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Distribution Testing

Basic statistics question: Given a bunch of independent
samples from a probability distribution (or perhaps from
several), determine whether or not it has some property.

Example properties:

p is uniform.

p = q.

The coordinates of p are independent.
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History

Hypothesis testing introduced by Pearson in 1899.

Classical problem in statistics
[Neyman-Pearson33, Lehman-Romano05]

Recently taken up by the TCS community
[Goldreich-Ron00, BFFKRW FOCS00/JACM13]
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Closeness

Problem
Cannot distinguish between p with property and arbitrarily
close p′ without.

Solution
Distinguish between

p has property.

p is far (usually in L1) from any distribution with
property.
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Continuous
Problem
Cannot distinguish between continuous distribution and
discrete distribution with large random support.

Solutions

Consider only structured, low-complexity distributions.

Consider only discrete distributions on finite domain.

We will focus on the latter.
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Notation

Distributions p, q on [n] := {1, 2, . . . , n}.

pi := Pr(p = i), qi := Pr(q = i).

Question like: distinguish between

I p = q

I ‖p − q‖1 ≥ ε

with at least 2/3 probability of success.
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Goal

Want:

Number of samples information-theoretically optimal.

Runtime polynomial (or even linear) in number of
samples.
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Simple Question

Distinguish between:

p is the uniform distribution.

‖p − Un‖1 = Ω(1).
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Stats 101 Answer

Take m samples from p.

Let Xi be from bin i .

Note Xi ≈ Gaussian.

Compute

Z :=
n∑

i=1

(Xi −m/n)2

and compare to appropriate χ2 distribution.

Problem: Need Ω(n) samples for Gaussian approximation.
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Improvement
Observation [Goldreich-Ron]
Taking samples from the uniform distribution gives fewer
expected collisions than from any other distribution.

Algorithm

Take m samples.

Count collisions.

Compare to number expected under uniform
distribution.

Takes about
√
n samples to get collision. Sample

complexity O(
√
n).
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Quadratic Testers

Both testers use quadratic test statistics.

Very natural thing to do.

As we will see quite powerful.
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Problem

Distributions p, q on [n].

Take m samples from each.

Distinguish between

I p = q

I p far from q
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Simple Tester

Xi number of samples from p in i th bin.

Yi number of samples from q in i th bin.

Test statistic

Z =
n∑

i=1

(Xi − Yi)
2.
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Poissonization

Trick
Take Poi(m) samples from p and Poi(m) samples from q.

Makes Xi ,Yi independent.

Xi ∼ Poi(mpi),Yi ∼ Poi(mqi)

Likely doesn’t change total number of samples by
much.
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Expectation

Have

E[(Xi − Yi)
2] = m2(pi − qi)

2 + m(pi + qi).

Fix:

Z =
n∑

i=1

(Xi − Yi)
2 − Xi − Yi .

Then

E[Z ] = m2‖p − q‖22
Var(Z ) = O(m3‖p − q‖22‖p + q‖2 + m2‖p + q‖22)
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L2 Tester

L2 Tester [Chan-Diakonikolas-Valiant-Valiant]
There is a tester that distinguishes between p = q and
‖p − q‖22 ≥ ε2 in expected O(‖p + q‖2/ε2) samples.

Note
By first testing if ‖p‖2 ≈ ‖q‖2, can reduce to
O(min(‖p‖2, ‖q‖2)/ε2 + min(1/‖p‖2, 1/‖q‖2)) samples.

Note II
In fact, this tester is tolerant. It can distinguish between
‖p − q‖22 ≤ ε2/2 and ‖p − q‖22 ≥ ε2.
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Main New Idea

Solve all problems by reducing to this as a black box.
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Problem

Compare p to explicitly known distribution.

Given explicit distribution q on [n].

Given m samples from p on [n].

Distinguish between

I p = q

I ‖p − q‖1 ≥ ε.

D. Kane (UCSD) Distribution Testing September 2016 22 / 52



Using L2 Tester

Need to distinguish between p = q and ‖p − q‖22 ≥ ε2/n.

Simulate samples from q.

Takes O(n‖q‖2/ε2) samples.

If q near uniform, this is O(
√
n/ε2), which is optimal.

If ‖q‖2 is large, test statistic has too much variance.

Question
How do we deal with this?
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Previous Work

[Batu-Fortnow-Kumar-Rubinfeld-Smith-White
’00]: Split bins into buckets in which q is
near-uniform.

[Valiant-Valiant ’14]: Modify the test statistic to
give less weight to heavy bins.
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Our Technique

Divide i th bin into dnqie equally sized bins. Have new
distributions p′, q′.

Facts

‖p′ − q′‖1 = ‖p − q‖1.

Can sample from p′.

New domain size O(n).

q′ approximately uniform.

Requires O(
√
n/ε2) samples.
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Reduction

Essentially, we reduced to the case where qi = O(1/n) for
all i .

Recent improvement by Goldreich shows how to reduce to
q = Uniform.
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Unknown q

What happens if instead q is unknown and we are only
given sample access?

We no longer know how to break bins up or reweight
Z .

Testing is actually harder. There is a lower bound of

Ω(max(
√
n/ε2, n2/3/ε4/3))

samples by Chan-Diakonikolas-Valiant-Valiant.
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Previous Work
[Batu-Fisher-Fortnow-Kumar-Rubinfeld-White
’00]: Learn the heavy bins of q, and run L2 tester on
light bins. (Gives O(n2/3 log(n)/ε8/3) samples)

[Valiant ’08]: Learn heavy bins of q and see if higher
moments of p and q on low bins match. (Gives
O(n2/3) samples for constant ε)

[Chan-Diakonikolas-Valiant-Valiant ’14]: Uses
different test statistic∑

i

(Xi − Yi)
2 − Xi − Yi

Xi + Yi
.

Sample optimal.
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Idea

Need to divide heavier bins into more pieces.

How to detect heavy bins?

Use samples.
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Our Technique

Take Poi(k) samples from q. If ai samples from bin i ,
divide into ai + 1 pieces.

‖q′‖22 =
∑
i

(ai + 1)

(
qi

ai + 1

)2

=
∑
i

q2i
ai + 1

.

E[‖q′‖22] =
∑
i

q2i E[1/(ai+1)] =
∑
i

O(q2i /(kqi)) = O(1/k).
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Algorithm

Algorithm

Let k = min(n, n2/3/ε4/3).

Take Poi(k) samples from q, and divide bins based on
samples.

Run L2 tester to see if p′ = q′ or ‖p′ − q′‖1 ≥ ε.

Likely have

O(n) bins.

‖q′‖2 = O(1/
√
k).
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Samples Needed

O(k + nk−1/2ε−2) = O(max(
√
n/ε2, n2/3/ε4/3)).

This also works if you can take unequal numbers of
samples from the two distributions.

O(m) samples from p

O(k + m) samples from q

Where m = O(
√
n/ε2 + nk−1/2/ε2).
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Problem

p a distribution on [n]× [m] for n ≥ m. Given samples
from p distinguish between cases:

The coordinates of p are independent.

p is at least ε-far from any distribution with
independent coordinates.
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Previous Work
Upper bounds

[Batu-Fisher-Fortnow-Kumar-Rubinfeld-White
’01]: Õ(n2/3m1/3poly(1/ε)).

[Acharya-Daskalakis-Kamath ’15]: O(n/ε2) for
n = m.

Lower bounds

[Levi-Ron-Rubinfeld ’11]: Ω̃(n2/3m1/3) for constant
error.

[Diakonikolas-K ’16]:
Ω(max(n2/3m1/3/ε4/3,

√
nm/ε2))
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Our Technique

Compare p to q = p1 × p2.

Need to flatten q. Do by flattening p1, p2.
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Algorithm

Algorithm

Take Poi(m) samples from p2, use to subdivide bins of
[m].

Let k = min(n, n2/3m1/3/ε4/3).

Take Poi(k) samples from p1, use to subdivide bins of
[n].

Use L2 tester to distinguish p′ = q′ or ‖p′ − q′‖1 ≥ ε.
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Analysis

Probably have:

New array O(n)× O(m).

‖p′1‖2 = O(1/
√
k), ‖p′2‖2 = O(1/

√
m).

Samples needed:

O(k + m + nmk−1/2m−1/2/ε2)

=O(max(n2/3m1/3/ε4/3,
√
nm/ε2)).

Optimal!
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Worst Case

Testing identity to a known distribution requires
O(
√
n/ε2) samples, but only for worst-case q. This lower

bound is not hard to prove for q uniform or nearly
uniform, but for other q you can often do better.
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Instance Optimality

[Valiant-Valiant ’14] provide an instance optimal tester.
That is a tester that for each q gives a tester with the
fewest number of samples for that q. The complexity is
(usually) Θ(‖q‖2/3/ε2).

The basic technique involves a careful reweighting of the
L2 tester.
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Our Results

Using the L2 tester as a black box, we can get within
polylogarithmic factors.

Algorithm

Divide bins into (logarithmically many) categories
based on blog(qi)c.

Test that p assigns approximately the right mass to
each category.

For each category, C , test whether (p|C ) = (q|C ) or
‖(p|C )− (q|C )‖1 ≥ ε/Pr(C )polylog(n/ε).
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Analysis
Testing over categories is easy. Consider a single category
C .

All bins mass Θ(x).

m total bins.

Pr(C ) = Θ(mx).

Need
polylog(n/ε)

√
m/(ε/(mx))2 = polylog(n/ε)m5/2x2/ε2

samples from p|C .

Need polylog(n/ε)m3/2x/ε2 samples from p.
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Analysis

‖q‖2/3 ≈
(

max
C

(mx2/3)

)3/2

= max
C

(m3/2x).

Sample complexity polylog(n/ε)‖q‖2/3/ε2.

Correct up to polylogarithmic factors.
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Unknown q

Perhaps more surprisingly, we can do almost as well
without knowing q ahead of time.

Idea

Take m samples from q.

Divide bins into categories based of blog(samples)c.

Check that p assigns roughly same mass to categories.

Test whether restriction of p to categories
approximates q.
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Analysis

Bins with more than 1/m mass sorted into category
with other bins of approximately the same size.

On these categories looks like instance optimal tester.

Remaining bin uses L2 tester.

Complexity

polylog(n/ε) min
m

(
m + ‖q‖2/3/ε2 + ‖q<1/m‖2‖q<1/m‖0/ε2

)
.
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Discussion

When ε small Õ(‖q‖2/3/ε2).

Taking m = min(n, n2/3/ε4/3) get

Õ(max(
√
n/ε2, n2/3/ε4/3)).

Only this bad when ≈ m bins with mass ≈ 1/m and
≈ n bins of mass ≈ 1/n.
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Instance Optimal for Unknown q

Unfortunately, there is no way to have instance optimal
when q is unknown since different q do not give rise to
different problems.

Can find algorithms that work better with certain q or
better with q with certain structure, but you need to
choose which structure to take advantage of. What the
“right” notion is here is still an open problem.
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Other Applications

We also get (nearly) optimal results for:

Independence testing in higher dimensions.

Properties of collections of distributions.

Testing histograms.

Testing with Hellinger metric.
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Future Directions

Structured distributions.
Active area (especially for high-dimensional
distributions).

Correct probability of error.
[Diakonikolas-Gouleakis-Peebles-Price ’16] give correct
result for identity testing.

Optimal constants.
Some work by [Huang-Meyn ’14]

Beyond worst case analysis.
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