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Ex: n=3,x= (x1,x2,x3), A= (2,1)

The corresponding semistandard Young tableaux, T, and their
weights, wgt(7'), are given by:
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S(2,1) (x) = x%xz + x%xl + x%xg + x%xl + X%X3 + x%xz + 2 X1X0X3
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Ex: n=5, A= (3,2,2,1).
» Starting points P, = (0,n—i+ 1) for i=1,2,...,5.

» Endpoints Qi =(n+1.,n—j+ 1+ X)) for j=1,2,...,
1 2 3 4 5 6 71 8

Ps Py P3 P, P

wgt(T) = x1 X5 X3 X3 X




FACTORIAL SCHUR FUNCTIONS
AND WEIGHTED TABLEAUX
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» Entries weakly increase in rows.
e Entries strictly increase in columns.

 Weight each entry k in position i, j by xi + a.;; .



SCHUR FUNCTIONS AND
LATTICE PATHS
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ORIGIN OF FACTORIAL SCHUR
FUNCTIONS

e« Biedenharn and Louck (1989) introduced the notion of
the factorial Schur function.

e Chen and Louck (1993) further studied them.

e Macdonald (1992) and Goulden and Greene (1994)
independently gave them a more general form, in the
process making connections to supersymmetric functions.

« Macdonald also gave an alternate definition as a ratio of
alternants. It is this definition that we now explore....



RATIO OF ALTERNANTS

Macdonald defined
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where

(x+a1)(x+az) - (x+ am) if m > 0;
] if m = 0

It a;= -i+1 this reduces to the falling factorial:
(x)i= x(x-1)...(x-k+1).



FACTORIAL CHARACTERS FOR
CLASSICAL GROUPS
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We propose these definitions as the most natural
extension of the classical characters to the
factorial case.



* Now that we have these factorial
characters for classical groups, let’s test
their properties.

e But what properties....?

» Jacobi-Trudi! Tokuyamal!

e What's Jacobi-Trudi?
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COMPLETE SYMMETRIC FUNCTIONS

e Recall that the complete symmetric functions may

be defined as: Also the same as a Schur
hox— ] 1 _1m. . function for a single row
G : of length m.
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OUTLINE OF COMBINATORIAL
PROOF OF JACOBI-TRUDI
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e Each rowiintableau & a lattice path in the plane

from P; to Q; & a complete symmetric function.

e Each of these complete symmetric functions
corresponds to a term on diagonal of J-T determinant.

 If we swap ending points, we can define an off-
diagonal term in J-T determinant.
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COMPLETE FACTORIAL SYM FNS

» To this we add the dependence on the factorial
parameters a:
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FLAGGED J-T FOR CLASSICAL GROUPS
(CHEN ET AL., OKADA, H. & KING)

For X(Z) i (xia Litly- - - 7xn> and K(Z) 5 (fiafi-i-la S 7f’n)
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e Independently obtained by Okada (personal
communication).



FLAGGED JACOBI-TRUDI FOR
CLASSICAL GROUPS

Some History....

« Flagged factorial Schur due to Chen et al. (2002).

» Non-factorial symplectic and odd orthogonal due
to Chen et al. (2002).

» Non-factorial flagged symplectic, odd orthogonal,
and even orthogonal due to Okada (preprint).



SYMPLECTIC: TABLEAUX
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Entries weakly increase across rows.

Entries strictly increase down columns.

No entry i or i appears below row i.




SYMPLECTIC: LATTICE PATHS
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o the factorial contribution is simply to label the
steps with an x + a weight instead of an x weight.



ODD ORTHOGONAL: TABLEAUX
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e Entries from alphabet 21410

{1l <1 <22« ... 0 ncn
» Entries weakly increase across rows.

» Entries weakly increase down columns.
 No entryi oriappears below row i.
* No two non-zero entries in a column are equal.

e In any row, 0 appears at most once.



ODD ORTHOGONAL: LATTICE

PATHS

LP(T)

He |

o

R

M [ e | =

X1

az Qa3 a3 Gagp aq

wgt(T)

a1 G2 —Aa3 —Q4 —05 —dg 07 —48

Qg Qz Q1
L1 X1 Lo+ a9 sz—i—ag
T3+ aA1|Ta+0y 1 — ag
Ty+as|Trt+a4|1 — as




THE TOKUYAMA STORY
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two variables Vandermonde

Tokuyama, 1988 Xobly —alx A {)
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Hamel and King, 2007 X |y 5=
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THE TOKUYAMA STORY

Axyla)= ] (z+y))sulx|a)

1<i<j<n
e The Tokuyama story is all about shape.
Combinatorially, the left hand side is a shifted
shape; the right hand side is a special shifted shape
(a staircase) along with a standard tableau shape.
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CLASSICAL CHARACTERS AND
TOKUYAMA

e The key to Tokuyama is being able to split this
shifted tableau into the staircase piece (with
primed and unprimed entries) and the standard
tableau piece (with unprimed entries only).

e the issue with the classical Q functions is: what are
the shifted primed tableaux?

e and what is the appropriate factorial weighting?



SYMPLECTIC: PRIMED SHIFTED
TABLEAUX
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e Alphabet: 17<1<7<T7<2<2<2<2<... <0 <n<P <N
e Entries weakly increase in rows and columns.

» Entries strictly increase along diagonals.

e Unprimed entries occur at most one in each column.

e Primed entries occur at most once in each row.
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SYMPLECTIC: WEIGHTS AND PATHS
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OUTLINE OF PROOF OF
FACTORIAL TOKUYAMA

o Start from expression for Q,(x;y|a) as a determinant.

« Extract factors (xj+y;).

» Subtract successive rows from one another to give factors of
the form (x;+y;.1).

» Repeat the process to obtain factors of the form (x;+y;.»).

» Continue until all factors of the form (x;+y;) are extracted for
i <j.

» Show that what remains is a factorial character s (x|a).



ODD ORTHOGONAL: LATTICE

PATHS
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THE RESULT (H. & KING, 2016)



STILLTO DO....

e Finish the combinatorial proof of the even
orthogonal Tokuyama....

e But, for the combinatorial proof, defining exactly
the correct tableaux and lattice paths is tricky....
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