Cohomological Hall algebras and affine quantum groups

Yaping Yang

University of Massachusetts, Amherst

Joint work with Gufang Zhao

Conference on Vertex Algebras and Quantum Groups Feb. 7- Feb.12, 2016, Banff

- Motivations
- The cohomological Hall algebras
- Representations
- Compactibility
- Shuffle description

- $\{Y_{\hbar}(g), U_q(Lg), \mathcal{E}Il_{\hbar,\tau}(g)\} \leftrightarrow \{\mathbb{C}, \mathbb{C}^*, E\}$ is by QYBE.
- The correspondence (ii) ↔ (iii) is well-known.
- The direction $(i) \rightarrow (iii)$: [Nakajima, Varagnolo] Let \mathfrak{M} be a Nakajima quiver variety.

$$Y_{\hbar}(g) \sim H_{eq}^*(\mathfrak{M}), \ U_q(Lg) \sim K_{eq}(\mathfrak{M})$$

- $\{Y_{\hbar}(\mathfrak{g}), U_q(L\mathfrak{g}), \mathcal{E}Il_{\hbar,\tau}(\mathfrak{g})\} \leftrightarrow \{\mathbb{C}, \mathbb{C}^*, E\}$ is by QYBE.
- The correspondence (ii) ↔ (iii) is well-known
- The direction $(i) \rightarrow (iii)$: [Nakajima, Varagnolo] Let \mathfrak{M} be a Nakajima quiver variety.

$$Y_{\hbar}(g) \sim H_{eq}^{*}(\mathfrak{M}), \ U_{q}(Lg) \sim K_{eq}(\mathfrak{M})$$

- $\{Y_{\hbar}(\mathfrak{g}), U_{q}(L\mathfrak{g}), \mathcal{E}II_{\hbar,\tau}(\mathfrak{g})\} \leftrightarrow \{\mathbb{C}, \mathbb{C}^{*}, E\}$ is by QYBE.
- The correspondence $(ii) \leftrightarrow (iii)$ is well-known.
- The direction $(i) \rightarrow (iii)$: [Nakajima, Varagnolo] Let \mathfrak{M} be a Nakajima quiver variety.

$$Y_{\hbar}(g) \sim H_{eq}^*(\mathfrak{M}), \ U_q(Lg) \sim K_{eq}(\mathfrak{M})$$

- $\{Y_{\hbar}(\mathfrak{g}), U_q(L\mathfrak{g}), \mathcal{E}Il_{\hbar,\tau}(\mathfrak{g})\} \leftrightarrow \{\mathbb{C}, \mathbb{C}^*, E\}$ is by QYBE.
- The correspondence $(ii) \leftrightarrow (iii)$ is well-known.
- The direction $(i) \rightarrow (iii)$: [Nakajima, Varagnolo] Let \mathfrak{M} be a Nakajima quiver variety.

$$Y_{\hbar}(\mathfrak{g}) \curvearrowright H_{eq}^*(\mathfrak{M}), \ U_q(L\mathfrak{g}) \curvearrowright K_{eq}(\mathfrak{M})$$

- Give a geometric (=cohomological) construction of $Y_{\hbar}(g)$, $U_{q}(Lg)$, $\mathcal{E}Il_{\hbar,\tau}(g)$. (Not just of their representations.)
 - Give a canonical basis
 - Sheafified version of $\mathcal{E}II_{\hbar,\tau}(\mathfrak{g})$.
- Use this to define <u>new</u> affine quantum groups corresponding to arbitrary cohomology theories. (e.g. Cobordism theory.)

Remark

This is an affine analogue of Ringel Hall algebra. For any quiver ${\sf Q}$, Ringel defined the Hall algebra

$$\mathcal{H}(Q) = \mathbb{Z}\{[M] : \text{iso. class of repns. of } Q \text{ over } \mathbb{F}_q\},$$

By Ringel-Green, there is an isomorphism $\mathcal{H}(Q)\cong U_q(\mathfrak{g})^+$

- Give a geometric (=cohomological) construction of $Y_{\hbar}(g)$, $U_{q}(Lg)$, $\mathcal{E}Il_{\hbar,\tau}(g)$. (Not just of their representations.)
 - Give a canonical basis.
 - Sheafified version of $\mathcal{E}II_{\hbar,\tau}(\mathfrak{g})$.
- Use this to define <u>new</u> affine quantum groups corresponding to arbitrary cohomology theories. (e.g. Cobordism theory.)

Remark

This is an affine analogue of Ringel Hall algebra. For any quiver Q, Ringel defined the Hall algebra

$$\mathcal{H}(Q) = \mathbb{Z}\{[M] : \text{iso. class of repns. of } Q \text{ over } \mathbb{F}_q\},$$

By Ringel-Green, there is an isomorphism $\mathcal{H}(\mathsf{Q})\cong \mathsf{U}_q(\mathfrak{g})^+$.

- Give a geometric (=cohomological) construction of $Y_{\hbar}(\mathfrak{g}), U_q(L\mathfrak{g}), \mathcal{E}ll_{\hbar,\tau}(\mathfrak{g})$. (Not just of their representations.)
 - Give a canonical basis.
 - Sheafified version of $\mathcal{E}II_{\hbar,\tau}(\mathfrak{g})$.
- Use this to define <u>new</u> affine quantum groups corresponding to arbitrary cohomology theories. (e.g. Cobordism theory.)

Remark

This is an affine analogue of Ringel Hall algebra. For any quiver Q, Ringel defined the Hall algebra

 $\mathcal{H}(Q) = \mathbb{Z}\{[M] : \text{iso. class of repns. of } Q \text{ over } \mathbb{F}_q\},$

By Ringel-Green, there is an isomorphism $\mathcal{H}(Q)\cong U_q(\mathfrak{g})^+$

- Give a geometric (=cohomological) construction of $Y_{\hbar}(g)$, $U_{q}(Lg)$, $\mathcal{E}Il_{\hbar,\tau}(g)$. (Not just of their representations.)
 - Give a canonical basis.
 - Sheafified version of $\mathcal{E}II_{\hbar,\tau}(\mathfrak{g})$.
- ② Use this to define <u>new</u> affine quantum groups corresponding to arbitrary cohomology theories. (e.g. Cobordism theory.)

Remark

This is an affine analogue of Ringel Hall algebra. For any quiver Q, Ringel defined the Hall algebra

$$\mathcal{H}(Q) = \mathbb{Z}\{[M] : \text{iso. class of repns. of } Q \text{ over } \mathbb{F}_q\},$$

By Ringel-Green, there is an isomorphism $\mathcal{H}(Q) \cong U_q(\mathfrak{g})^+$.

Table of Contents

- Motivations
- The cohomological Hall algebras
- Representations
- Compactibility
- Shuffle description

Arbitrary cohomology theory

- Let A be any cohomology theory. A: {top. spaces} → {graded rings}.
 (E.g.: A = cohomology, K-theory, elliptic cohomology).
- For any $f: X \to Y$, we have smooth pullback

$$f^*: A(Y) \to A(X).$$

We have proper pushforward

$$f_*: A(X) \to A(Y).$$

Arbitrary cohomology theory

- Let A be any cohomology theory. A: {top. spaces} → {graded rings}.
 (E.g.: A = cohomology, K-theory, elliptic cohomology).
- For any $f: X \to Y$, we have smooth pullback

$$f^*: A(Y) \to A(X).$$

We have proper pushforward

$$f_*: A(X) \to A(Y).$$

- Let Q = (I, H) be a quiver. I: vertices, and H: arrows. We fix $\{V_i\}_{i \in I}$ vector spaces of Q, with dim. vector $\mathbf{v} = (v_i)_{i \in I}$.
- Rep. Space $\operatorname{Rep}(Q, v) = \bigoplus_{h \in H} \operatorname{Hom}(V_{\operatorname{tail}(h)}, V_{\operatorname{head}(h)}).$
- Then: $G_v = \prod \operatorname{GL}_{v_i} \curvearrowright \operatorname{Rep}(Q, v)$.
- Π_Q the preprojective algebra: the path algebra of $Q \cup Q^{op}$, modulo the relations $[x, x^*] = 0$.
- $Rep(\Pi_Q, v) = \{(x, x^*) \mid [x, x^*] = 0\} \subset T^* Rep(Q, v)$
- The moment map $\mu_{v}: T^{*}\operatorname{Rep}(Q, v) \to \operatorname{Lie} G_{v}^{*}$.

$$G_{\nu} \times (\mathbb{C}^*)^2 \curvearrowright \mu_{\nu}^{-1}(0) = \operatorname{\mathsf{Rep}}(\Pi_Q, \nu).$$

Definition (Y-Zhao)

$$\mathcal{P}(A,Q) := \bigoplus_{v \in \mathbb{N}^I} A_{G_v \times (\mathbb{C}^*)^2}(\mu_v^{-1}(0))$$

- Let Q = (I, H) be a quiver. I: vertices, and H: arrows. We fix $\{V_i\}_{i \in I}$ vector spaces of Q, with dim. vector $\mathbf{v} = (v_i)_{i \in I}$.
- Rep. Space $\operatorname{Rep}(Q, v) = \bigoplus_{h \in H} \operatorname{Hom}(V_{\operatorname{tail}(h)}, V_{\operatorname{head}(h)}).$
- Then: $G_v = \prod \operatorname{GL}_{v_i} \curvearrowright \operatorname{Rep}(Q, v)$.
- Π_Q the preprojective algebra: the path algebra of $Q \cup Q^{op}$, modulo the relations $[x, x^*] = 0$.
- $Rep(\Pi_Q, v) = \{(x, x^*) \mid [x, x^*] = 0\} \subset T^* Rep(Q, v)$
- The moment map $\mu_{V}: T^{*}\operatorname{Rep}(Q, V) \to \operatorname{Lie} G_{V}^{*}$

$$G_{\nu} \times (\mathbb{C}^*)^2 \curvearrowright \mu_{\nu}^{-1}(0) = \operatorname{\mathsf{Rep}}(\Pi_{\mathcal{Q}}, \nu).$$

Definition (Y-Zhao)

$$\mathcal{P}(A,Q) := \bigoplus_{v \in \mathbb{N}^I} A_{G_v \times (\mathbb{C}^*)^2} (\mu_v^{-1}(0)).$$

- Let Q = (I, H) be a quiver. I: vertices, and H: arrows. We fix $\{V_i\}_{i \in I}$ vector spaces of Q, with dim. vector $v = (v_i)_{i \in I}$.
- Rep. Space $\operatorname{Rep}(Q, v) = \bigoplus_{h \in H} \operatorname{Hom}(V_{\operatorname{tail}(h)}, V_{\operatorname{head}(h)}).$
- Then: $G_v = \prod \operatorname{GL}_{v_i} \curvearrowright \operatorname{Rep}(Q, v)$.
- Π_Q the preprojective algebra: the path algebra of $Q \cup Q^{op}$, modulo the relations $[x, x^*] = 0$.
- $Rep(\Pi_Q, v) = \{(x, x^*) \mid [x, x^*] = 0\} \subset T^* Rep(Q, v)$
- The moment map $\mu_{\nu}: T^* \operatorname{Rep}(Q, \nu) \to \operatorname{Lie} G_{\nu}^*$.

$$G_{\nu} \times (\mathbb{C}^*)^2 \curvearrowright \mu_{\nu}^{-1}(0) = \operatorname{\mathsf{Rep}}(\Pi_Q, \nu).$$

Definition (Y-Znao)
The preprojective Col-

$$\mathcal{P}(A,Q) := \bigoplus_{v \in \mathbb{N}^I} A_{G_v \times (\mathbb{C}^*)^2}(\mu_v^{-1}(0))$$

- Let Q = (I, H) be a quiver. I: vertices, and H: arrows.
 We fix {V_i}_{i∈I} vector spaces of Q, with dim. vector v = (v_i)_{i∈I}.
- Rep. Space $\operatorname{Rep}(Q, v) = \bigoplus_{h \in H} \operatorname{Hom}(V_{\operatorname{tail}(h)}, V_{\operatorname{head}(h)}).$
- Then: $G_v = \prod \operatorname{GL}_{v_i} \curvearrowright \operatorname{Rep}(Q, v)$.
- Π_Q the preprojective algebra: the path algebra of $Q \cup Q^{op}$, modulo the relations $[x, x^*] = 0$.
- $Rep(\Pi_Q, v) = \{(x, x^*) \mid [x, x^*] = 0\} \subset T^* Rep(Q, v)$
- The moment map $\mu_{\nu}: T^* \operatorname{Rep}(Q, \nu) \to \operatorname{Lie} G_{\nu}^*$.

$$G_{\nu} \times (\mathbb{C}^*)^2 \curvearrowright \mu_{\nu}^{-1}(0) = \operatorname{\mathsf{Rep}}(\Pi_Q, \nu).$$

Definition (Y-Zhao)

$$\mathcal{P}(A,Q) := \bigoplus_{v \in \mathbb{N}^l} A_{G_v \times (\mathbb{C}^*)^2} (\mu_v^{-1}(0)).$$

Hall multiplication $m_{v_1,v_2}: \mathcal{P}_{v_1} \otimes \mathcal{P}_{v_2} \to \mathcal{P}_{v_1+v_2}$

The correspondence

$$\mathsf{Rep}(\Pi_Q, v_1) \times \mathsf{Rep}(\Pi_Q, v_2) \qquad \qquad \mathsf{Rep}(\Pi_Q, v_1 + v_2)$$

where

- $Ext_{v_1,v_2} = \{V_1 \rightarrow V \rightarrow V_2 \mid \dim V_i = v_i, \dim V = v_1 + v_2\}$
- $\phi: V \mapsto (V_1, V_2)$ and $\psi: V \mapsto V$

The Hall multiplication is

$$m_{v_1,v_2} := \psi_* \circ \phi^*$$

Theorem (Schiffman-Vasserot: Q = Jordan, A = K; Y-Zhao: any Q, A) $\mathcal{P}(A,Q) = \bigoplus_{v} A_{\mathbb{C}^{*2}}(\text{Rep}(\Pi_Q,v))$ is an associative algebra.

Hall multiplication $m_{v_1,v_2}: \mathcal{P}_{v_1} \otimes \mathcal{P}_{v_2} \to \mathcal{P}_{v_1+v_2}$

The correspondence

$$Rep(\Pi_Q, v_1) \times Rep(\Pi_Q, v_2) \qquad Rep(\Pi_Q, v_1 + v_2)$$

where

- $Ext_{V_1,V_2} = \{V_1 \rightarrow V \rightarrow V_2 \mid \dim V_i = v_i, \dim V = v_1 + v_2\}$
- \bullet $\phi: V \mapsto (V_1, V_2)$ and $\psi: V \mapsto V$

The Hall multiplication is

$$m_{V_1,V_2} := \psi_* \circ \phi^*.$$

Theorem (Schiffman-Vasserot: Q =Jordan, A = K; Y-Zhao: any Q, A) $\mathcal{P}(A,Q) = \bigoplus_{v} A_{\mathbb{C}^{*2}}(\mathsf{Rep}(\Pi_Q,v)) \text{ is an associative algebra.}$

Extended CoHA

Let
$$\mathcal{P}^0(A) := \text{Sym}(\oplus_{i \in I} A_{G_{e_i}}(\text{pt}))$$
. E.g. When $A = H^*$, $\mathcal{P}^0 = U(\mathfrak{h}[z])$. When $A = K$, $\mathcal{P}^0 = U(\mathfrak{h}[z^{\pm}])$.

Proposition (Y-Zhao)

There is an action of \mathcal{P}^0 on $\mathcal{P}(A, Q)$, compatible with the product structure on \mathcal{P} .

Definition

The extended CoHA is

$$\mathcal{P}^{\text{ext}}(A,Q) := \mathcal{P}^0 \ltimes \mathcal{P}(A,Q)$$

The algebra $\mathcal{P}^{\text{ext}} := \mathcal{P}^0 \ltimes \mathcal{P}$ is the (Borel part) of the affine quantum groups for any A.

Extended CoHA

Let
$$\mathcal{P}^0(A):= \operatorname{Sym}(\oplus_{i\in I}A_{G_{e_i}}(\operatorname{pt}))$$
. E.g. When $A=H^*$, $\mathcal{P}^0=U(\mathfrak{h}[z])$. When $A=K$, $\mathcal{P}^0=U(\mathfrak{h}[z^\pm])$.

Proposition (Y-Zhao)

There is an action of \mathcal{P}^0 on $\mathcal{P}(A,Q)$, compatible with the product structure on \mathcal{P} .

$$\mathcal{P}^{\text{ext}}(A,Q) := \mathcal{P}^0 \ltimes \mathcal{P}(A,Q)$$

Extended CoHA

Let
$$\mathcal{P}^0(A) := \text{Sym}(\oplus_{i \in I} A_{G_{e_i}}(\text{pt}))$$
. E.g. When $A = H^*$, $\mathcal{P}^0 = U(\mathfrak{h}[z])$. When $A = K$, $\mathcal{P}^0 = U(\mathfrak{h}[z^{\pm}])$.

Proposition (Y-Zhao)

There is an action of \mathcal{P}^0 on $\mathcal{P}(A,Q)$, compatible with the product structure on \mathcal{P} .

Definition

The extended CoHA is

$$\mathcal{P}^{ext}(A,Q) := \mathcal{P}^0 \ltimes \mathcal{P}(A,Q).$$

The algebra $\mathcal{P}^{\text{ext}} := \mathcal{P}^0 \ltimes \mathcal{P}$ is the (Borel part) of the affine quantum groups for any A.

Theorem (Y-Zhao)

For any Q without edges loops. We have the algebra isomorphism

$$\mathcal{P}^{\text{ext}}\mid_{t_1=t_2=\frac{\hbar}{2}} \cong Y_{\hbar}^{\geq 0}(\mathfrak{g})$$

- There exists a coproduct ∇ on P^{ext}.
- For A = K, \mathcal{P}^{ext} is expected to be $U_q^{\geq 0}(L\mathfrak{g})$.
- For $A = Ell^*$ of [Lurie, Ando, Chen, Gepner, Goerss-Hopkins, \cdots], we get a sheafified elliptic quantum group $\mathcal{E}ll_{\tau,\hbar}^+(\mathfrak{g})$. It is an algebra object in a certain monoidal category of sheaves on the $\{E^{(v)}\}_{v\in N'}$.
- Compare with the elliptic quantum group of [Gautam-Toledano Laredo].

Theorem (Y-Zhao)

For any Q without edges loops. We have the algebra isomorphism

$$\mathcal{P}^{\text{ext}} \mid_{t_1=t_2=\frac{\hbar}{2}} \cong Y_{\hbar}^{\geq 0}(\mathfrak{g})$$

- There exists a coproduct ∇ on P^{ext}.
- For A = K, \mathcal{P}^{ext} is expected to be $U_q^{\geq 0}(L\mathfrak{g})$.
- For $A=Ell^*$ of [Lurie, Ando, Chen, Gepner, Goerss-Hopkins, \cdots], we get a sheafified elliptic quantum group $\mathcal{E}ll_{\tau,\hbar}^+(\mathfrak{g})$. It is an algebra object in a certain monoidal category of sheaves on the $\{E^{(v)}\}_{v\in N^l}$.
- Compare with the elliptic quantum group of [Gautam-Toledano Laredo].

Theorem (Y-Zhao)

For any Q without edges loops. We have the algebra isomorphism

$$\mathcal{P}^{\text{ext}}\mid_{t_1=t_2=\frac{\hbar}{2}} \cong Y_{\hbar}^{\geq 0}(\mathfrak{g})$$

- There exists a coproduct ∇ on P^{ext}.
- For A = K, \mathcal{P}^{ext} is expected to be $U_q^{\geq 0}(L\mathfrak{g})$.
- For $A=Ell^*$ of [Lurie, Ando, Chen, Gepner, Goerss-Hopkins, \cdots], we get a sheafified elliptic quantum group $\mathcal{E}ll_{\tau,\hbar}^+(\mathfrak{g})$. It is an algebra object in a certain monoidal category of sheaves on the $\{E^{(v)}\}_{v\in \mathbb{N}^l}$.
- Compare with the elliptic quantum group of [Gautam-Toledano Laredo].

Theorem (Y-Zhao)

For any Q without edges loops. We have the algebra isomorphism

$$\mathcal{P}^{\text{ext}} \mid_{t_1=t_2=\frac{\hbar}{2}} \cong Y_{\hbar}^{\geq 0}(\mathfrak{g})$$

- There exists a coproduct ∇ on P^{ext}.
- For A = K, \mathcal{P}^{ext} is expected to be $U_q^{\geq 0}(L\mathfrak{g})$.
- For $A = Ell^*$ of [Lurie, Ando, Chen, Gepner, Goerss-Hopkins, \cdots], we get a sheafified elliptic quantum group $\mathcal{E}ll_{\tau,\hbar}^+(\mathfrak{g})$. It is an algebra object in a certain monoidal category of sheaves on the $\{E^{(v)}\}_{v\in \mathbb{N}^l}$.
- Compare with the elliptic quantum group of [Gautam-Toledano Laredo].

Theorem (Y-Zhao)

For any Q without edges loops. We have the algebra isomorphism

$$\mathcal{P}^{\text{ext}} \mid_{t_1 = t_2 = \frac{\hbar}{2}} \cong Y_{\hbar}^{\geq 0}(\mathfrak{g})$$

- There exists a coproduct ∇ on P^{ext}.
- For A = K, \mathcal{P}^{ext} is expected to be $U_q^{\geq 0}(L\mathfrak{g})$.
- For $A = Ell^*$ of [Lurie, Ando, Chen, Gepner, Goerss-Hopkins, \cdots], we get a sheafified elliptic quantum group $\mathcal{E}ll_{\tau,\hbar}^+(\mathfrak{g})$. It is an algebra object in a certain monoidal category of sheaves on the $\{E^{(v)}\}_{v\in N'}$.
- Compare with the elliptic quantum group of [Gautam-Toledano Laredo].

Table of Contents

- Motivations
- The cohomological Hall algebras
- Representations
- Compactibility
- Shuffle description

Nakajima quiver varieties

Let Q^o be the framed quiver corresponding to Q. For example:

• Let $\mu_{v,w}: T^* \operatorname{Rep}(Q^{\heartsuit}, v, w) \to \operatorname{Lie} G_v^*$ be the moment map. For stability condition θ , the Nakajima quiver variety is

$$\mathfrak{M}(v, w); = \mu_{v,w}^{-1}(0)//_{\theta}G_{v}.$$

Example

- When $Q = \bullet$, then $\mathfrak{M}(r, n) = T^* \operatorname{Gr}(r, n)$ is the cotangent bundle of the Grassmannian.
- When Q is the Jordan quiver, $\mathfrak{M}(n, 1) \cong \operatorname{Hilb}^n(\mathbb{C}^2)$.

Nakajima quiver varieties

Let Q^o be the framed quiver corresponding to Q. For example:

• Let $\mu_{v,w}: T^* \operatorname{Rep}(Q^{\heartsuit}, v, w) \to \operatorname{Lie} G_v^*$ be the moment map. For stability condition θ , the Nakajima quiver variety is

$$\mathfrak{M}(v, w); = \mu_{v,w}^{-1}(0)//_{\theta}G_{v}.$$

Example

- When $Q = \bullet$, then $\mathfrak{M}(r, n) = T^* \operatorname{Gr}(r, n)$ is the cotangent bundle of the Grassmannian.
- When Q is the Jordan quiver, $\mathfrak{M}(n, 1) \cong \operatorname{Hilb}^n(\mathbb{C}^2)$.

Nakajima quiver varieties

Let Q^o be the framed quiver corresponding to Q. For example:

• Let $\mu_{v,w}: T^* \operatorname{Rep}(Q^{\heartsuit}, v, w) \to \operatorname{Lie} G_v^*$ be the moment map. For stability condition θ , the Nakajima quiver variety is

$$\mathfrak{M}(v, w); = \mu_{v,w}^{-1}(0)//_{\theta}G_{v}.$$

Example

- When $Q = \bullet$, then $\mathfrak{M}(r, n) = T^* \operatorname{Gr}(r, n)$ is the cotangent bundle of the Grassmannian.
- When Q is the Jordan quiver, $\mathfrak{M}(n,1) \cong \operatorname{Hilb}^n(\mathbb{C}^2)$.

The action

Theorem (Y-Zhao)

 $\forall w \in \mathbb{N}^{I}$, there is an action

$$\mathscr{P}^{\mathsf{ext}} \curvearrowright \bigoplus_{v \in \mathbb{N}^I} A_{G_{\mathsf{w}} \times \mathbb{C}^{*2}}(\mathfrak{M}(v, w))$$

Action uses the correspondence

$$\mu_{v_1}^{-1}(0) \times \mu_{v_2,w}^{-1}(0)^{ss} \longleftrightarrow \widetilde{Ext}_{v_1,v_2} \longrightarrow \mu_{v_1+v_2,w}^{-1}(0)^{ss}$$

The action

Theorem (Y-Zhao)

 $\forall w \in \mathbb{N}^{I}$, there is an action

$$\mathscr{P}^{\mathsf{ext}} \curvearrowright \bigoplus_{v \in \mathbb{N}^I} A_{\mathsf{G}_{\mathsf{w}} \times \mathbb{C}^{*2}}(\mathfrak{M}(v, w))$$

Action uses the correspondence

$$\mu_{v_1}^{-1}(0) \times \mu_{v_2,w}^{-1}(0)^{ss} \longleftarrow \widetilde{Ext}_{v_1,v_2} \longrightarrow \mu_{v_1+v_2,w}^{-1}(0)^{ss}$$

Table of Contents

- Motivations
- The cohomological Hall algebras
- Representations
- Compactibility
- Shuffle description

Yangians and quiver varieties

Let Q be the quiver without edge-loop.

Theorem (Nakajima 1999, Varagnolo 2000)

The Yangian $Y_{\hbar}(\mathfrak{g})$ acts on $H^*_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$, for $\mathfrak{M}(w) = \sqcup_{v \in N^l} \mathfrak{M}(v, w)$.

Let Q be any quiver.
Maulik-Okounkov constructed another Yangian Y_{MO}, based on the BTT-presentation.

Theorem (Maulik-Okounkov, 2012)

The Yangian Y_{MO} acts on $H^*_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$.

Yangians and quiver varieties

Let Q be the quiver without edge-loop.

Theorem (Nakajima 1999, Varagnolo 2000)

The Yangian $Y_{\hbar}(\mathfrak{g})$ acts on $H^*_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$, for $\mathfrak{M}(w) = \sqcup_{v \in N'} \mathfrak{M}(v, w)$.

Let Q be any quiver.
Maulik-Okounkov constructed another Yangian Y_{MO}, based on the RTT-presentation.

Theorem (Maulik-Okounkov, 2012)

The Yangian Y_{MO} acts on $H_{G_{WX}\mathbb{C}^*}^*(\mathfrak{M}(w))$.

Relation between $Y_{\hbar}(g)$ and Y_{MO}

Theorem (McBreen: Q = ADE; Y-Zhao: any Q)

- Q without edge loops. There is an embedding $Y_{\hbar}(g) \hookrightarrow Y_{MO}$.
- This embedding is compatible with the actions on $H^*_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$.

The compatibility

Theorem (Y-Zhao)

Assume $A = H^*$, Q has no edges loops.

• There is an embedding $i: \mathcal{P}^{\text{ext}} \hookrightarrow Y^{\geq 0}_{MO}$, which is compatible with the two actions:

Y-Zhao :
$$\mathcal{P}^{\text{ext}} \curvearrowright H_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$$

Maulik-Okounkov : $Y_{\text{MO}}^{\geq 0} \curvearrowright H_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$

② i induces an isomorphism $i: \mathcal{P}^{\text{ext}} \cong Y_{\hbar}^{\geq 0}(\mathfrak{g}) \subset Y_{\text{MO}}^{\geq 0}$. This isomorphism is compatible with the two actions:

Y-Zhao :
$$\mathcal{P}^{\mathrm{ext}} \curvearrowright H_{\mathrm{G}_{\mathrm{w}} \times \mathbb{C}^*}(\mathfrak{M}(w))$$

Nakajima, Varagnolo : $Y_{\hbar}^{\geq 0}(\mathfrak{g}) \curvearrowright H_{\mathrm{G}_{\mathrm{w}} \times \mathbb{C}^*}(\mathfrak{M}(w))$

The compatibility

Theorem (Y-Zhao)

Assume $A = H^*$, Q has no edges loops.

• There is an embedding $i: \mathcal{P}^{\text{ext}} \hookrightarrow Y^{\geq 0}_{MO}$, which is compatible with the two actions:

Y-Zhao :
$$\mathcal{P}^{\text{ext}} \curvearrowright H_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$$

Maulik-Okounkov : $Y_{\text{MO}}^{\geq 0} \curvearrowright H_{G_w \times \mathbb{C}^*}(\mathfrak{M}(w))$

② i induces an isomorphism $i: \mathcal{P}^{\text{ext}} \cong Y_{\hbar}^{\geq 0}(\mathfrak{g}) \subset Y_{\text{MO}}^{\geq 0}$. This isomorphism is compatible with the two actions:

Y-Zhao :
$$\mathcal{P}^{\text{ext}} \curvearrowright H_{G_{\mathbf{w}} \times \mathbb{C}^*}(\mathfrak{M}(\mathbf{w}))$$

Nakajima, Varagnolo : $Y_{\hbar}^{\geq 0}(\mathfrak{g}) \curvearrowright H_{G_{\mathbf{w}} \times \mathbb{C}^*}(\mathfrak{M}(\mathbf{w}))$

Table of Contents

- Motivations
- The cohomological Hall algebras
- Representations
- Compactibility
- Shuffle description

Cohomology theories and formal groups

For $\pi: L \to X$ a line bundle with zero section s, the first Chern class:

$$c_1(L) := s^* s_*(1).$$

For any two line bundles L, M on X. If $A = H^*$, $c_1(L \otimes M) = c_1(L) + c_1(M)$.

Theorem (Quillen)

There is a unique formal power series $F(u, v) \in A(pt)[u, v]$, such that:

$$c_1(L \otimes M) = F(c_1(L), c_1(M)) \in A^*(X).$$

The series F(u, v) is a formal group law:

- $F(u, v) = u + v + \cdots$
- $\bullet \ F(u,v) = F(v,u)$
- F(F(u, v), w) = F(u, F(v, w)).

Example

- ① Let $A = H^*$, then $F_a(u, v) = u + v$.
- 2 Let A = K, then $F_m(u, v) = u + v uv$.
- 3 Let A = cobordism theory, F(u, v) is the universal formal group law.

The series F(u, v) is a formal group law:

- $F(u, v) = u + v + \cdots$
- $\bullet \ F(u,v) = F(v,u)$
- F(F(u, v), w) = F(u, F(v, w)).

Example

- **1** Let $A = H^*$, then $F_a(u, v) = u + v$.
- 2 Let A = K, then $F_m(u, v) = u + v uv$.
- 3 Let A = cobordism theory, F(u, v) is the universal formal group law.

Now, let's go back to general A:

- Shuffle algebra S(A, Q).
- Example: Let Q be the Jordan quiver. Let F be the formal group law.
 - ullet $\mathbb{S}=igoplus_{n\in\mathbb{N}}\mathbb{S}_n$ with $\mathbb{S}_n=\mathbb{Q}[\![t_1,t_2]\!][\![x_1,\ldots,x_n]\!]^{\mathfrak{S}_n}$
 - The multiplication $\mathbb{S}_n \otimes_{\mathbb{Q}[\![t_1^+,t_2^+]\!]} \mathbb{S}_m \to \mathbb{S}_{n+m}$

$$f(x_1,\ldots,x_n)\star g(x_1,\ldots,x_m)=\sum_{\sigma\in\mathrm{Sh}(n,m)}\sigma\Big(f(x_1,\ldots,x_n)g(x_{n+1},\ldots,x_{n+m})\cdot h\Big)$$

where

$$h = h(Q, F) = \prod_{i \in [1, n], j \in [n+1, n+m]} \frac{(x_{j-F}x_{j} + Ft_{1} + Ft_{2})(x_{j} - Fx_{i} + Ft_{1})(x_{j} - Fx_{i} + Ft_{2})}{x_{j} - Fx_{i}}$$

Theorem (Y-Zhao)

There is an embedding $\mathcal{P}(A,Q) \hookrightarrow \mathbb{S}(A,Q)$.

Corollary

- Canonical basis of $\mathcal{P}(A, Q)$
- For $A = H^*$, shuffle formulas for the Yangian $Y_{\mathbb{R}}^+(\mathfrak{g})$

Now, let's go back to general A:

- Shuffle algebra S(A, Q).
- Example: Let Q be the Jordan quiver. Let F be the formal group law.
 - $\mathbb{S} = \bigoplus_{n \in \mathbb{N}} \mathbb{S}_n$ with $\mathbb{S}_n = \mathbb{Q}[[t_1, t_2]][x_1, \dots, x_n]]^{\mathfrak{S}_n}$.
 - The multiplication $\mathbb{S}_n \otimes_{\mathbb{Q}\llbracket t_{\pm}^{\pm}, t_{\pm}^{\pm} \rrbracket} \mathbb{S}_m \to \mathbb{S}_{n+m}$

$$f(x_1,\ldots,x_n)\star g(x_1,\ldots,x_m)=\sum_{\sigma\in\operatorname{Sh}(n,m)}\sigma\Big(f(x_1,\ldots,x_n)g(x_{n+1},\ldots,x_{n+m})\cdot h\Big)$$

where

$$h = h(Q, F) = \prod_{i \in [1, n], j \in [n+1, n+m]} \frac{(x_{i} - Fx_{j} + Ft_{1} + Ft_{2})(x_{j} - Fx_{i} + Ft_{1})(x_{j} - Fx_{i} + Ft_{2})}{x_{j} - Fx_{i}}.$$

Theorem (Y-Zhao)

There is an embedding $\mathcal{P}(A,Q) \hookrightarrow \mathbb{S}(A,Q)$.

Corollary

- Canonical basis of $\mathcal{P}(A, Q)$.
- For $A = H^*$, shuffle formulas for the Yangian $Y_{\pi}^+(\mathfrak{g})$

Now, let's go back to general A:

- Shuffle algebra S(A, Q).
- Example: Let Q be the Jordan quiver. Let F be the formal group law.
 - $\mathbb{S} = \bigoplus_{n \in \mathbb{N}} \mathbb{S}_n$ with $\mathbb{S}_n = \mathbb{Q}[[t_1, t_2]][x_1, \dots, x_n]]^{\mathfrak{S}_n}$.
 - The multiplication $\mathbb{S}_n \otimes_{\mathbb{Q}\llbracket t_{\pm}^{\pm}, t_{\pm}^{\pm} \rrbracket} \mathbb{S}_m \to \mathbb{S}_{n+m}$

$$f(x_1,\ldots,x_n)\star g(x_1,\ldots,x_m)=\sum_{\sigma\in Sh(n,m)}\sigma\Big(f(x_1,\ldots,x_n)g(x_{n+1},\ldots,x_{n+m})\cdot h\Big)$$

where

$$h = h(Q, F) = \prod_{i \in [1, n], j \in [n+1, n+m]} \frac{(x_{i} - Fx_{j} + Ft_{1} + Ft_{2})(x_{j} - Fx_{i} + Ft_{1})(x_{j} - Fx_{i} + Ft_{2})}{x_{j} - Fx_{i}}.$$

Theorem (Y-Zhao)

There is an embedding $\mathcal{P}(A, Q) \hookrightarrow \mathbb{S}(A, Q)$.

Corollary

- Canonical basis of $\mathcal{P}(A, Q)$.
- For $A = H^*$, shuffle formulas for the Yangian $V_{\mathbb{F}_0}^+(\mathfrak{g})$

Now, let's go back to general A:

- Shuffle algebra S(A, Q).
- Example: Let Q be the Jordan quiver. Let F be the formal group law.
 - $\mathbb{S} = \bigoplus_{n \in \mathbb{N}} \mathbb{S}_n$ with $\mathbb{S}_n = \mathbb{Q}[[t_1, t_2]][x_1, \dots, x_n]]^{\mathfrak{S}_n}$.
 - The multiplication $\mathbb{S}_n \otimes_{\mathbb{O}[\![t^{\pm},t^{\pm}]\!]} \mathbb{S}_m \to \mathbb{S}_{n+m}$

$$f(x_1,\ldots,x_n)\star g(x_1,\ldots,x_m)=\sum_{\sigma\in Sh(n,m)}\sigma\Big(f(x_1,\ldots,x_n)g(x_{n+1},\ldots,x_{n+m})\cdot h\Big)$$

where

$$h = h(Q, F) = \prod_{i \in [1, n], j \in [n+1, n+m]} \frac{(x_i - Fx_j + Ft_1 + Ft_2)(x_j - Fx_i + Ft_1)(x_j - Fx_i + Ft_2)}{x_j - Fx_i}.$$

Theorem (Y-Zhao)

There is an embedding $\mathcal{P}(A, Q) \hookrightarrow \mathbb{S}(A, Q)$.

Corollary:

- Canonical basis of $\mathcal{P}(A, Q)$.
- For $A = H^*$, shuffle formulas for the Yangian $Y_{h}^+(g)$

Thank You!!!

