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Multi-Level Monte Carlo for SDEs

Stochastic differential equation (SDE)

dvi = Fi dt + Dij dWj , (11)

where f is probability density of v and i , j are component indices

W = W (t) is Brownian motion in velocity

dW is white noise in velocity

Objective is an average of f :

1

ρ

∫
P(v)f (v, t) dv ≡ E[P(v(t))] (12)

Russel Caflisch MLMC for Plamas



Discretization of SDEs

Euler-Maruyama discretization in time:

vi ,n+1 = vi ,n + Fi ,n∆t + Dij ,n ∆Wj ,n, (13)

∆Wn = Wn+1 −Wn (14)

in which vi ,n = vi (tn) and Fn = F(vn)

Choose N Brownian paths to get N values of P(v(T ))

Average to approximate E[P(v(T ))]

Computational cost vs. Error ε:

Statistical error is O(N−1/2)

∆t error is O(∆t), since ∆W = O(
√

∆t) and random

Optimal choice is ε = N−1/2 = ∆t

Cost = N∆t−1 = ε−3

Russel Caflisch MLMC for Plamas





















Background Hybrid Negative New Numerics

Nonlinear Landau Damping in VPL system
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Figure: The distribution in the x− v1 phase space at time t = 1.25 in
the nonlinear Landau damping problem of the VPL system.
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Background Hybrid Negative New Numerics

Efficiency Test on VPL System

ρ(t = 0, x) = 1 + α sin(x)
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Figure: The efficiency test of the HDP method on the VPL system for
different α in the initial density.
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Los Alamos 

A very brief introduction 
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Accelerated Molecular Dynamics Methods 





Los Alamos 

The system vibrates in 3-N dimensional basin many times before finding an 
escape path.   If we could afford to run molecular dynamics long enough 
(perhaps millions of vibrations), the trajectory would find an appropriate way 
out of the state.  It is interesting that the trajectory can do this without ever 
knowing about any of the other possible escape paths. 

Infrequent-Event System 











Multiscale Finite Element Method 
(MFEM)
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• Steady flow in porous medium
– Pressure u from rapidly varying conductivity tensor a(x)

– Velocity field q is related to the pressure u through Darcy’s law:

– MFEM-L, MFEM-O refer to BC choices, MFEM-os refers to oversampling

( )a x u f−∇ ∇ =

q a u= − ∇







TV Impainting
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Chan, Shen (2005)



Impainting of Texture
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Bertalmio, Vese, Sapiro, Osher (2003)



In-Painting for Plasma Computations

• Doesn’t work well for continuation of PDE solution
• Jenko, Osher, Zhu
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Split Bregman
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• An optimization method for compressed sensing and related fields

– Norms are L1 and L2, respectively.
– Difficulty: L1 term isn’t smooth

• Relax the first term by
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Split Bregman
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• Starting from

• Improve iteration by “feeding back the noise”  through term b:

• Split the first line into two pieces to get split Bregman

– Easily solved: u problem is smooth, d problem is soft-thresholding
– Widely used for problems involving sparsity
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Split Bregman Results
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• Convergence results

• Reconstruction results







Empirical Mode Decomposition
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• Example

• IMFs captured almost exactly
• Frequencies captured very well

( ) ( )( ) 6 cos 8 0.5cos 40f t t t tπ π= + +





Stochastic Gradient Descent
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• Optimization for functions of the form

– Widely used for machine learning and internet computations

– Each i represents piece of data used for training of a learning method

• Randomly choose data for ith step
– Perform gradient descent with step size η

• Many variants
– Series of batches with η constant within batch, decreasing between batches
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Wikipedia



Stochastic Gradient Descent
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• Convergence of mini-batch method
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