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Motivation

In practical issues, longitudinal data sets with measurement
errors or dropouts or both arise more often. Ignoring them
usually results in inconsistent estimators.

Statistical inference of mean regression for data sets with
covariate measurement errors and missing response have
attracted considerable interests of research, e.g., Liu and
Wu (2007), Yi et al. (2011) and Yi et al. (2012).

However, less attentions have been paid to simultaneous
mean and covariance estimation for partially linear models.



Motivation
and Models

Proposed
Approach

Numerical
Studies

Simulations

Real data
analysis

Reference

Partially linear models for longitudinal data

We consider the marginal partially linear model as

Yij = XT
ij β0 + f0(Tij) + εij , i = 1, · · · , n, j = 1, · · · ,m, (1)

where

β0 is a p-dimensional vector of regression parameters,

f0(·) is an unknown smoothing function,

εi = (εi1, · · · , εim)T are independent random error vectors
with mean 0 and covariance matrix Σ0.

Objects: We focus on simultaneous estimation of the mean
components β0 and f0 and the covariance component Σ0 when
Yij are subject to missing and Xij are measured with errors.
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Model for Measurement errors

Let Wij be the observed version of the error-prone covariate
vector Xij . We assume that

Wij = Xij + δij ,

where δij follow some distribution with mean 0, and are
independent of Xi and εi .

In this article, we assume that there are two replicate
measurements for each Xij , i.e.,

Wij ,1 = Xij + δij ,1 and Wij ,2 = Xij + δij ,2,

where δi1 and δi2 are independent.
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Missing process

Let Rij be 1 if Yij is observed, and 0 otherwise.
Let R̃ij = (Ri1, · · · ,Rij−1)T be the history of missing data
indicator at time j and Y o

i contain the observed components of
Yi .

We assume that missingness of Yij is allowed to depend on
Y o
i , Xi and Ti but not on Wi .

To reflect the dynamic feature of the observation process
over time, we assume
P(Rij = 1|R̃i ,Yi ,Xi ,Ti ) = P(Rij = 1|R̃i ,Y

o
i ,Xi ,Ti )
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Missing process, continued

It is important to emphasize that, under the setting of this
article, the missingness of Y does not depend on W .

Since the true X is not observable, Y is therefore not
missing at random.

Since we will make no further assumption, such as about
the distribution of X or about the model on missing
probabilities, what we are dealing with here is conceptually
quite different from most studies of missing data in which
missing at random or missing completely at random is
assumed.
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Proposed Approach

Naively replacing the error-prone covariates Xij with the
observed version Wij and simply excluding the missing data
usually result in inconsistent estimators for general approaches.

To deal with missing response, we use the idea of
projection proposed in Qu et al. (2010).

We propose a new approach to handle the bias induced by
measurement errors utilizing the independence of the two
replicate measurements.
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Estimating equation for the mean component

Regression spline is used to approximated the nonparametric
function f0(·), model (1) is linearized as

Yij = XT
ij β0 + πTij α0 + εij = DT

ij θ0 + εij , (2)

where

Dij = (XT
ij , π

T
ij )T , πij = π(Tij),

θ0 = (βT0 , α
T
0 )T is the combined regression parameters.

π(t) = (B1(t), · · · ,BNk
(t))T is a vector of basis function

and α0 ∈ RNk is the vector of spline coefficient.
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Estimating equation for the mean component,
continued I

Let (Yi − Diθ) =

(
Y o
i − Do

i θ
Ym
i − Dm

i θ

)
be a decomposition of

the data vector into observed Y o
i and missing Ym

i

variables,

Further denote cov(Yi ) = Σi =

(
Σ11
i Σ12

i

Σ21
i Σ22

i

)
where Σ11

i

and Σ22
i respectively denote the covariance of the observed

and missing responses.

Directly applying the estimating equation under MAR proposed
in Qu et al. (2010) for our partially linear model (1), we have

n∑
i=1

DT
i Σ−1

i E (Yi − Diθ|Y o
i ) = 0. (3)
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Estimating equation for the mean component,
continued II

Under the linear conditional mean assumption (LCM) supposed
in Qu et al. (2010) which assume that the conditional
expectation is linear in Yi , we have

E (Ym
i − Dm

i θ|Y o
i ) = Σ21

i (Σ11
i )−1(Y o

i − Do
i θ).

Thus, the estimating equation (3) can be written as

n∑
i=1

DT
i Σ−1

i Ai (Y
o
i − Do

i θ)

=
n∑

i=1

(Do
i )T (Σ11

i )−1(Y o
i − Do

i θ) = 0. (4)
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Estimating equation for the mean component,
continued III

The estimating equation (3) is unbiased and efficient
under MAR in the case where the covariates are exactly
measured without errors.

When the covariates are measured with errors , the
estimating equation obtained through naively replacing the
covariates in the estimating equation (3) with their
observed versions is biased.

Therefore, to achieve unbiased estimating equation under
situations of missing response and measurement errors, we
develop the following novel estimating equation for the mean

n∑
i=1

(D̃o
i(1))T (Σ11

i )−1(Y o
i − D̃o

i(2)θ) = 0, (5)

where D̃i(1) = (Wi1,Mi ) and D̃i(2) = (Wi2,Mi ).
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Estimating equation for the covarinace
component I

We assume the covariance matrix depend on some parameters
γ. Using similar idea to the construction of the estimating
equation for the mean, to achieve consistent estimate of the
covariance component, we develop the following estimating
equation

n∑
i=1

∑
a≤b

∂

∂γ
σabi (γ)[σabi (γ)− Biab] = 0, (6)

where
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Estimating equation for the covarinace
component

Biab equals to

(Yia − D̃T
ia(1)θ)(Yib − D̃T

ib(2)θ) if both Yia and Yib are observed,

(Y p
ia − D̃T

ia(1)θ)(Yib − D̃T
ib(2)θ) if Yia is missing and Yib is observed,

(Yia − D̃T
ia(1)θ)(Y p

ib − D̃T
ib(2)θ) if Yia is observed and Yib is missing,

[Σp22
i ]ab + (Y p

ia − D̃T
ia(1)θ)(Y p

ib − D̃T
ib(2)θ) if both Yia and Yib are missing.

Y p
ia , Y p

ib are predicted response values based on LCM assumption,

Σp22
i = Σ22

i − Σ21
i (Σ11

i )−1Σ12
i .

D̃ia(1) = (WT
ia(1)

, πT
ia )T ,

D̃ia(2) = (WT
ia(2)

, πT
ia )T .

Remark: It is not difficult to show that

E(Biab|Y o
i ,Xi ,Ti ) = E{(Yia − DT

ia θ)(Yib − DT
ib θ)|Y o

i ,Xi ,Ti}. Thus, the

influence introduced by the measurement errors is successfully removed.
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Asymptotic properties

Under some regularity conditions, we have

For the mean component:
Theorem 1.

{cov(β̂|X ,T )}−1/2(β̂ − β0)
L−→ N(0, Ip×p),

and for any t ∈ (ai , ai+1], i = 0, · · · , k and
f ∗(t) = f0(t) + b(t) + op(hr ),

var(f̂ (t)|X ,T )−1/2{f̂ (t)− f ∗(t)} L−→ N(0, 1),

where
L−→ denotes convergence in distribution.

For the covariance component:
Theorem 2. n1/2(γ̂ − γ0) converges to normal distribution.
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Simulation models

We consider a partial linear model with covariate measurement
errors and dropouts as

Yij = Xijβ0 + sin(2πTij) + εij , i = 1, . . . , 400,m = 1, . . . , 4,

where

β0 = 1, Xij and Tij are independently drawn from normal
distribution with mean one and standard deviation one
and uniform distributions on (0, 1) respectively,

εi = (εi1, · · · , εim)T are generated from multivariate
normal distribution with mean zero and covariance matrix
Σ0 which is taken to be exchangeable (EX), one-order
autoregressive (AR1) and unstructured (UN) structures
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Simulation models, continued I

Specification of the measurement error model: the
surrogate value wij were generated from the following
model

Wij ,1 = Xij + δij ,1 and Wij ,2 = Xij + δij ,2,

where δi1 and δi2 are independently generated from normal
distribution with mean zero and standard deviation σm. In
the simulation, we take σm = 0.4 and 0.6 respectively.

Specification of the dropouts model, the missing data
indicators were generated from the model

ln
λij

1− λij
= ϕ0 + ϕ1Yij−1 + ϕ2Xij ,

where (ϕ0, ϕ1, ϕ2)T is taken to be (1, 1,−0.5)T which
yields about 33% missingness.
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Simulation models, continued II

We calculated the bias, standard error (SE), and mean
squared error (MSE) of β̂, as well as the the integrated
mean squared error (IMSE) of f̂ (·) for the estimators of
the mean.

To investigate the performance of the proposed method in
estimating the covariance, we calculate the entropy loss
∆E (Σ, Σ̂) = trace(Σ−1Σ̂)− log |Σ−1Σ̂| −m and quadratic
loss ∆Q(Σ, Σ̂) = trace(Σ−1Σ̂− I )2 which means accuracy
in estimating the covariance matrix where Σ is the true
covariance matrix and Σ̂ is its estimator.

For each case, we performed 500 simulations.
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Methods in comparison

We compares the proposed estimator (P) with other two
estimators

One is the naive method (N) which ignores both missing
response and covariate measurement errors, performed by
classical generalized estimating equation using the average
values of two replicate measurements as the observation
values for the error-prone covariate X and adopting the
AR correlation matrix as the working correlation matrix.

The other method (Q), performed by Qu et al. (2010)’s
estimating equation also using the average values of two
replicate measurements as the observation values for X ,
which accounts for the missingness but ignores the
measurement errors.
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Results in simulation

Table 1 Simulation results for the mean model in Study 1

β̂ f̂
BIAS MSE CP IMSE

σm = 0.3
P 0.0023 0.0007 0.949 0.0073
Q -0.0430 0.0024 0.531 0.0084

EX

N -0.0235 0.0013 0.843 0.0259
P 0.0022 0.0008 0.952 0.0074
Q -0.0434 0.0025 0.571 0.0084

AR

N -0.0215 0.0012 0.869 0.0184
P 0.0025 0.0007 0.939 0.0065
Q -0.0433 0.0024 0.461 0.0074

UN

N -0.0183 0.0009 0.875 0.0217
σm = 0.5

P 0.0066 0.0012 0.944 0.0095
Q -0.1119 0.0131 0.003 0.0185

EX

N -0.0945 0.0097 0.066 0.0496
P 0.0063 0.0013 0.942 0.0097
Q -0.1128 0.0134 0.007 0.0188

AR

N -0.0928 0.0093 0.067 0.0384
P 0.0076 0.0012 0.927 0.0092
Q -0.1127 0.0132 0.000 0.0178

UN

N -0.0899 0.0087 0.060 0.0446
Notes: MSE: mean squared error; CP: coverage probability; IMSE: integrated MSE;
EX: Data generated from exchangeable correlation structure; AR: autoregressive
correlation; UN: unstructured correlation ; P: proposed method; Q: Qu et al’s method;
N: naive method.
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Results in simulation

Table 2 Simulation results for the covariance component

QL EL
P Q P Q

Study 1
EX 0.0411 0.1309 0.0616 0.0649
AR 0.0402 0.1173 0.0617 0.0648

σm = 0.3

UN 0.0444 0.2231 0.0654 0.0823
EX 0.0575 0.7403 0.0837 0.1411
AR 0.0551 0.6484 0.0829 0.1381

σm = 0.5

UN 0.0712 1.3788 0.1029 0.2436
Study 2

EX 0.0475 0.1336 0.0813 0.0791
AR 0.0481 0.1215 0.0815 0.0792

σm = 0.3

UN 0.0533 0.2260 0.0876 0.0958
EX 0.0667 0.7378 0.1166 0.1547
AR 0.0669 0.6480 0.1150 0.1512

σm = 0.5

UN 0.0893 1.3766 0.1487 0.2555
Notes: EL: Entropy loss function; QL: Quadratic loss function; Other notations see Tables 1.
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Real data analysis

There are total of 197 subjects with 3 observations for each
subject. The missing rate is about 21%.
Response is the log of BMI value, covariates include SBP
(regarded as covaraite measured with error), DBP(regarded as
covaraite measured with error), group, female, race, college and
Age.
The partially linear model considered to fit the data is
described as

Y = SBPβ1 + DBPβ2 + Genderβ3 + Raceβ4 + collegeβ5 (7)

+groupβ6 + t1β7 + t2β8 + group × t1β9 + group × t2β10

+f (sAge) + ε.

Estimate results for the regression coefficients are summarized
in Tables 3 and 4
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Real data analysis

Table 3 Regression coefficient estimates in the analysis of the real data

P MQ N
SBP 0.0009 (0.0004)∗ 0.0007 (0.0003)∗ 0.0002 (0.0003)
DBP -0.0001 (0.0005) 0.0003 (0.0004) 0.0001 (0.0004)

Female -0.0291 (0.0249) -0.0292 (0.0248) -0.0284 (0.0249)
Race 0.0246 (0.0237) 0.0241 (0.0237) 0.0348 (0.0241)

College -0.0860 (0.0234)∗ -0.0856 (0.0233)∗ -0.0917 (0.0236)∗

Group -0.0065 (0.0251) -0.0068 (0.0251) -0.0067 (0.0254)
t1 -0.0139 (0.0075) -0.0139 (0.0075) -0.0147 (0.0071)∗

t2 -0.0143 (0.0101) -0.0140 (0.0101) -0.0149 (0.0100)
Group × t1 -0.0086 (0.0089) -0.0086 (0.0089) -0.0089 (0.0087)
Group × t2 -0.0257 (0.0129)∗ -0.0260 (0.0128)∗ -0.0251 (0.0129)

Notes: The figures in the parenthesis are standard errors.
”∗” indicate the effect is significant at the level of α = 0.05.

Table 4 Correlation matrix estimates
in the analysis of the real data

P
1.0000 0.9415 0.8791
0.9415 1.0000 0.9424
0.8791 0.9424 1.0000

MQ
1.0000 0.9415 0.8808
0.9415 1.0000 0.9442
0.8808 0.9442 1.0000
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Real data analysis

 

Figure: The estimated function on the standardized age. The heavy solid,

dashed, dot-dashed lines represent the curves estimated by the P, Q and N

methods respectively. The solid, dashed, dot-dashed lines represent the

corresponding confidence bands.
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Thank you!
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