
FACTORIAL CHARACTERS AND 
TOKUYAMA’S IDENTITY FOR 
CLASSICAL GROUPS

ANGELE M. HAMEL, 
WILFRID LAURIER UNIVERSITY,WATERLOO,CANADA 

RONALD C. KING,  
UNIVERSITY OF SOUTHAMPTON, SOUTHAMPTON, U.K .

BIRS 2016 
Banff, Alberta, Canada



ONE IDEA—TWO WAYS

Statistics on rectangular ASMs
We may distinguish the 6 entries 1, �1 and four types of 0 as
before by introducing a compass point matrix
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SCHUR FUNCTIONS
Example

Ex: n = 3, x = (x
1

, x
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, x
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), � = (2, 1)

The corresponding semistandard Young tableaux, T, and their
weights, wgt(T), are given by:
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SCHUR FUNCTIONS AND 
LATTICE PATHSAn n-tuple of lattice paths - non-intersecting

Ex: n = 5, � = (3, 2, 2, 1).
I Starting points Pi = (0, n � i + 1) for i = 1, 2, . . . , 5.
I End points Qj = (n + 1, n � j + 1 + �j) for j = 1, 2, . . . , 5.
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FACTORIAL SCHUR FUNCTIONS 
AND WEIGHTED TABLEAUX

• Entries weakly increase in rows. 

• Entries strictly increase in columns. 

• Weight each entry k in position i, j by xk + ak+j-i .
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Fig. 1: Example of non-intersecting lattice paths and a corresponding symplectic tableau and its factorial weights.

6 Tokuyama type identities

A partition is said to be strict if its non-zero parts are distinct. Each such strict partition � of length `(�) 
n specifies a shifted Young diagram SF� consisting of rows of boxes of lengths �i for i = 1, 2, . . . , `(�)
left adjusted to a diagonal line. This allows us to define various primed shifted tableaux.

Definition 12 [16, 20] Let Pgl
� be the set of all primed shifted tableaux P of shape � that are obtained

by filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 20 < 2 < · · · < n0 < n} with
one entry in each box, in such a way that: (Q1) entries weakly increase from left to right across rows;
(Q2) entries weakly increase from top to bottom down columns; (Q3) no two identical unprimed entries
appear in any column; (Q4) no two identical primed entries appear in any row;

Definition 13 [7] Let Psp
� be the set of all primed shifted tableaux P of shape � that are obtained by

filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 1
0
< 1< 20 < 2< 2

0
< 2 < · · · <

n0 < n < n0 < n} with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied
together with: (Q5) at most one of {k0, k, k0, k} appears on the main diagonal for each k = 1, 2, . . . , n.

Definition 14 Let P so

� be the set of all primed shifted tableaux P of shape � that are obtained by filling
each box of SF� with an entry Pij from the alphabet {10 < 1 < 1

0
< 1 < 20 < 2 < 2

0
< 2 < · · · < n0 <

n < n0 < n < 00} with one entry in each box, in such a way that the conditions (Q1)-(Q5) are satisfied.
together with: (Q6) the entry 00 does not appear on the main diagonal.

Our proposed definition of factorial Q-functions then takes the form
Definition 15 For a = (a1, a2, . . .), a0 = 0 and any strict partition � of length `(�)  n, let

Qg
�(z;w |a) =

X

P2Pg

�

Y

(i,j)2SF�

wgt(Pij) where
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SCHUR FUNCTIONS AND 
LATTICE PATHS

Proof: In the Schur function case, as in [10], we adopt matrix coordinates (k, `) for lattice
points with k = 1, 2, . . . , n specifying row labels from top to bottom, and ` = 1, 2, . . . ,�1+n
specifying column labels from left to right. Each lattice path that we are interested in is
a continuous path from some Pi = (i, n � i + 1) to some Qj = (n, n � j + 1 + �j) with
i, j 2 {1, 2, . . . , n}. Such a path consists of a sequence of horizontal or vertical edges and is
associated with a contribution to h�j�j+i(x(i) | a) in the form of a summand of (2.1) with
m = �j � j + i and x replaced by x

(i). Taking into account the restriction of the alphabet
from x to x(i), the weight assigned to horizontal edge from (k, `�1) to (k, `) is xk+ak+`�n�1.
Thanks to the Lindström-Gessel-Viennot theorem [15, 6, 7] the only surviving contributions
to the determinantal expression for s�(x | a) in the flagged factorial Jacobi-Trudi identity
(2.15) are those corresponding to an n-tuple of non-intersecting lattice paths from Pi to Qi

for i = 1, 2, . . . , n. Such n-tuples are easily seen [23] to be in bijective correspondence with
semistandard Young tableaux T of shape � as in Definition 4.1, with the jth horizontal
edge at level k on the path from Pi to Qi giving an entry Tij = k in T for i = 1, 2, . . . , n
and j = 1, 2, . . . ,�i. To complete the proof of Theorem 4.4 in the factorial Schur function
case it only remains to note that the weight wgt(Tij) to be assigned to Tij is that of the
edge from (k, `� 1) to (k, `) given by xk + ak+`�n�1 = xk + ak+j�i with j = `� (n� i+ 1)
since this is the number of horizontal steps from Pi to column ` on the lattice path from
Pi to Qi. This is exemplified in Figure 1 in the case n = 4 and � = (4, 3, 3).

LP (T ) =

• • • • •

• • • • • •

• • • • • • •

• • • • • • • •
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T =
1 1 2 4
2 3 3
4 4 4

wgt(T ) =
x1+a1 x1+a2 x2+a4 x4+a7
x2+a1 x3+a3 x3+a4
x4+a2 x4+a3 x4+a4

Figure 1: Contribution to s433(x | a) from T and LP (T ).

Thanks to (3.5), the lattice path proof in the factorial symplectic case proceeds exactly
as in the Schur function case with the alphabet extended to include both xk and xk for
k = 1, 2, . . . , n, and with a replaced by ⌧�n

a. The starting points are now Pi = (2i �
1, n� i+1) thereby ensuring that condition (T4) is satisfied, and the end points are Qj =
(2n, n�j+1+�j). Once again it is only the n-tuples of non-intersecting lattice paths from
Pi to Qi that contribute to sp�(x,x | a) and these are in bijective correspondence with the
symplectic tableaux of Definition 4.2 of shape � with entries from {1 < 1 < · · · < n < n}.
This is exemplified in Figure 2 for n = 4 and � = (4, 3, 3).

Finally, in the factorial odd orthogonal case the alphabet is extended to include not
only both xk and xk for k = 1, 2, . . . , n, but also 1, and a is replaced this time by ⌧ 1�n

a as
dictated by (3.8). The starting points are Pi = (2i�1, n�i+1), ensuring as in the symplectic
case that the condition (T4) is satisfied, and the end points are Qj = (2n+1, n�j+1+�j)
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ORIGIN OF FACTORIAL SCHUR 
FUNCTIONS

• Biedenharn and Louck (1989) introduced the notion of 
the factorial Schur function. 

• Chen and Louck (1993) further studied them. 

• Macdonald (1992) and Goulden and Greene (1994) 
independently gave them a more general form, in the 
process making connections to supersymmetric functions. 

• Macdonald also gave an alternate definition as a ratio of 
alternants.  It is this definition that we now explore….



RATIO OF ALTERNANTS

Macdonald defined

Factorial Characters and Tokuyama’s Identity for Classical Groups 3

Setting a = (a1, a2, . . .), the transition from ordinary to factorial characters may be made through the
judicious use of the map

xm !

8
><

>:

(x |a)m = (x+ a1)(x+ a2) · · · (x+ am) if m > 0;

1 if m = 0;

(x |a)|m| = (x+ a1)(x+ a2) · · · (x+ a|m|) if m < 0.

(2)

To be precise we propose the following definition of factorial characters of the classical Lie groups:
Definition 2 For x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .), let

s�(x |a) =
�� (xi |a)�j

+n�j
��

| (xi |a)n�j | ; (3)

sp�(x,x |a) =
��xi(xi |a)�j

+n�j � xi(xi |a)�j

+n�j
��

|xi(xi |a)n�j � xi(xi |a)n�j | ; (4)

so�(x,x, 1 |a) =

���x1/2
i (xi |a)�j

+n�j � x
1/2
i (xi |a)�j

+n�j
���

���x1/2
i (xi |a)n�j � x

1/2
i (xi |a)n�j

���
. (5)

The well-known formulae for the ordinary characters of the classical Lie groups may be recovered by
setting a = (0, 0, . . .) which has the effect of reversing the map (2) and thereby reducing (xi |a)m and
(xi |a)m to xm

i and x�m
i , respectively, for all m � 0.

3 Flagged Jacob-Trudi identities

To establish factorial Jacobi-Trudi identites we need analogues of the complete homogeneous symmetric
functions hr(x) that are appropriate not only to the case of the other group characters but also to the case
of our factorial characters. Just as is done classically for hr(x), it is convenient to define these analogues
by means of generating functions. Each generating function Fm(z; t) may be expanded as a power series
in t, and we denote the coefficient of tm in such an expansion by [tm] Fm(z; t) for all integers m.

Definition 3 Let x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .). Then for any integer
m let

hm(x |a) = [tm]
nY
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n+m�1Y

j=1

(1 + taj) ; (6)

hsp
m (x,x |a) = [tm]

nY
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(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) ; (7)

hso
m(x,x, 1 |a) = [tm] (1 + t)

nY

i=1

1

(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) . (8)

For m = 0 we have h0(x |a) = hso
0 (x,x, 1 |a) = hsp

0 (x,x |a) = ho
0(x,x |a) = 1, while for m < 0 we

have hm(x |a) = hso
m(x,x, 1 |a) = hsp

m (x,x |a) = 0.

where

Factorial Characters and Tokuyama’s Identity for Classical Groups 3

Setting a = (a1, a2, . . .), the transition from ordinary to factorial characters may be made through the
judicious use of the map

xm !

8
><

>:

(x |a)m = (x+ a1)(x+ a2) · · · (x+ am) if m > 0;

1 if m = 0;

(x |a)|m| = (x+ a1)(x+ a2) · · · (x+ a|m|) if m < 0.

(2)

To be precise we propose the following definition of factorial characters of the classical Lie groups:
Definition 2 For x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .), let

s�(x |a) =
�� (xi |a)�j

+n�j
��

| (xi |a)n�j | ; (3)

sp�(x,x |a) =
��xi(xi |a)�j

+n�j � xi(xi |a)�j

+n�j
��

|xi(xi |a)n�j � xi(xi |a)n�j | ; (4)

so�(x,x, 1 |a) =

���x1/2
i (xi |a)�j

+n�j � x
1/2
i (xi |a)�j

+n�j
���

���x1/2
i (xi |a)n�j � x

1/2
i (xi |a)n�j

���
. (5)

The well-known formulae for the ordinary characters of the classical Lie groups may be recovered by
setting a = (0, 0, . . .) which has the effect of reversing the map (2) and thereby reducing (xi |a)m and
(xi |a)m to xm

i and x�m
i , respectively, for all m � 0.

3 Flagged Jacob-Trudi identities

To establish factorial Jacobi-Trudi identites we need analogues of the complete homogeneous symmetric
functions hr(x) that are appropriate not only to the case of the other group characters but also to the case
of our factorial characters. Just as is done classically for hr(x), it is convenient to define these analogues
by means of generating functions. Each generating function Fm(z; t) may be expanded as a power series
in t, and we denote the coefficient of tm in such an expansion by [tm] Fm(z; t) for all integers m.

Definition 3 Let x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .). Then for any integer
m let

hm(x |a) = [tm]
nY

i=1

1

1� txi

n+m�1Y

j=1

(1 + taj) ; (6)

hsp
m (x,x |a) = [tm]

nY

i=1

1

(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) ; (7)

hso
m(x,x, 1 |a) = [tm] (1 + t)

nY

i=1

1

(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) . (8)

For m = 0 we have h0(x |a) = hso
0 (x,x, 1 |a) = hsp

0 (x,x |a) = ho
0(x,x |a) = 1, while for m < 0 we

have hm(x |a) = hso
m(x,x, 1 |a) = hsp

m (x,x |a) = 0.

Factorial Characters and Tokuyama’s Identity for Classical Groups 3

Setting a = (a1, a2, . . .), the transition from ordinary to factorial characters may be made through the
judicious use of the map

xm !

8
><

>:

(x |a)m = (x+ a1)(x+ a2) · · · (x+ am) if m > 0;

1 if m = 0;

(x |a)|m| = (x+ a1)(x+ a2) · · · (x+ a|m|) if m < 0.

(2)

To be precise we propose the following definition of factorial characters of the classical Lie groups:
Definition 2 For x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .), let

s�(x |a) =
�� (xi |a)�j

+n�j
��

| (xi |a)n�j | ; (3)

sp�(x,x |a) =
��xi(xi |a)�j

+n�j � xi(xi |a)�j

+n�j
��

|xi(xi |a)n�j � xi(xi |a)n�j | ; (4)

so�(x,x, 1 |a) =

���x1/2
i (xi |a)�j

+n�j � x
1/2
i (xi |a)�j

+n�j
���

���x1/2
i (xi |a)n�j � x

1/2
i (xi |a)n�j

���
. (5)

The well-known formulae for the ordinary characters of the classical Lie groups may be recovered by
setting a = (0, 0, . . .) which has the effect of reversing the map (2) and thereby reducing (xi |a)m and
(xi |a)m to xm

i and x�m
i , respectively, for all m � 0.

3 Flagged Jacob-Trudi identities

To establish factorial Jacobi-Trudi identites we need analogues of the complete homogeneous symmetric
functions hr(x) that are appropriate not only to the case of the other group characters but also to the case
of our factorial characters. Just as is done classically for hr(x), it is convenient to define these analogues
by means of generating functions. Each generating function Fm(z; t) may be expanded as a power series
in t, and we denote the coefficient of tm in such an expansion by [tm] Fm(z; t) for all integers m.

Definition 3 Let x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .). Then for any integer
m let

hm(x |a) = [tm]
nY

i=1

1

1� txi

n+m�1Y

j=1

(1 + taj) ; (6)

hsp
m (x,x |a) = [tm]

nY

i=1

1

(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) ; (7)

hso
m(x,x, 1 |a) = [tm] (1 + t)

nY

i=1

1

(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) . (8)

For m = 0 we have h0(x |a) = hso
0 (x,x, 1 |a) = hsp

0 (x,x |a) = ho
0(x,x |a) = 1, while for m < 0 we

have hm(x |a) = hso
m(x,x, 1 |a) = hsp

m (x,x |a) = 0.

Factorial Characters and Tokuyama’s Identity for Classical Groups 3

Setting a = (a1, a2, . . .), the transition from ordinary to factorial characters may be made through the
judicious use of the map

xm !

8
><

>:

(x |a)m = (x+ a1)(x+ a2) · · · (x+ am) if m > 0;

1 if m = 0;

(x |a)|m| = (x+ a1)(x+ a2) · · · (x+ a|m|) if m < 0.

(2)

To be precise we propose the following definition of factorial characters of the classical Lie groups:
Definition 2 For x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .), let

s�(x |a) =
�� (xi |a)�j

+n�j
��

| (xi |a)n�j | ; (3)

sp�(x,x |a) =
��xi(xi |a)�j

+n�j � xi(xi |a)�j

+n�j
��

|xi(xi |a)n�j � xi(xi |a)n�j | ; (4)

so�(x,x, 1 |a) =

���x1/2
i (xi |a)�j

+n�j � x
1/2
i (xi |a)�j

+n�j
���

���x1/2
i (xi |a)n�j � x

1/2
i (xi |a)n�j

���
. (5)

The well-known formulae for the ordinary characters of the classical Lie groups may be recovered by
setting a = (0, 0, . . .) which has the effect of reversing the map (2) and thereby reducing (xi |a)m and
(xi |a)m to xm

i and x�m
i , respectively, for all m � 0.

3 Flagged Jacob-Trudi identities

To establish factorial Jacobi-Trudi identites we need analogues of the complete homogeneous symmetric
functions hr(x) that are appropriate not only to the case of the other group characters but also to the case
of our factorial characters. Just as is done classically for hr(x), it is convenient to define these analogues
by means of generating functions. Each generating function Fm(z; t) may be expanded as a power series
in t, and we denote the coefficient of tm in such an expansion by [tm] Fm(z; t) for all integers m.

Definition 3 Let x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .). Then for any integer
m let

hm(x |a) = [tm]
nY

i=1

1

1� txi

n+m�1Y

j=1

(1 + taj) ; (6)
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nY
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hso
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0 (x,x |a) = ho
0(x,x |a) = 1, while for m < 0 we

have hm(x |a) = hso
m(x,x, 1 |a) = hsp

m (x,x |a) = 0.
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8
><

>:
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1 if m = 0;
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If ai= -i+1 this reduces to the falling factorial:  
(x)i= x(x-1)…(x-k+1).



FACTORIAL CHARACTERS FOR 
CLASSICAL GROUPS

We then propose the following definition of factorial characters of the classical Lie
groups:

Definition 1 For x = (x1, x2, . . . , xn), x = (x�1
1 , x�1

2 , . . . , x�1
n ) and a = (a1, a2, . . .)

let

s�(x | a) =
�� (xi | a)�j

+n�j
��

| (xi | a)n�j | ; (7)

so�(x,x, 1 | a) =

��� x1/2
i (xi | a)�j

+n�j � x
�1/2
i (x�1

i | a)�j

+n�j
���

��� x1/2
i (xi | a)n�j � x

�1/2
i (x�1

i | a)n�j

���
; (8)

sp�(x,x | a) =
�� xi(xi | a)�j

+n�j � x�1
i (x�1

i | a)�j

+n�j
��

�� xi(xi | a)n�j � x�1
i (x�1

i | a)n�j
�� ; (9)

o�(x,x | a) =
⌘
�� (xi | a)�j

+n�j + (x�1
i | a)�j

+n�j
��

1
2

�� (xi | a)n�j + (x�1
i | a)n�j

�� with ⌘ =

(
1
2 if �n = 0;

1 �n > 0.
.

(10)

In the classical non-factorial case we let

Definition 2 Let x = (x1, x2, . . . , xn) and x = (x�1
1 , x�1

2 , . . . , x�1
n ). Then for any

integer m let

hm(x) = [tm]
nY

i=1

1

1� txi

; (11)

hso
m(x,x, 1) = [tm] (1 + t)

nY

i=1

1

(1� txi)(1� tx�1
i )

; (12)

hsp
m(x,x) = [tm]

nY

i=1

1

(1� txi)(1� tx�1
i )

; (13)

ho
m(x,x) = [tm]

8
>>><

>>>:

✓
1

1� tx1
+

1

1� tx�1
1

� �m0

◆
if n = 1 ;

(1� t2)
nY

i=1

1

(1� txi)(1� tx�1
i )

if n > 1 ,
(14)

with �m0 = 1 if m = 0 and 0 if m > 0. In the case m = 0 we have h0(x) =
hso
0 (x,x, 1) = hsp

0 (x,x) = ho
0(x,x) = 1, while for m < 0 we have hm(x) = hso

m(x,x, 1) =
hsp
m(x,x) = ho

m(x,x) = 0.

In the factorial case we make the following definitions in terms of generating
functions Fm(z; t) that are truncated in the sense that the power m of [tm] appears
in an upper limit of the associated generating function.

2

We propose these definitions as the most natural  
extension of the classical characters to the  

factorial case.



• Now that we have these factorial 
characters for classical groups, let’s test 
their properties. 

• But what properties….? 

• Jacobi-Trudi! Tokuyama! 

• What’s Jacobi-Trudi?



CLASSICAL JACOBI-TRUDI

• Easily proved algebraically…. 

• Equally easily proved combinatorially…

Jacobi-Trudi identity

Let x = (x
1

, x
2

, . . . , xn) and x(i) = (xi, xi+1

, . . . , xn)
for j = 1, 2, . . . , n. Then

(JT1) : s�(x) =
�� h�j�j+i(x(i))

��
1i,jn

(JT2) : s�(x) =
�� h�j�j+i(x)

��
1i,jn

Proof: [D.E.Littlewood, Theory of Group Characters]

Note first that xm
i = hm(xi). This enables us to write

s�(x) =

�� x�j+n�j
i

��
�� xn�j

i
�� =

�� h�j+n�j(xi)
��

Y

1i<jn

1

xi � xj
.

Now we can exploit our hr(x) identities.



COMPLETE SYMMETRIC FUNCTIONS

• Recall that the complete symmetric functions may 
be defined as:

We then propose the following definition of factorial characters of the classical Lie
groups:

Definition 1 For x = (x1, x2, . . . , xn), x = (x�1
1 , x�1

2 , . . . , x�1
n ) and a = (a1, a2, . . .)

let
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���
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.
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8
>>><

>>>:

✓
1

1� tx1
+

1

1� tx�1
1

� �m0

◆
if n = 1 ;

(1� t2)
nY

i=1

1

(1� txi)(1� tx�1
i )

if n > 1 ,
(14)

with �m0 = 1 if m = 0 and 0 if m > 0. In the case m = 0 we have h0(x) =
hso
0 (x,x, 1) = hsp

0 (x,x) = ho
0(x,x) = 1, while for m < 0 we have hm(x) = hso

m(x,x, 1) =
hsp
m(x,x) = ho

m(x,x) = 0.

In the factorial case we make the following definitions in terms of generating
functions Fm(z; t) that are truncated in the sense that the power m of [tm] appears
in an upper limit of the associated generating function.

2

Also the same as a Schur  
function for a single row  

of length m. 



OUTLINE OF COMBINATORIAL 
PROOF OF JACOBI-TRUDI

• Each row i in tableau ⇔ a lattice path in the plane  

from Pi to Qi ⇔ a complete symmetric function. 

• Each of these complete symmetric functions 
corresponds to a term on diagonal of J-T determinant. 

• If we swap ending points, we can define an off-
diagonal term  in J-T determinant.

Jacobi-Trudi identity

Let x = (x
1

, x
2

, . . . , xn) and x(i) = (xi, xi+1

, . . . , xn)
for j = 1, 2, . . . , n. Then

(JT1) : s�(x) =
�� h�j�j+i(x(i))

��
1i,jn

(JT2) : s�(x) =
�� h�j�j+i(x)

��
1i,jn

Proof: [D.E.Littlewood, Theory of Group Characters]

Note first that xm
i = hm(xi). This enables us to write

s�(x) =

�� x�j+n�j
i

��
�� xn�j

i
�� =

�� h�j+n�j(xi)
��

Y

1i<jn

1

xi � xj
.

Now we can exploit our hr(x) identities.



LINDSTRÖM-GESSEL-VIENNOT 
INVOLUTIONLindström-Gessel-Viennot Theorem - Proof contd.

Conclude All contributions from intersecting n-tuples of lattice
paths cancel in pairs, leaving just the sum of contributions from
all non-intersecting n-tuples.

Pi

Qj

w
35

w
36

w
37

w
48

Pj

Qi

w
26

w
57

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •
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w
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w
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w
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w
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w
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w
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• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

Contributions

w
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w
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w
37

w
48

w
26

w
57

� w
35

w
36

w
57

w
26

w
37

w
48

= 0 .



COMPLETE FACTORIAL SYM FNS
• To this we add the dependence on the factorial 

parameters a:
Definition 3 Let x = (x1, x2, . . . , xn), x = (x�1

1 , x�1
2 , . . . , x�1

n ) and a = (a1, a2, . . .).
Then for any integer m � 0 let

hm(x | a) = [tm]
nY

i=1

1

1� txi

n+m�1Y

j=1

(1 + taj) ; (15)

hso
m(x,x, 1 | a) = [tm] (1 + t)

nY

i=1

1

(1� txi)(1� tx�1
i )

n+m�1Y

j=1

(1 + taj) ; (16)

hsp
m(x,x | a) = [tm]

nY

i=1

1

(1� txi)(1� tx�1
i )

n+m�1Y

j=1

(1 + taj) ; (17)

ho
m(x,x | a) = [tm]

8
>>>><

>>>>:

✓
1

1� tx1
+

1

1� tx�1
1

� �m0

◆ mY

j=1

(1 + taj) if n = 1 ;

(1� t2)
nY

i=1

1

(1� txi)(1� tx�1
i )

n+m�1Y

j=1

(1 + taj) if n > 1 .

(18)

Then for m = 0 we have h0(x | a) = hso
0 (x,x, 1 | a) = hsp

0 (x,x | a) = ho
0(x,x | a) = 1,

while for m < 0 we set hm(x | a) = hso
m(x,x, 1 | a) = hsp

m(x,x | a) = ho
m(x,x | a) = 0.

The one variable case x = (xi) of these Definitions 2 and 3 allow us to rewrite our
character and factorial characters in the following manner:

Lemma 4

s�(x) =

���h�
j

+n�j(xi)
���

��hn�j(xi)
�� ; s�(x | a) =

���h�
j

+n�j(xi | a)
���

��hn�j(xi | a)
�� ; (19)

so�(x,x, 1) =

���hso
�
j

+n�j(xi, xi, 1)
���

��hso
n�j(xi, xi)

�� ; so�(x,x, 1 | a) =

���hso
�
j

+n�j(xi, xi, 1 | a)
���

��hso
n�j(xi, xi | a)

�� ; (20)

sp�(x,x) =

���hsp
�
j

+n�j(xi, xi)
���

��hsp
n�j(xi, xi)

�� ; sp�(x,x | a) =

���hsp
�
j

+n�j(xi, xi | a)
���

��hsp
n�j(xi, xi | a)

�� ; (21)

o�(x,x) =

���ho
�
j

+n�j(xi, xi)
���

��ho
n�j(xi, xi)

�� ; o�(x,x | a) =

���ho
�
j

+n�j(xi, xi | a)
���

��ho
n�j(xi, xi | a)

�� . (22)

Proof: In the case of s�(x) and s�(x | a) it su�ces to note that for m � 0

hm(xi) = [tm]
1

1� txi

= xm
i (23)
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1� tx�1
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◆ mY

j=1

(1 + taj) if n = 1 ;

(1� t2)
nY

i=1

1

(1� txi)(1� tx�1
i )

n+m�1Y

j=1

(1 + taj) if n > 1 .

(18)

Then for m = 0 we have h0(x | a) = hso
0 (x,x, 1 | a) = hsp

0 (x,x | a) = ho
0(x,x | a) = 1,

while for m < 0 we set hm(x | a) = hso
m(x,x, 1 | a) = hsp

m(x,x | a) = ho
m(x,x | a) = 0.

The one variable case x = (xi) of these Definitions 2 and 3 allow us to rewrite our
character and factorial characters in the following manner:

Lemma 4

s�(x) =

���h�
j

+n�j(xi)
���

��hn�j(xi)
�� ; s�(x | a) =

���h�
j

+n�j(xi | a)
���

��hn�j(xi | a)
�� ; (19)

so�(x,x, 1) =

���hso
�
j

+n�j(xi, xi, 1)
���

��hso
n�j(xi, xi)

�� ; so�(x,x, 1 | a) =

���hso
�
j

+n�j(xi, xi, 1 | a)
���

��hso
n�j(xi, xi | a)

�� ; (20)

sp�(x,x) =

���hsp
�
j

+n�j(xi, xi)
���

��hsp
n�j(xi, xi)

�� ; sp�(x,x | a) =

���hsp
�
j

+n�j(xi, xi | a)
���

��hsp
n�j(xi, xi | a)

�� ; (21)

o�(x,x) =

���ho
�
j

+n�j(xi, xi)
���

��ho
n�j(xi, xi)

�� ; o�(x,x | a) =

���ho
�
j

+n�j(xi, xi | a)
���

��ho
n�j(xi, xi | a)

�� . (22)

Proof: In the case of s�(x) and s�(x | a) it su�ces to note that for m � 0

hm(xi) = [tm]
1

1� txi

= xm
i (23)

3

Factorial Characters and Tokuyama’s Identity for Classical Groups 3

Setting a = (a1, a2, . . .), the transition from ordinary to factorial characters may be made through the
judicious use of the map

xm !

8
><

>:

(x |a)m = (x+ a1)(x+ a2) · · · (x+ am) if m > 0;

1 if m = 0;

(x |a)|m| = (x+ a1)(x+ a2) · · · (x+ a|m|) if m < 0.

(2)

To be precise we propose the following definition of factorial characters of the classical Lie groups:
Definition 2 For x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .), let

s�(x |a) =
�� (xi |a)�j

+n�j
��

| (xi |a)n�j | ; (3)

sp�(x,x |a) =
��xi(xi |a)�j

+n�j � xi(xi |a)�j

+n�j
��

|xi(xi |a)n�j � xi(xi |a)n�j | ; (4)

so�(x,x, 1 |a) =

���x1/2
i (xi |a)�j

+n�j � x
1/2
i (xi |a)�j

+n�j
���

���x1/2
i (xi |a)n�j � x

1/2
i (xi |a)n�j

���
. (5)

The well-known formulae for the ordinary characters of the classical Lie groups may be recovered by
setting a = (0, 0, . . .) which has the effect of reversing the map (2) and thereby reducing (xi |a)m and
(xi |a)m to xm

i and x�m
i , respectively, for all m � 0.

3 Flagged Jacob-Trudi identities

To establish factorial Jacobi-Trudi identites we need analogues of the complete homogeneous symmetric
functions hr(x) that are appropriate not only to the case of the other group characters but also to the case
of our factorial characters. Just as is done classically for hr(x), it is convenient to define these analogues
by means of generating functions. Each generating function Fm(z; t) may be expanded as a power series
in t, and we denote the coefficient of tm in such an expansion by [tm] Fm(z; t) for all integers m.

Definition 3 Let x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .). Then for any integer
m let

hm(x |a) = [tm]
nY

i=1

1

1� txi

n+m�1Y

j=1

(1 + taj) ; (6)

hsp
m (x,x |a) = [tm]

nY

i=1

1

(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) ; (7)

hso
m(x,x, 1 |a) = [tm] (1 + t)

nY

i=1

1

(1� txi)(1� txi)

n+m�1Y

j=1

(1 + taj) . (8)

For m = 0 we have h0(x |a) = hso
0 (x,x, 1 |a) = hsp

0 (x,x |a) = ho
0(x,x |a) = 1, while for m < 0 we

have hm(x |a) = hso
m(x,x, 1 |a) = hsp

m (x,x |a) = 0.



FLAGGED J-T FOR CLASSICAL GROUPS 
(CHEN ET AL., OKADA, H. & KING)

• Independently obtained by Okada (personal 
communication).

x

(i) = (xi, xi+1, . . . , xn).

Then for any partition � = (�1,�2, . . . ,�n) and any a = (a1, a2, . . .) including the

case a = (0, 0, . . .) we have

s�(x) =
���h�

j

�j+i(x
(i))
��� s�(x | a) =

���h�
j

�j+i(x
(i) | a)

��� ;

so�(x,x, 1) =
���hso

�
j

�j+i(x
(i),x(i), 1)

��� ; so�(x,x, 1 | a) =
���hso

�
j

�j+i(x
(i),x(i), 1 | a)

��� ;

sp�(x,x) =
���hsp

�
j

�j+i(x
(i),x(i))

��� ; sp�(x,x | a) =
���hsp

�
j

�j+i(x
(i),x(i) | a)

��� ;

o�(x,x) = ⌘
���ho

�
j

�j+i(x
(i),x(i))

��� ; o�(x,x | a) =
���ho

�
j

�j+i(x
(i),x(i) | a)

��� ,

I will not reproduce the proof here.

2 Further results including the even orthogonal

case

As in the RIMS paper it is convenient to introduce the following

Definition 6 For all 1  p  q  n and all integers m let

fm,p,q,n(x;y | a) = [tm]

Qn
j=q+1(1 + tyj)

Qm+q�p
k=1 (1 + tak)Qn

i=p(1� txi)
; (31)

f sp
m,p,q,n(x,x;y,y | a) = [tm]

Qn
j=q+1((1 + tyj)(1+tyj))

Qm+q�p
k=1 (1 + tak)Qn

i=p((1� txi)(1� txi))
; (32)

f so

m,p,q,n(x,x;y,y, 1 | a) = [tm]
(1 + t)

Qn
j=q+1((1 + tyj)(1+tyj))

Qm+q�p
k=1 (1 + tak)Qn

i=p((1� txi)(1� txi))
;

(33)

f o
m,p,q,n(x,x;y,y | a) = [tm]

 
�pq(1� �m0) +

(1� t2)
Qn

j=q+1((1 + tyj)(1+tyj))Qn
i=p((1� txi)(1� txi))

!
m+q�pY

k=1

(1 + tak)

(34)

= (a1a2 · · · am)�pq + [tm]
(1� t2)

Qn
j=q+1((1 + tyj)(1+tyj))

Qm+q�p
k=1 (1 + tak)Qn

i=p((1� txi)(1� txi))
. (35)

with (a1a2 · · · am) = 0 if m  0.

In the special case p = q = d these definitions are such that

fm,d,d,n(x;y | a) = qm(x
(d);y(d+1) | a) ; (36)

f sp
m,d,d,n(x,x;y,y | a) = qspm (x(d),x(d);y(d+1),y(d+1) | a) ; (37)

f so

m,d,d,n(x,x;y,y, 1 | a) = q so

m (x(d),x(d);y(d+1),y(d+1),1 | a) ; (38)

f o
m,d,d,n(x,x;y,y | a) = qom(x

(d),x(d);y(d+1),y(d+1) | a) , (39)

6

For

and

hsp
m(xi, xi | a) = [tm]

1

(1� txi)(1� txi)

mY

j=1

(1 + taj)

= [tm]
1

xi � xi

✓
xi

1� txi

� xi

1� txi

◆ mY

j=1

(1 + taj)

=
1

xi � xi

(xi(xi | a)m � xi(xi | a)m) . (28)

The required result follows as before with the cancellation this time of the common
factors xi � xi.

Finally, in the case of o�(x,x) and o�(x,x | a) we have

ho
m(xi, xi) = [tm]

✓
1

1� txi

+
1

1� txi

� �m0

◆
= xm

i + xm
i � �m0 , (29)

and

ho
m(xi, xi | a) = [tm]

✓
1

1� txi

+
1

1� txi

� �m0

◆ mY

j=1

(1 + taj)

= (xi | a)m + (xi | a)m � �m0 , (30)

as required to complete the proof by exploiting the casesm = �j+n�j andm = n�j,
where the terms �1 and ��m0 ensure that the factors ⌘ and 1

2 that appear in (6) and
(10) do not appear in (22).

⇤

Now we are a position to state and prove the following result:

Theorem 5 (Flagged Jacobi-Trudi identity) Given

x = (x1, x2, . . . , xn)

x = (x1, x2, . . . , xn)

xk = x�1
k

for k = 1, 2, . . . , n, let

x

(i) = (xi, xi+1, . . . , xn)

5

and x

(i) = (xi, xi+1, . . . , xn).

Then for any partition � = (�1,�2, . . . ,�n) and any a = (a1, a2, . . .) including the

case a = (0, 0, . . .) we have

s�(x) =
���h�

j

�j+i(x
(i))
��� s�(x | a) =

���h�
j

�j+i(x
(i) | a)

��� ;

so�(x,x, 1) =
���hso

�
j

�j+i(x
(i),x(i), 1)

��� ; so�(x,x, 1 | a) =
���hso

�
j

�j+i(x
(i),x(i), 1 | a)

��� ;

sp�(x,x) =
���hsp

�
j

�j+i(x
(i),x(i))

��� ; sp�(x,x | a) =
���hsp

�
j

�j+i(x
(i),x(i) | a)

��� ;

o�(x,x) = ⌘
���ho

�
j

�j+i(x
(i),x(i))

��� ; o�(x,x | a) =
���ho

�
j

�j+i(x
(i),x(i) | a)

��� ,

I will not reproduce the proof here.

2 Further results including the even orthogonal

case

As in the RIMS paper it is convenient to introduce the following

Definition 6 For all 1  p  q  n and all integers m let

fm,p,q,n(x;y | a) = [tm]

Qn
j=q+1(1 + tyj)

Qm+q�p
k=1 (1 + tak)Qn

i=p(1� txi)
; (31)

f sp
m,p,q,n(x,x;y,y | a) = [tm]

Qn
j=q+1((1 + tyj)(1+tyj))

Qm+q�p
k=1 (1 + tak)Qn

i=p((1� txi)(1� txi))
; (32)

f so

m,p,q,n(x,x;y,y, 1 | a) = [tm]
(1 + t)

Qn
j=q+1((1 + tyj)(1+tyj))

Qm+q�p
k=1 (1 + tak)Qn

i=p((1� txi)(1� txi))
;

(33)

f o
m,p,q,n(x,x;y,y | a) = [tm]

 
�pq(1� �m0) +

(1� t2)
Qn

j=q+1((1 + tyj)(1+tyj))Qn
i=p((1� txi)(1� txi))

!
m+q�pY

k=1

(1 + tak)

(34)

= (a1a2 · · · am)�pq + [tm]
(1� t2)

Qn
j=q+1((1 + tyj)(1+tyj))

Qm+q�p
k=1 (1 + tak)Qn

i=p((1� txi)(1� txi))
. (35)

with (a1a2 · · · am) = 0 if m  0.

In the special case p = q = d these definitions are such that

fm,d,d,n(x;y | a) = qm(x
(d);y(d+1) | a) ; (36)

f sp
m,d,d,n(x,x;y,y | a) = qspm (x(d),x(d);y(d+1),y(d+1) | a) ; (37)

f so

m,d,d,n(x,x;y,y, 1 | a) = q so

m (x(d),x(d);y(d+1),y(d+1),1 | a) ; (38)

f o
m,d,d,n(x,x;y,y | a) = qom(x

(d),x(d);y(d+1),y(d+1) | a) , (39)

6



FLAGGED JACOBI-TRUDI FOR 
CLASSICAL GROUPS

• Flagged factorial Schur due to Chen et al. (2002). 

• Non-factorial symplectic and odd orthogonal due 
to Chen et al. (2002). 

• Non-factorial flagged symplectic, odd orthogonal, 
and even orthogonal due to Okada (preprint).

Some History….



SYMPLECTIC: TABLEAUX

• Entries from alphabet  

• Entries weakly increase across rows. 

• Entries strictly increase down columns. 

• No entry i or i appears below row i.

8 Angèle M. Hamel and Ronald C. King

a1a2a3 a0

a1

a2

a3

a4

a5

a6

a7

P1

P2

P3

P4

Q4 Q3 Q2 Q1

x1+a3

x1+a1

x2+a1

x4+a7

x3+a1

x4+a3 x4+a4x4+a1

x4+a3 x4+a4

• • • • •

• • • • •

• • • • • •

• • • • • •

• • • • • • •

• • • • • • •

• • • • • • • •

• • • • • • • •

1 1 2 4

3 4 4

4 4 4

x1 x1 x2 + a1 x4 + a7

x3 + a1 x4 + a3 x4 + a4

x4 + a1 x4 + a3 x4 + a4

Fig. 1: Example of non-intersecting lattice paths and a corresponding symplectic tableau and its factorial weights.

6 Tokuyama type identities

A partition is said to be strict if its non-zero parts are distinct. Each such strict partition � of length `(�) 
n specifies a shifted Young diagram SF� consisting of rows of boxes of lengths �i for i = 1, 2, . . . , `(�)
left adjusted to a diagonal line. This allows us to define various primed shifted tableaux.

Definition 12 [16, 20] Let Pgl
� be the set of all primed shifted tableaux P of shape � that are obtained

by filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 20 < 2 < · · · < n0 < n} with
one entry in each box, in such a way that: (Q1) entries weakly increase from left to right across rows;
(Q2) entries weakly increase from top to bottom down columns; (Q3) no two identical unprimed entries
appear in any column; (Q4) no two identical primed entries appear in any row;

Definition 13 [7] Let Psp
� be the set of all primed shifted tableaux P of shape � that are obtained by

filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 1
0
< 1< 20 < 2< 2

0
< 2 < · · · <

n0 < n < n0 < n} with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied
together with: (Q5) at most one of {k0, k, k0, k} appears on the main diagonal for each k = 1, 2, . . . , n.

Definition 14 Let P so

� be the set of all primed shifted tableaux P of shape � that are obtained by filling
each box of SF� with an entry Pij from the alphabet {10 < 1 < 1

0
< 1 < 20 < 2 < 2

0
< 2 < · · · < n0 <

n < n0 < n < 00} with one entry in each box, in such a way that the conditions (Q1)-(Q5) are satisfied.
together with: (Q6) the entry 00 does not appear on the main diagonal.

Our proposed definition of factorial Q-functions then takes the form
Definition 15 For a = (a1, a2, . . .), a0 = 0 and any strict partition � of length `(�)  n, let

Qg
�(z;w |a) =

X

P2Pg

�

Y

(i,j)2SF�

wgt(Pij) where

6 Angèle M. Hamel and Ronald C. King

the form h0 = 1, while the (1, 1) entry is just hm with x

(1) = x and x

(1) = x. 2

Factorial characters in the one-part partition case may then be evaluated directly from the generat-
ing function formulae of Definition 3.In the Schur function case with x = (x1, x2, . . . , xn) and x

0 =
(x1, x2, . . . , xn�1) one finds hm(x |a) = hm(x0 |a) + (xn + am+n�1)hm�1(x |a). Iterating this recur-
rence relation gives

hm(x |a) =
X

1i1i2···i
m

n

(xi1 + ai1)(xi2 + ai2+1) · · · (xi
m

+ ai
m

+m�1) . (23)

This result can be exploited in the symplectic case, where it might be noted first that if we introduce
dummy parameters a` = 0 for ` = 0,�1,�2, . . . we have

hsp
m (x,x |a) = [tm]

nY

i=1

1

(1� txi)(1� txi)

m+2n�1�nY

k=1�n

(1 + tak) = hm(z | ⌧�n
a) . (24)

with z = (x1, x1, x2, x2, . . . , xn, xn) and ⌧�n
a = (a�n+1, . . . , a�1, a0, a1, a2 . . .). It follows that

hsp
m (x,x |a) =

X

1i1i2···i
m

2n

(zi1 + ai1�n)(zi2 + ai2�n+1) · · · (zi
m

+ ai
m

�n+m�1) . (25)

where zi
j

+ ai
j

�n+j�1 =

(
xk + a2k�n+j�2 if ij = 2k � 1;
xk + a2k�n+j�1 if ij = 2k,

with a` = 0 if `  0. The odd orthog-

onal case is similar but with the inclusion of a factor (1� an+j) if im = 2n+ 1.

5 Combinatorial realisation of factorial characters

The significance of these results is that they offer an immediate lattice path model of each of the relevant
one-part partition factorial characters. By making use of n-tuples of such lattice paths in the interpretation
of the flagged Jacobi-Trudi identities of Theorem 6 one arrives at a non-intersecting lattice path model of
factorial characters specified by any partition � of length `(�)  n. This leads inexorably to a further
realisation of factorial characters in terms of certain appropriately weighted tableaux. The tableaux them-
selves are none other than those already associated with Schur functions, symplectic group characters and
odd orthogonal group characters in the classical non-factorial case.

Restricting our attention to fixed n and partitions � = (�1,�2, . . . ,�n) of length `(�)  n, each such
partition defines a Young diagram F� consisting of |�| = �1+�2+ · · ·+�n boxes arranged in `(�) rows
of lengths �i. For i = 1, 2, . . . , `(�). Let (i, j) signify the box in the ith row and jth column of F�.

Definition 8 Let T� be the set of all semistandard Young tableaux T of shape � that are obtained by
filling each box (i, j) of F� with an entry Tij from the alphabet {1 < 2 < · · · < n} in all possible ways
such that: (T1) entries weakly increase across rows from left to right; (T2) entries strictly increase down
columns from top to bottom.

Definition 9 [11] Let T sp
� be the set of all symplectic tableau T of shape � that are obtained by filling

each box (i, j) of F� with an entry Tij from the alphabet {1 < 1 < 2 < 2 < · · · < n < n} in all possible
ways such that: (Sp1) entries weakly increase across each row from left to right; (Sp2) entries strictly
increase down each column from top to bottom; (Sp3) neither k nor k appear lower than the kth row.



SYMPLECTIC: LATTICE PATHS

• the factorial contribution is simply to label the 
steps with an x + a weight instead of an x weight.

8 Angèle M. Hamel and Ronald C. King

a1a2a3 a0

a1

a2

a3

a4

a5

a6

a7

P1

P2

P3

P4

Q4 Q3 Q2 Q1

x1+a3

x1+a1

x2+a1

x4+a7

x3+a1

x4+a3 x4+a4x4+a1

x4+a3 x4+a4

• • • • •

• • • • •

• • • • • •

• • • • • •

• • • • • • •

• • • • • • •

• • • • • • • •

• • • • • • • •

1 1 2 4

3 4 4

4 4 4

x1 x1 x2 + a1 x4 + a7

x3 + a1 x4 + a3 x4 + a4

x4 + a1 x4 + a3 x4 + a4

Fig. 1: Example of non-intersecting lattice paths and a corresponding symplectic tableau and its factorial weights.

6 Tokuyama type identities

A partition is said to be strict if its non-zero parts are distinct. Each such strict partition � of length `(�) 
n specifies a shifted Young diagram SF� consisting of rows of boxes of lengths �i for i = 1, 2, . . . , `(�)
left adjusted to a diagonal line. This allows us to define various primed shifted tableaux.

Definition 12 [16, 20] Let Pgl
� be the set of all primed shifted tableaux P of shape � that are obtained

by filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 20 < 2 < · · · < n0 < n} with
one entry in each box, in such a way that: (Q1) entries weakly increase from left to right across rows;
(Q2) entries weakly increase from top to bottom down columns; (Q3) no two identical unprimed entries
appear in any column; (Q4) no two identical primed entries appear in any row;

Definition 13 [7] Let Psp
� be the set of all primed shifted tableaux P of shape � that are obtained by

filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 1
0
< 1< 20 < 2< 2

0
< 2 < · · · <

n0 < n < n0 < n} with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied
together with: (Q5) at most one of {k0, k, k0, k} appears on the main diagonal for each k = 1, 2, . . . , n.

Definition 14 Let P so

� be the set of all primed shifted tableaux P of shape � that are obtained by filling
each box of SF� with an entry Pij from the alphabet {10 < 1 < 1

0
< 1 < 20 < 2 < 2

0
< 2 < · · · < n0 <

n < n0 < n < 00} with one entry in each box, in such a way that the conditions (Q1)-(Q5) are satisfied.
together with: (Q6) the entry 00 does not appear on the main diagonal.

Our proposed definition of factorial Q-functions then takes the form
Definition 15 For a = (a1, a2, . . .), a0 = 0 and any strict partition � of length `(�)  n, let

Qg
�(z;w |a) =

X

P2Pg

�

Y

(i,j)2SF�

wgt(Pij) where



ODD ORTHOGONAL: TABLEAUX

• Entries from alphabet  

• Entries weakly increase across rows. 

• Entries weakly increase down columns. 

• No entry i or i appears below row i. 

• No two non-zero entries in a column are equal. 

• In any row, 0 appears at most once. 
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Figure 3: Contribution to so�(x,x | a) from T and LP (T ), where am = 0 for m  0.

This allows us to define various primed shifted tableaux.

Definition 5.1 [28, 22] Let P� be the set of all primed shifted tableaux P of shape � that

are obtained by filling each box of SF �
with an entry Pij from the alphabet

{10 < 1 < 20 < 2 < · · · < n0 < n}

with one entry in each box, in such a way that: (Q1) entries weakly increase from left to

right across rows; (Q2) entries weakly increase from top to bottom down columns; (Q3) no

two identical unprimed entries appear in any column; (Q4) no two identical primed entries

appear in any row;

Definition 5.2 [9] Let Psp
� be the set of all primed shifted tableaux P of shape � that are

obtained by filling each box of SF �
with an entry Pij from the alphabet

{10< 1 <1
0
<1<20<2<2

0
<2 < · · · < n0 < n < n0 < n}

with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied

together with: (Q5) at most one of {k0, k, k
0
, k} appears on the main diagonal for each

k = 1, 2, . . . , n.

Definition 5.3 Let Pso
� be the set of all primed shifted tableaux P of shape � that are

obtained by filling each box of SF �
with an entry Pij from the alphabet

{10 < 1 < 1
0
< 1 < 20 < 2 < 2

0
< 2 < · · · < n0 < n < n0 < n < 00}

with one entry in each box, in such a way that the conditions (Q1)-(Q5) are satisfied.

together with: (Q6) the entry 00 does not appear on the main diagonal.
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THE TOKUYAMA STORY

2 Angèle M. Hamel and Ronald C. King

Classical group analogues of factorial Schur functions have been studied previously in the context of
double Schubert polynomials. Notably, Ikeda et al. [9] have made use of the factorial Schur P and Q
functions (see also Ivanov [10]) to construct double Schubert polynomials in the case of classical Lie
groups (building on Billey and Haiman [2]) To the best of our knowledge we are the first to offer explicit
definitions of factorial characters themselves for the symplectic and odd orthogonal groups. Furthermore,
on the basis of these definitions, we derive both flagged Jacobi-Trudi and Tokuyama identities.

In the non-factorial case the flagged Jacobi-Trudi identities for the symplectic group appears in [5]
and for all classical groups in [14]. Currently one of the most general forms of Tokuyama’s original
identity [19] appears in Theorem 1 below, where the definitions of Q� and sµ follow in a later section. A
brief table summarizes the history of the results.

Theorem 1 Let µ be a partition of length `(µ)  n and � = µ + � with � = (n, n � 1, . . . , 1). Then
for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and a = (a1, a2, . . .).

Q�(x;y |a) =
Y

1ijn

(xi + yj) sµ(x |a) .

Tokuyama [19],1988 x y = tx a = 0
Okada [13], 1990 x y = tx a = 0
Hamel and King [7], 2007 x y a = 0
Brubaker, Bump, Friedberg [3], 2011 x y a = 0
Ikeda, Mihalcea, Naruse [9], 2011 x y = x a

Bump, McNamara, Nakasuji [4], 2011 x y = tx a

Hamel and King [8], 2015 x y a

Our new factorial characters are defined in Section 2. Section 3 gives lemmas leading to the flagged
factorial Jacob-Trudi identities (Theorem 6). In Section 4 we give explicit formulae appropriate to the
one-part partition case, and use them in Section 5 to provide combinatorial expressions for our factorial
characters in terms of lattice paths and then tableaux (Theorem 11) in an approach similar to that of
Ivanov’s appendix to [15]. In Section 6, on the basis of new definitions of factorial Q-functions, we derive
factorial Tokuyama type identities (Theorem 17).

2 Factorial characters for GL(n,C), Sp(2n,C) and SO(2n+ 1,C)
Let n 2 N be fixed. Let x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn) with xi = x�1

i for i = 1, 2, . . . , n
and let � = (�1,�2, . . . ,�n) be a partition of length `(�)  n. Then each of the classical groups
G = GL(n,C), Sp(2n,C) and SO(2n + 1,C) possesses a finite dimensional irreducible representation
V �
G of highest weight � whose character may be denoted by chV �

G (z) where z is a suitable parametrisation
of the eigenvalues of the group elements of G, namely x, (x,x) and (x,x, 1), respectively. We leave aside
the somewhat more complicated case of SO(2n,C). The character chV �

GL(n,C)(x) is none other than the
Schur function s�(x), and we adopt a similar notation for all our characters as follows:

chV �
GL(n,C)(x)=s�(x); chV

�
Sp(2n,C)(x,x)=sp�(x,x) ; chV

�
SO(2n+1,C)(x,x, 1)=so�(x,x, 1). (1)

Setting a = (a1, a2, . . .), the transition from ordinary to factorial characters may be made through the
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THE TOKUYAMA STORY

• The Tokuyama story is all about shape.  
Combinatorially, the left hand side is a shifted 
shape; the right hand side is a special shifted shape 
(a staircase) along with a standard tableau shape.
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It follows that !−1 is well defined and maps the juxtaposition of any pair of tableaux
P D ∈ PDδ(n) and T ∈ T λ(n) to a unique P ST ∈ PST µ(n). Thus the original map
! from PST µ(n) to (PDδ(n), T λ(n)) is indeed bijective. Since it is also weight
preserving, as argued earlier, this completes the proof of the P ST case in Theorem 3.1.

The only difference between the P ST and QST cases is the fact that in the latter
case primed entries are allowed on the main diagonal. This is reflected in the same
distinction between P D and Q D on the right of the above formulae. In fact it is
not difficult to see that the map ! preserves the entries on the main diagonal in
both cases; that is, just as the main diagonal of P ST coincides with that of P D,
where ! : P ST #→ (P D, T ), so the main diagonal of QST , complete with any
primes, coincides with that of Q D, where ! : QST #→ (Q D, T ). This observation
is sufficient to complete the proof of Theorem 3.1. !

3.2 Example

This bijection is illustrated by the map from P ST of (2.13) to P D of (2.14) and T of
(2.11); that is,

P ST =

1 1 1 2′ 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

←→ P D =

1 2′ 1 4′ 5′ 6′

2 3′ 2 5′ 2

3 4′ 3 3

4 5′ 6′

5 5

6

, T =

1 2 3

3 5 5

4 6

5

6

(3.37)

The paths traced out by the primed entries k ′ of P ST as they move northwest as
far as but no further than the kth column are illustrated by means of boldface entries
in the tableaux shown below:

First moving the single 2′ under the map θ2′ gives:

1 1 1 2′ 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 1 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

(3.38)

Under θ3′ the only 3′ moves just one step west where it has, as required, reached
the 3rd column. It does not move north because the entry 1 immediately above already

Springer



CLASSICAL CHARACTERS AND 
TOKUYAMA

• The key to Tokuyama is being able to split this 
shifted tableau into the staircase piece  (with 
primed and unprimed entries) and the standard 
tableau piece (with unprimed entries only).  

• the issue with the classical Q functions is: what are 
the shifted primed tableaux?  

• and what is the appropriate factorial weighting?



SYMPLECTIC: PRIMED SHIFTED 
TABLEAUX

• Alphabet: 

• Entries weakly increase in rows and columns. 

• Entries strictly increase along diagonals. 

• Unprimed entries occur at most one in each column. 

• Primed entries occur at most once in each row.
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Pij is unbarred or barred. See Fig. 2 for the edges and their weights (vertical edges have wgt 1). It is easy
to see that the symplectic primed shifted tableaux P 2 Psp

� are in bijective correspondence with n-tuples
of non-intersecting lattice paths of the type described with start points Pi and end points Qi. See Fig. 3.

1 1 20 2
0 3 3 40 4

0 5

20 2 2 3
0 4 4 4

0

3 4 4
0 4 4 4

4 4

5

a1 a2 a3 a4 a5 a6 a7 a8

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

P1

P2

P3

P4

P5

Q5 Q4 Q3 Q2 Q1

x1

x1

y2

y2

x3 x3

y4

y4

x5

y2
x2

x2

y3

x4 x4

y4

y3
x4

y4 x4 x4 x4x4
x4

x5

•

•

•

•

•

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

Fig. 3: A symplectic primed shifted tableau and the corresponding n-tuple of non-interesecting lattice paths.

A determinantal expression for Qsp
� (x,x;y,y |a) is obtained by considering n-tuples of paths from Pi

to Qj with j = ⇡(i) for all permutations ⇡ 2 Sn. In this determinant the (i, j)th element takes the form:

(xi + yi) q
gl
�
j

�1(x
(i), x(i); y(i+1), y(i) |a) + (xi + yi) q

gl
�
j

�1(x
(i+1), x(i); y(i+1), y(i+1) |a)

= (xi + yi + xi + yi) q
sp
�
j

�1(x
(i), x(i); y(i+1), y(i+1) |a) (32)

Factors (xi + yi) and (xi + yi) arise since a path from Pi starts with a curved edge of Fig. 2. The sum
over all possible successive edges is then given by qgl�

j

�1 restricted to {i < i
0
< i < (i + 1)0 < · · · , n}

and {i < (i+1)0, (i+1), i+ 1
0
< · · · < n} (unprimed but not primed repetitions are allowed). The final

identity is from the corresponding generating functions, but space does not allow its derivation. 2

At this point, for all p and q such that 1  p  q  n, it is convenient to introduce

gm;p,q,n(x,x;y,y |a) = [tm]

Qn
j=q+1(1 + tyj)(1 + tyj)Qn
i=p(1� txi)(1� txi)

m+q�pY

k=1

(1 + tak) . (33)

This definition is such that:

gm;i,i,n(x,x;y,y |a) = qspm (x(i), x(i); y(i+1), y(i+1) |a) ; (34)

8 Angèle M. Hamel and Ronald C. King

a1a2a3 a0

a1

a2

a3

a4

a5

a6

a7

P1

P2

P3

P4

Q4 Q3 Q2 Q1

x1+a3

x1+a1

x2+a1

x4+a7

x3+a1

x4+a3 x4+a4x4+a1

x4+a3 x4+a4

• • • • •

• • • • •

• • • • • •

• • • • • •

• • • • • • •

• • • • • • •

• • • • • • • •

• • • • • • • •

1 1 2 4

3 4 4

4 4 4

x1 x1 x2 + a1 x4 + a7

x3 + a1 x4 + a3 x4 + a4

x4 + a1 x4 + a3 x4 + a4

Fig. 1: Example of non-intersecting lattice paths and a corresponding symplectic tableau and its factorial weights.

6 Tokuyama type identities

A partition is said to be strict if its non-zero parts are distinct. Each such strict partition � of length `(�) 
n specifies a shifted Young diagram SF� consisting of rows of boxes of lengths �i for i = 1, 2, . . . , `(�)
left adjusted to a diagonal line. This allows us to define various primed shifted tableaux.

Definition 12 [16, 20] Let Pgl
� be the set of all primed shifted tableaux P of shape � that are obtained

by filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 20 < 2 < · · · < n0 < n} with
one entry in each box, in such a way that: (Q1) entries weakly increase from left to right across rows;
(Q2) entries weakly increase from top to bottom down columns; (Q3) no two identical unprimed entries
appear in any column; (Q4) no two identical primed entries appear in any row;

Definition 13 [7] Let Psp
� be the set of all primed shifted tableaux P of shape � that are obtained by

filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 1
0
< 1< 20 < 2< 2

0
< 2 < · · · <

n0 < n < n0 < n} with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied
together with: (Q5) at most one of {k0, k, k0, k} appears on the main diagonal for each k = 1, 2, . . . , n.

Definition 14 Let P so

� be the set of all primed shifted tableaux P of shape � that are obtained by filling
each box of SF� with an entry Pij from the alphabet {10 < 1 < 1

0
< 1 < 20 < 2 < 2

0
< 2 < · · · < n0 <

n < n0 < n < 00} with one entry in each box, in such a way that the conditions (Q1)-(Q5) are satisfied.
together with: (Q6) the entry 00 does not appear on the main diagonal.

Our proposed definition of factorial Q-functions then takes the form
Definition 15 For a = (a1, a2, . . .), a0 = 0 and any strict partition � of length `(�)  n, let

Qg
�(z;w |a) =

X

P2Pg

�

Y

(i,j)2SF�

wgt(Pij) where
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n specifies a shifted Young diagram SF� consisting of rows of boxes of lengths �i for i = 1, 2, . . . , `(�)
left adjusted to a diagonal line. This allows us to define various primed shifted tableaux.

Definition 12 [16, 20] Let Pgl
� be the set of all primed shifted tableaux P of shape � that are obtained

by filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 20 < 2 < · · · < n0 < n} with
one entry in each box, in such a way that: (Q1) entries weakly increase from left to right across rows;
(Q2) entries weakly increase from top to bottom down columns; (Q3) no two identical unprimed entries
appear in any column; (Q4) no two identical primed entries appear in any row;

Definition 13 [7] Let Psp
� be the set of all primed shifted tableaux P of shape � that are obtained by

filling each box of SF� with an entry Pij from the alphabet {10 < 1 < 1
0
< 1< 20 < 2< 2

0
< 2 < · · · <

n0 < n < n0 < n} with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied
together with: (Q5) at most one of {k0, k, k0, k} appears on the main diagonal for each k = 1, 2, . . . , n.

Definition 14 Let P so

� be the set of all primed shifted tableaux P of shape � that are obtained by filling
each box of SF� with an entry Pij from the alphabet {10 < 1 < 1

0
< 1 < 20 < 2 < 2

0
< 2 < · · · < n0 <

n < n0 < n < 00} with one entry in each box, in such a way that the conditions (Q1)-(Q5) are satisfied.
together with: (Q6) the entry 00 does not appear on the main diagonal.

Our proposed definition of factorial Q-functions then takes the form
Definition 15 For a = (a1, a2, . . .), a0 = 0 and any strict partition � of length `(�)  n, let

Qg
�(z;w |a) =

X

P2Pg

�

Y

(i,j)2SF�

wgt(Pij) where



SYMPLECTIC: WEIGHTED TABLEAUXSymplectic primed shifted tableaux weights - Example

1 1 20 20 3 3 40 40 5
20 2 2 30 4 4 40

30 4 40 4 4 4
4 4

5

x1 x1+a1 y2+a2 y2+a3 x3+a4 x3+a5 y4+a6 y4+a7 x5+a8
y2 x2+a1 x2+a2 y3+a3 x4+a4 x4+a5 y4+a6

y3 x4+a1 y4+a2 x4+a3 x4+a4 x4+a5

x4 x4+a1
x5

Symplectic primed shifted tableaux weights - Example

1 1 20 20 3 3 40 40 5
20 2 2 30 4 4 40

30 4 40 4 4 4
4 4

5

x1 x1+a1 y2+a2 y2+a3 x3+a4 x3+a5 y4+a6 y4+a7 x5+a8
y2 x2+a1 x2+a2 y3+a3 x4+a4 x4+a5 y4+a6

y3 x4+a1 y4+a2 x4+a3 x4+a4 x4+a5

x4 x4+a1
x5

Weights:

Summary of tableaux based results for Sp(2n)
I sp�(x, x | a) =

X

T2T �(n,n)

Y

(i,j)2F�

wgt(Tij) with

Tij wgt(Tij)
k xk + a2k�1�n+j�i
k x�1

k + a2k�n+j�i

I Q�(x, x, yy | a) =
X

P2P�

Y

(i,j)2SF�

wgt(Pij) with

Pii wgt(Pii) Pij (i < j) wgt(Pij) (i < j)
k xk k xk + aj�i
k0 yk k0 yk � aj�i
k x�1

k k x�1
k + aj�i

k0 y�1
k k0 y�1

k � aj�i

I Q�(x, y, x, y | a) =Y

1ijn

(xi + yj)(1 + x�1
k y�1

k ) sµ(x, x | a) if � = µ+ �
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g Qg
�(z;w |a)

gl Q�(x;y |a)
sp Qsp

� (x,x;y,y |a)
so Qso

� (x,x;y,y, 1 |a)

and

Pij wgt(Pij) Pij wgt(Pij)
k xk + aj�i k0 yk � aj�i

k xk + aj�i k
0

yk � aj�i

00 1� aj�i

This definition includes the case Q�(x;y | a) introduced previously [8] and that is here the subject of
Theorem 1. To prove factorial versions of Tokuyama’s identity for these Q-functions for `(�) = n we
need an intermediate result that exploits lattice paths to express each Q-function as a single determinant.

(i, i) i xi •
• (i, i) i0 yi •

•

(i, i) i xi
•

• (i, i) i
0

yi
•

•

(i, j) i < j k xk + aj�i • • (i, j) i < j k0 yk � aj�i

•

•

(i, j) i < j k xk + aj�i • • (i, j) i < j k
0

yk � aj�i

•

•

Fig. 2: Edges and their weights in the factorial symplectic Q-function case.

Lemma 16 For any strict partition � of length `(�) = n,

Q�(x;y |a) =
��� (xi + yi) q

gl
�
j

�1(x
(i);y(i+1) |a)

��� ; (28)

Qsp
� (x,x;y,y |a) =

��� (xi + yi + xi + yi) q
sp
�
j

�1(x
(i),x(i);y(i+1),y(i+1) |a)

��� ; (29)

Qso
� (x,x;y,y, 1 |a) =

��� (xi + yi + xi + yi) q
so
�
j

�1(x
(i),x(i);y(i+1),y(i+1), 1 |a)

��� , (30)

with qgm(x(i);y(i+1) |a) =
X

1i1i2···i
m

n

X

z

(zi1±a1)(zi2±a2) · · · (zi
m

±am) , (31)

where the sum over z allows factors (zk ± a`) = (xk + a`), (yk � a`) or (1 � a`) to appear according
as zk = xk, yk, or 1, with several factors of the form (xk + a`)(xk + a`+1) · · · allowed for any k with
i  k  n but at most one factor (yk �a`) for any k with i+1  k  n, and at most one factor (1�a`).

Proof: Each primed symplectic shifted tableau P 2 Psp
� defines an n-tuple of non-intersecting lattice

paths. The entries Pij in the ith row of P define a path from Pi = (2i � 1
2 , 0) to Qi = (2n,�i).

Since `(�) = n we have Pii 2 {i0, i, i0, i} and these entries are curved edges from Pi = (2i � 1
2 , 0) to

(2i � 1, 1) and (2i, 1) according as Pii is unbarred or barred, respectively, with the curve concave down
or up according as Pii is unprimed or primed, respectively. For j > i the (j � i)th edge of the path PiQi

is determined by the value of Pij 2 {k0, k, k0, k} for some k � i and is horizontal or diagonal according
as Pij is unprimed or primed, respectively, and terminates at (2k � 1, j � i) or (2k, j � i) according as
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Pij is unbarred or barred. See Fig. 2 for the edges and their weights (vertical edges have wgt 1). It is easy
to see that the symplectic primed shifted tableaux P 2 Psp

� are in bijective correspondence with n-tuples
of non-intersecting lattice paths of the type described with start points Pi and end points Qi. See Fig. 3.

1 1 20 2
0 3 3 40 4

0 5

20 2 2 3
0 4 4 4

0

3 4 4
0 4 4 4

4 4

5

a1 a2 a3 a4 a5 a6 a7 a8

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

P1

P2

P3

P4

P5

Q5 Q4 Q3 Q2 Q1

x1

x1

y2

y2

x3 x3

y4

y4

x5

y2
x2

x2

y3

x4 x4

y4

y3
x4

y4 x4 x4 x4x4
x4

x5

•

•

•

•

•

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

Fig. 3: A symplectic primed shifted tableau and the corresponding n-tuple of non-interesecting lattice paths.

A determinantal expression for Qsp
� (x,x;y,y |a) is obtained by considering n-tuples of paths from Pi

to Qj with j = ⇡(i) for all permutations ⇡ 2 Sn. In this determinant the (i, j)th element takes the form:

(xi + yi) q
gl
�
j

�1(x
(i), x(i); y(i+1), y(i) |a) + (xi + yi) q

gl
�
j

�1(x
(i+1), x(i); y(i+1), y(i+1) |a)

= (xi + yi + xi + yi) q
sp
�
j

�1(x
(i), x(i); y(i+1), y(i+1) |a) (32)

Factors (xi + yi) and (xi + yi) arise since a path from Pi starts with a curved edge of Fig. 2. The sum
over all possible successive edges is then given by qgl�

j

�1 restricted to {i < i
0
< i < (i + 1)0 < · · · , n}

and {i < (i+1)0, (i+1), i+ 1
0
< · · · < n} (unprimed but not primed repetitions are allowed). The final

identity is from the corresponding generating functions, but space does not allow its derivation. 2

At this point, for all p and q such that 1  p  q  n, it is convenient to introduce

gm;p,q,n(x,x;y,y |a) = [tm]

Qn
j=q+1(1 + tyj)(1 + tyj)Qn
i=p(1� txi)(1� txi)

m+q�pY

k=1

(1 + tak) . (33)

This definition is such that:

gm;i,i,n(x,x;y,y |a) = qspm (x(i), x(i); y(i+1), y(i+1) |a) ; (34)

Summary of tableaux based results for Sp(2n)
I sp�(x, x | a) =

X

T2T �(n,n)

Y

(i,j)2F�

wgt(Tij) with

Tij wgt(Tij)
k xk + a2k�1�n+j�i
k x�1

k + a2k�n+j�i

I Q�(x, x, yy | a) =
X

P2P�

Y

(i,j)2SF�

wgt(Pij) with

Pii wgt(Pii) Pij (i < j) wgt(Pij) (i < j)
k xk k xk + aj�i
k0 yk k0 yk � aj�i
k x�1

k k x�1
k + aj�i

k0 y�1
k k0 y�1

k � aj�i

I Q�(x, y, x, y | a) =Y

1ijn

(xi + yj)(1 + x�1
k y�1

k ) sµ(x, x | a) if � = µ+ �



Example of lattice path weights

a1 a2 a3 a4 a5 a6 a7 a8

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

P1

P2

P3

P4

P5

Q5 Q4 Q3 Q2 Q1

x1

x1
y2

y2

x3 x3

y4

y4

x5

y2
x2

x2

y3

x4 x4

y4

y3 x4

y4 x4 x4 x4x4
x4

x5

•

•

•

•

•

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

Symplectic primed shifted tableaux weights - Example

1 1 20 20 3 3 40 40 5
20 2 2 30 4 4 40

30 4 40 4 4 4
4 4

5

x1 x1+a1 y2+a2 y2+a3 x3+a4 x3+a5 y4+a6 y4+a7 x5+a8
y2 x2+a1 x2+a2 y3+a3 x4+a4 x4+a5 y4+a6

y3 x4+a1 y4+a2 x4+a3 x4+a4 x4+a5

x4 x4+a1
x5



OUTLINE OF PROOF OF 
FACTORIAL TOKUYAMA

• Start from expression for Q𝜆(x;y|a) as a determinant. 

• Extract factors (xi+yi). 

• Subtract successive rows from one another to give factors of 
the form (xi+yi+1). 

• Repeat the process to obtain factors of the form (xi+yi+2). 

• Continue until all factors of the form (xi+yj) are extracted for 
i ≤ j. 

• Show that what remains is a factorial character s𝜇(x|a).



ODD ORTHOGONAL: LATTICE 
PATHS

LP (P ) =

P1

P2

P3

Q3 Q2 Q1

a1 a2 a3 a4 a5a0
x1

x1
y2

y2

x3 x3

x2
x2

x3

y4
y4

x4

x4

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

P =
1 1 20 2

0 3 3
2 2 3 40

40 4 4

wgt(P ) =
x1 x1+a1 y2�a2 y2�a3 x3+a4 x3+a5

x2 x2+a1 x3+a2 y4�a3
y4 x4+a1 x4+a2

Figure 5: Contribution to Qsp
� (x,x;y,y | a) from P and LP (P ), where a0 = 0.

LP (P ) =

P1

P2

P3

Q3 Q2 Q1

a1 a2 a3 a4 a5a0
x1

x1
y2

y2

x3

1

y2
x2

x3

y4
y4

x4

1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

P =
1 1 20 2

0 3 0

2
0 2 3 40

40 4 0

wgt(P ) =
x1 x1+a1 y2�a2 y2�a3 x3+a4 1�a5

y2 x2+a1 x3+a2 y4�a3
y4 x4+a1 1�a2

Figure 6: Contribution to Qso
� (x,x;y,y, 1 | a) from P and LP (P ), where a0 = 0.
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gm;i,n,n(x,x;y,y |a) = hsp
m (x(i), x(i) |a) ; (35)

gm,p,q�1,n(x, x; y, y |a)�gm,p+1,q,n(x, x; y, y |a)
= (xp+yq+xp+yq) gm�1,p,q,n(x, x; y, y |a) if p < q . (36)

Theorem 17 (Factorial Tokuyama Identities) Let � = µ+� with � = (n, n�1, . . . , 1) and µ a partition
of length `(µ)  n. Then

Q�(x;y |a) =
Y

1ijn

(xi + yj) sµ(x |a) ; (37)

Qsp
� (x,x;y,y |a) =

Y

1ijn

(xi + yj + xi + yj) spµ(x,x |a) ; (38)

Qso
� (x,x;y,y, 1 |a) =

Y

1ijn

(xi + yj + xi + yj) soµ(x,x, 1 |a) . (39)

Proof: Again we focus on the symplectic case and start by using (34). By subtracting successive rows as
in the proof of Theorem 6 and using (36) with m = �j � 1 we extract factors (xi + yj + xi + yj) to give

Q�(x,x;y,y |a) =
nY

i=1

(xi+yi+xi+yi)
�� g�

j

�1;i,i,n(x,x;y,y |a)
��

=
Y

1ijn

(xi+yj+xi+yj)
�� g�

j

�1�n+i;i,n,n(x,x;y,y |a)
��

=
Y

1ijn

(xi+yj+xi+yj)
���h�

j

�(n�i+1)(x
(i),x(i) |a)

���

=
Y

1ijn

(xi+yj+xi+yj)
���hµ

j

�j+i(x
(i),x(i) |a)

��� =
Y

1ijn

(xi+yj+xi+yj) spµ(x,x |a) .(40)

Here we have used (35) and the fact that � = µ + � so that �j = µj + n � j + 1 for j = 1, 2, . . . , n, as
well as the symplectic factorial flagged Jacobi-Trudi identity of Theorem 6. 2
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STILL TO DO….

• Finish the combinatorial proof of the even 
orthogonal Tokuyama….  

• But, for the combinatorial proof, defining exactly 
the correct tableaux and lattice paths is tricky….
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