MEASUREMENT ERROR PROBLEMS IN IMAGE CO-REGISTRATION: A PROSTATE CANCER INVESTIGATION

Wenqing He

Department of Statistical and Actuarial Sciences University of Western Ontario

W. He (UWO)

August 19, 2016, BIRS-2016

- Prostate Cancer Investigation Team
- Study Procedure
- Co-Registration Procedure
- Measurement Error in Co-Registration
- Statistical Consideration

PROSTATE CANCER RESEARCH TEAM PROJECT

- Started from 2008, Team in Image-Guided Prostate Cancer Management.
- Canadian Institute of Health Research (CIHR) support: initial 5 million
- Involvement
 - University of Western Ontario (UWO)
 - Robarts Research Institute
 - Lawson Health Research Institute (LHRI)
 - London Health Research Center (LHRC)
 - London Cancer Research Program (LCRP)
 - Victoria Hospital in London
 - St. Joseph Hospital in London
 - Sunnybrook Hospital in Toronto

• Team:

- Imaging Physicists
- Medical Imaging Scientists
- Oncologists
- Pathologists
- Urologists
- Biostatisticians
- Imaging techniques
 - MRI (T2w, T1w DCE, DWI, PET, Sodium)
 - CT-perfusion
 - 3D UltraSound

STANDARD DIAGNOSIS: CANCER CONTOUR

STANDARD DIAGNOSIS: BIOPSY CONFIRMATION

W. He (UWO)

Co-Registration

August 19, 2016, BIRS-2016

Standard Diagnosis: 3D MRI/UltraSound guided biopsy

3D registration of a planning MRI to 3D TRUS can define biopsy target regions in the 3D TRUS context.

W. He (UWO)

Co-Registration

August 19, 2016, BIRS-2016

W. He (UWO)

Co-Registration

August 19, 2016, BIRS-2016

Primary Objectives

- Accurate diagnosis of prostate cancer: stage, volume, position
- Accurate confirmation of cancer: image guided biopsy
- Targeted treatment: focal therapy

Goals of the Study

- Divide the prostate into voxels (about 4 mm³ per unit)
- Prediction of cancer at each voxel in the prostate
- Derive the diagnostic features based on the prediction
- Target biopsy needle and focal treatment to the exact position of cancer

- Pre-operative imaging: mpMRI (T2w, T1w DCE, DWI), CT-perfusion, 18FCH PET MRI, 3D RF time series ultrasound (in vivo)
- Prostatectomy operation
- Slice the prostate, take histological digital image and pathologists contour the cancer on the image (post-op whole mount histology at $0.5\mu m$ per pixel)
- Align the information of imaging data and digital histology data for each voxel

Challenge:

Co-registration of in vivo imaging data with digital histology

T2W MRI

Digital Histology

W. He (UWO)

Co-Registration

August 19, 2016, BIRS-2016

W. He (UWO)

Co-Registration

August 19, 2016, BIRS-2016

59 Ward, AD., et al. Radiology: 263(3), 856-64. (2012)

W. He (UWO)

Co-Registration

▲ 国 マ ▲ 国 マ ▲ 国 マ August 19, 2016, BIRS-2016

< □ →

59 Ward, AD., et al. Radiology: 263(3), 856-64. (2012)

REGISTRATION

BIRS-2016 15 / 26

3D registration of ex vivo prostate digital histology to in vivo mpMRI

The procedure of in vivo MRI and ex vivo histology Co-Registration

- After prostatectomy, fiducial will be insert in the prostate, and an ex vivo MRI image is then taken
- The prostate is then sliced and the histology digital image is taken for each slice of prostate
- The ex vivo MRI is aligned with the in vivo MRI: automatical plus manual adjustment
- The histology image is aligned with the ex vivo MRI slices: the fiducial is used for reference
- Create the correspondence of in vivo MRI image with the histology image
- Other in vivo images, like CT, PET/MRI, will be aligned with the in vivo MRI, and make connection with histology image.

Errors introduced in all of the steps!

W. He (UWO)

Errors include:

- Deformation due to endorectal receive coil
- Formalin fixation
- Histoprocessing
- Variability in cutting orientation
- Variability in cancer contouring

Registration error

Overall histology-to-mpMRI 3D registration error: 1-2 mm

Registration stage	Mean ± std 3D registration error (mm)
3D histology reconstruction to ex vivo MRI	0.7 ± 0.4
Ex vivo MRI to in vivo high-res 3D T2W MRI	1.4 ± 0.2
High-res 3D T2W MRI to clinical mpMRI	0.7 ± 0.1 (T2W)
	1.0 ± 0.5 (DCE)
	1.0 ± 0.2 (ADC)

- X_{ijkl}: imaging data for each of the voxels, in vivo. *j*, *k*, *l* are 3-D coordinates
 - Intensities for mpMRI
 - Blood flow, blood volume etc. for CT
 - Intensities for 3D UltraSound
- Y^*_{ijkl} : histology digital data: percentage of cancer in each voxel or binary cancer/no cancer status, ex vivo
- Y_{ijkl}: in vivo cancer status, unknown
- Building the correspondence of Y^*_{ijkl} and \mathbf{X}_{ijkl} : co-registration by biomedical engineer.

W. He (UWO)

DATA

August 19, 2016, BIRS-2016

20 / 26

-

Statistical predictive models of true cancer status Y_{ijkl} using imaging data variables \mathbf{X}_{ijkl} is of primary interest.

• Logistic Regression:

$$\mathsf{logit}\mathsf{Pr}(Y_{ijkl}=1)=\beta \mathbf{X}_{ijkl}$$

- Regression Tree
- Random Forest
- Support Vector Machine
- Adaptive Support Vector Machine

- True Y_{ijkl} unknown
- Using $\{\mathbf{X}_{ijkl}, Y^*_{ijkl}\}$ from the co-registration to train the predictive model

$$Y^*_{ijkl} = h(\mathbf{X}_{ijkl})$$

AUCs

Model	AUC	7-fold CV-AUC
Logistic Regression	0.692	
Regression Tree	0.809	0.832
SVM	0.733	
Adaptive SVM	0.914	0.916

- The predictive model $Y_{ijkl}^* = h(\mathbf{X}_{ijkl})$ can be used for diagnosis purpose, to calculate volume, stage, etc. based on \hat{Y}_{iikl}^* .
- This won't work for guiding biopsy and treatment: we need the exact in vivo position of the cancer: Ŷ_{ijkl} =?
- Question: How can we build relationship between Y^*_{ijkl} and Y_{ijkl} , thus \hat{Y}^*_{ijkl} and \hat{Y}_{ijkl}

Use the "validation data" to estimate

$$\Pr(Y_{ijkl} = 1 | Y_{ijkl}^*, \mathbf{X}_{ijkl})$$

"Validation Data": Majority voxels do not have cancer, and some voxels do have cancer for sure

Correlation Consideration

- All cancer status Y_{ijkl} come from the same prostate of an individual : j, k, l are the 3-D position coordinates. They are correlated
- The correlation may be high for the adjacent voxels
- \bullet Because of the co-registration, observations are Y^{\ast}_{ijkl} are the surrogates of Y_{ijkl}
- For prediction, any way to make use of association among Y_{ijkl} indexed by position (j, k, l) for the relationship between Y_{ijkl}^* and Y_{ijkl}
- Question: can we make use of the association to find the true Y_{ijkl}

Suggestions and Comments?

W. He (UWO)

Co-Registration

August 19, 2016, BIRS-2016 26 / 26

→ < ∃→

3