 03,3 03,3 ⊗ 03,3 03,3 ⊗ 03,3 03,4 ⊗ 03,3

04,4 ⊗ 03,3 04,6 ⊗ 03,3 04,3 ⊗ 03,3 04,3 ⊗ 03,3 04,4 ⊗ 03,3




.

M :=




A1 0 0
0 A1 0
0 0 A1

0 A2 0
0 0 A2

0 0 A3



.
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Transmission Problem, One Absorption

L(@t, @1, @
0)U = F eL(@t, @1, @

0)eU = 0

Theorem

1 If σ(x1) = constant × 1x1>0 and L̃(∂) is hyperbolic, non degenerate
with respect to x1, then the constant coefficient transmission
problem is weakly well posed.

2 If σ(0) = 0, σ(x1) ∈W 1,∞(R), L̃(∂) is hyperbolic for some constant
σ , non degenerate with respect to x1, then the transmission
problem is weakly well posed.

Proof. For 1 Verify the criterion of R. Hersh.
For 2 the problem can be nearly conjugated to the constant coefficient
case. 24 / 37



Transmission Problem with Discontinuous Absorption

L(@t, @1, @
0)U = F eL(@t, @1, @

0)eU = 0

∂tE =
∑

Cj∂jB − j,
∂tB = −∑Cj∂jE .
6 unknowns

∂tE
j + σj(xj)E

j = Cj∂jB,
∂tB

j + σj(xj)E
j = −∑Cj∂jE .

E = E 1 + E 2 + E 3

B = B1 + B2 + B3

18 unknowns

Transmission conditions at x1 = 0 : [C1E ] = 0, [C1B] = 0.

C1 :=
(

0 0 0
0 0 −1
0 1 0

)
−→ [(E2,E3)] = 0, [(B2,B3)] = 0.
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Hersh Theorem

L(@t, @1, @
0)U = F eL(@t, @1, @

0)eU = 0

(U, eU) � g 2 N

G±L (τ, η) = {V (x1) solution of L(τ, ∂1, iη)V = 0,V → 0 when x1 → ±∞}
Ġ±L (τ, η) = {trace at x1 = 0 of elements in G±L (τ, η)}

Uniqueness ⇐⇒ ∀(τ, η),<τ > 0, (Ġ−L (τ, η), Ġ+

L̃
(τ, η)) ∩N = {0}

Well-posedness ⇐⇒ ∀(τ, η),<τ > 0, (Ġ−L (τ, η), Ġ+

L̃
(τ, η))⊕N = {0}
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Elliptic generator

L1(∂t , ∂x)U := ∂tU +
∑

Aj∂jU = 0

L1(0, k) =
∑

kjAj , U(t) = e−iL(0,k)t U0

If the Cauchy problem for L1 is strongly well posed and for all ξ,
ker L1(0, ξ) = ∩

ξj 6=0
kerAj , then the Cauchy problem for L̃ is

strongly well posed. This condition holds if L1(0, ∂x) is elliptic,
that is det L1(0, ξ) 6= 0 for all real ξ.

Warm-up for the 3− D Bérenger-Maxwell problem L.

Halpern & J. Rauch, Bérenger/Maxwell with Discontinous Absorptions:

Existence, Perfection, and No Loss. Séminaire Laurent Schwartz-2012-2013,

Exp. No. 10.
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Transmission Problem

⌦ S

K	  

!

Outside K, the permittivity 
and permeability are scalar	


Support of  the data

{
ε∂tE =

∑
Cj∂jB − j,

µ∂tB = −∑Cj∂jE .





ε(∂tE
j + σj(xj)E

j) = Cj∂j(
∑

Bk),

µ(∂tB
j + σj(xj)E

j) = −∑Cj∂j(
∑

Ek).

(E ,B) =

{
(E ,B) in O,
(
∑

Ek ,
∑

Bk) in Ω \ O.
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The result

Theorem ∃C , λ0, depending on ω. If λ > λ0, supp j ⊂ [0,∞[×ω, and

∀|α| ≤ 1, ∂αt,x j ∈ eλt L2
(
R ; L2(R3)

)
then there are E ,B defined on Rt ×O and split functions E j ,B j defined on
Rt × ∪Oκ, supported in t ≥ 0, so that the total field

U = (E ,B) ∈ eλtH1(R× R3) and satisfies the Bérenger differential

equations. Any solution with U ∈ eλtH1(R× R3) satisfies for λ > λ0∫
e−2λt

∥∥λU , ∇t,xU , λ∇t,xU
∣∣
ω

∥∥2

L2(R3)
dt

≤ C

∫
e−2λt

∑
|α|≤1

∥∥∂αt,x j(t)
∥∥2

L2(R3)
dt .

(1)

On each octant Oκ, the split fields satisfy E j
j = B j

j = 0 for all j , and∫
e−2λt

∥∥E j ,B j , ∂tE
j , ∂tB

j
∥∥2

L2(Oκ)
dt

≤ C

∫
e−2λt

∑
|α|≤1

∥∥∂αt,x j(t)
∥∥2

L2(R3)
dt .

(2)

In particular there is uniqueness for such solutions.
31 / 37



The key points

K	  

!

Outside K, the permittivity 
and permeability are scalar	


Support of  the data

USE THE DIVERGENCE
EQUATION.

Existence of smooth solutions by
the result above for σ ∈W 2,∞.

Laplace transform+ Paley-Wiener.
Passing to the limit needs H1

estimates. Partition of unity.

Standard estimates in O.
Estimates in R3 \ ω̄.
Well adapted operator in all of
R3.

Use the estimates to have weak
convergence of a family of solutions
with regular σ.

Uniqueness through the estimates.
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The well-adapted operator

K	  

!

Outside K, the permittivity 
and permeability are scalar	


Support of  the data

Relies on the “tilde” operators of the type

d̃ivu =
∑

j

τ

τ + σj
∂juj

and algebras like

d̃iv c̃url = 0, d̃iv g̃rad = ∆̃.

PE := εµ

∏
j(τ + σj(xj))

τ
−
∑

j

∂j
1

ε

(τ + σj+1)(τ + σj+2)

τ(τ + σj)
∂j(εE ) + `E .
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What about perfection ?

	Support of  the data	

LU = F

Free-space problem

LV = FRW = 0

Transmission problem

34 / 37



What about perfection ?

	Support of  the data	

LU = F

Free-space problem

LV = FRW = 0

Transmission problem

Perfect matching (Appelo-Hagstrom-Kreiss) is V = U in O.

34 / 37



What about perfection ?

	Support of  the data	

LU = F

Free-space problem

LV = FRW = 0

Transmission problem

Perfect matching (Appelo-Hagstrom-Kreiss) is V = U in O.

Follows from well-posedness by change of coordinates (Diaz-Joly) thanks
to holomorphy.
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Conclusions and perspectives

• The first proof of well-posedness for the full 3D Maxwell-Berenger
problem with (discontinuous) matrix coefficients.
Hyperbolic Boundary Value Problems with Trihedral Corners to appear in
special issue of AIMS for Peter Lax’s 90’s birthday.

⌦ S

.
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• The first proof of well-posedness for the full 3D Maxwell-Berenger
problem with (discontinuous) matrix coefficients.
Hyperbolic Boundary Value Problems with Trihedral Corners to appear in
special issue of AIMS for Peter Lax’s 90’s birthday.
• The boundary value problem

• Maxwell + dissipative boundary conditions : done in AIMS paper.
• Berenger Maxwell : poses real difficulties.

35 / 37



The grail

Thank you for your attention
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Calculs pour Maxwell 2D

Calculs Maple Abarbanel/Gottlieb

Maxwell:

Ex

Ey

H

 (t) = etA

Ex

Ey

H

 (0) = PetDP−1

Ex

Ey

H

 (0)

Bérenger-Maxwell :


Ex

Ey

Hx

Hy

 (t) = etM


Ex

Ey

Hx

Hy

 (0) = PetJP−1


Ex

Ey

Hx

Hy

 (0)

A :=

 0 0 iω2

0 0 −iω1

iω2 −iω1 0

 , D =

0 0 0
0 i |ω| 0
0 0 −i |ω|



M =


0 0 iω2 iω2

0 0 −iω1 −iω1

0 −iω1 0 0
iω2 0 0 0

 , J =


0 1 0 0
0 0 0 0
0 0 i |ω| 0
0 0 0 −i |ω|



etD =

0 0 0

0 e i|ω|t 0

0 0 e−i|ω|t

 , etJ =


1 t 0 0
0 1 0 0

0 0 e i|ω|t 0

0 0 0 e−i|ω|t


the factor t will factorize the second component of P−1U(0),

(ω1Ex + ω2Ey )(0) = div(E )(0).
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