

FFGWAS

Fast Functional Genome Wide Association AnalysiS of Surface-based Imaging Genetic Data

Chao Huang

Department of Biostatistics Biomedical Research Imaging Center The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

BIAS

Joint work with Hongtu Zhu

Outline

- Motivation for Imaging Genetics
- Statistical Methods for Imaging Genetics
- Fast Functional Genome-wise Association Analysis
- Conclusion

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Motivation for Imaging Genetics

Imaging Genetics

Imaging Data

Neuroimaging Phenotype

Multivariate, smoothed functions, and piecewisely smoothed functions Dimension varies from 100~500,000.

Multi-Omic Data

Motivation

Imaging genetics allows for the identification of how common/rare genetic polymorphisms influencing molecular processes (e.g., serotonin signaling), bias neural pathways (e.g., amygdala reactivity), mediating individual differences in complex behavioral processes (e.g., trait anxiety) related to disease risk in response to environmental adversity.

(Hariri AR, Holmes A. Genetics of emotional regulation: the role of the serotonin transporter in neural function.

Trends Cogn Sci. [10:182–191])

Statistical Methods for Imaging Genetics

Statistical Methods

Hibar, et al. HBM 2012

High Dimensional Regression Model

Data { $(Y_i, X_i): i = 1, \dots, n$ } $Y_i = \{y_i(v): v \mid V\}$ $X_i = \{X_i(g): g \mid G_0\}$

Huang, et al. Neuroimage 2015

Issues to be addressed: -- Spatially correlated functional data

-- Multivariate imaging phenotypes

Fast Functional Genome-wise AnalysiS

Data Structure

Data Structure

Hippocampal Surface

Genetic Variation

FFGWAS

Multivariate Varying Coefficient Model

 $y_{i,j}(d) = x_i^T \beta_j^{(c)}(d) + z_i(g)^T \beta_j^{(g)}(d) + \eta_{i,j}(d) + \epsilon_{i,j}(d), i = 1, ..., n, j = 1, ..., J$

where $\beta_{j}^{(c)}(d)$ is a $p_x \times 1$ vector associated with non-genetic predictors (e.g., age, gender), and $\beta_{j}^{(g)}(d)$ is an $p_g \times 1$ vector of genetic fixed effects (e.g., additive or dominant). Moreover, $\epsilon_i(d) = (\epsilon_{i,1}(d), \dots, \epsilon_{i,j}(d))^T$ are measurement errors and independent and identical copies of a stochastic process $SP(0, \Sigma_{\epsilon})$ and $\eta_i(d) = (\eta_{i,1}(d), \dots, \eta_{i,j}(d))^T$ are independent with $\epsilon_i(d)$ and identical copies of a stochastic process $SP(0, \Sigma_{\eta}^{(g)})$.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

We need to test:

$$H_0: \boldsymbol{\beta}^{(g)}(\boldsymbol{d}) = 0 \text{ for all } \boldsymbol{d} \text{ v.s. } H_1: \boldsymbol{\beta}^{(g)}(\boldsymbol{d}) \neq 0$$

We first consider a local Wald-type statistic as:

$$T_n(g, \boldsymbol{d}) = \boldsymbol{r}^{(g)}(\boldsymbol{d})^T \left[\hat{\boldsymbol{\Sigma}}_{\eta}^{(g)^{-1}}(\boldsymbol{d}, \boldsymbol{d}) \otimes [\sum_{i=1}^n \boldsymbol{z}_i(g)^{\otimes 2}]^{-1} \right] \boldsymbol{r}^{(g)}(\boldsymbol{d}),$$

where $\boldsymbol{r}^{(g)}(\boldsymbol{d}) = \hat{\boldsymbol{\beta}}^{(g)}(\boldsymbol{d}) - \operatorname{Bias}(\hat{\boldsymbol{\beta}}^{(g)}(\boldsymbol{d})).$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Big-data Challenges

Several big-data challenges arise from the calculation of $T_n(g, d)$ as follows.

- Calculating $\hat{\Sigma}_{\eta}^{(g)}(d)$ across all loci and vertices can be computationally.
- Bandwidth selection in $T_n(g, d)$ across all loci can be also computationally.
- Holding all $T_n(g, d)$ in the computer hard drive

requires substantial computer resources.

• Speeding up the calculation of $T_n(g, d)$.

FFGWAS

To solve these computational bottlenecks, we propose three solutions as follows.

•Calculate $\hat{\Sigma}_{\eta}^{(g)}(d)$ under the null hypothesis H_0 for all loci. •Divide all loci into K groups based on their minor allele frequency (MAF), and select a common optimal bandwidth for each group.

•Develop a GSIS procedure to eliminate many 'noisy' loci based

on a global Wald-type statistic.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A Global Sure Independence Screening

(1) The global Wald-type statistic at locus g is defined as

$$T_{n}(g) = \frac{1}{M} tr \left\{ \operatorname{Vec}(\widetilde{X})^{\otimes 2} \left[\sum_{m=1}^{M} Y_{w}(d_{m}) \hat{\Sigma}_{\eta}^{-1}(d_{m}) Y_{w}^{T}(d_{m}) \right] \otimes \left[(\widetilde{X} \widetilde{X}^{T})^{-1} [\mathbf{0}_{p_{g} \times p_{c}} \mathbf{I}_{p_{g}}]^{T} [\sum_{i=1}^{n} \mathbf{z}_{i}(g)^{\otimes 2}]^{-1} [\mathbf{0}_{p_{g} \times p_{c}} \mathbf{I}_{p_{g}}] (\widetilde{X} \widetilde{X}^{T})^{-1} \right] \right\}$$

(2) Calculate the p-values of $T_n(g)$ for all loci

(3) Sort the -log 10(p)-values of $T_n(g)$ and select the top N0 loci

The candidate significant locus set $\widetilde{\mathcal{G}}_0 = \{\widetilde{g}_1, \cdots, \widetilde{g}_{N_0}\}$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Detection Procedure

(1) The first one is to detect significant voxel-locus pairs

$$T_{n}(\widetilde{g},d) = tr\left\{ \operatorname{Vec}(\widetilde{X})^{\otimes 2} \left[\boldsymbol{Y}_{w}(d) \hat{\boldsymbol{\Sigma}}_{\eta}^{-1}(d) \boldsymbol{Y}_{w}^{T}(d) \right] \otimes \left[(\widetilde{X} \widetilde{X}^{T})^{-1} [\boldsymbol{0}_{p_{g} \times p_{c}} \boldsymbol{I}_{p_{g}}]^{T} [\sum_{i=1}^{n} \boldsymbol{z}_{i}(g)^{\otimes 2}]^{-1} [\boldsymbol{0}_{p_{g} \times p_{c}} \boldsymbol{I}_{p_{g}}] (\widetilde{X} \widetilde{X}^{T})^{-1} \right] \right\}$$

(2) The second one is to detect significant cluster-locus pairs.

Wild Bootstrap method

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Simulation Studies and Real Data Analysis

Simulation Studies: Data Generation

Covariate Data (non-genetic data)

Generated from either U(0,1) or the Bernoulli distribution with success probability 0.5.

Genetic Data

Linkage Disequilibrium (LD) blocks (Haploview & PLINK)

- 1. Generate 2,000 blocks;
- 2. Randomly select 10 SNPs in each block;
- 3. Chose the first 100 SNPs as the causal SNPs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Simulation Studies: Data Generation

Imaging Data

Step 1: Fitting the model without genetic predictors

$$y_{i,j}(d) = x_i^T \beta_j^{(c)}(d) + z_i(g)^T \beta_j^{(g)}(d) + \eta_{i,j}(d) + \epsilon_{i,j}(d), i = 1, \dots, n, j = 1, \dots, J$$

Estimates of $\beta_j^{(c)}(d) \quad \Sigma_{\epsilon} \sum_{\eta} \sum_{\eta} f_{\eta}^{(g)}$ True values

Step 2: Specifying effected Regions Of Interest associated with causal SNPs

$$\beta_{j}^{(g)}(d) = \begin{cases} r, \forall d \in \text{ROIs} \\ 0, \text{ otherwise} \end{cases}$$

Step 3: Generating imaging data with prespecified parameters and ROIs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Simulation Studies

Simulation settings: the green and red regions in the figure, respectively, represent Hippocampal surface, and the effected ROI associated with the causal SNPs among first 20000 SNPs.

 $\beta_{i}^{(g)}(d) = 0.001$

Simulation results for comparisons between FFGWAS and FVGWAS in identifying significant voxel-SNP pairs.

Imaging Genetics for ADNI

PI: Dr. Michael W. Weiner

- detecting AD at the earliest stage and marking its progress through biomarkers;
- developing new diagnostic methods for AD intervention, prevention, and treatment.
 - A longitudinal prospective study with 1700 aged between 55 to 90 years
 - Clinical Data including Clinical and Cognitive Assessments
 - Genetic Data including Ilumina SNP genotyping and WGS
 - MRI (fMRI, DTI, T1, T2)
 - PET (PIB, Florbetapir PET and FDG-PET)
 - Chemical Biomarker

----- CLINICAL DISEASE STAGE -The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ADNI Data Analysis: Dataset Description

- 708 MRI scans of AD (186), MCI (388), and healthy controls (224) from ADNI-1.
- These scans on 462 males and 336 females are performed on a 1.5 T MRI scanners.
- The typical protocol includes the following parameters:
 - (i) repetition time (TR) = 2400 ms;
 - (ii) inversion time (TI) = 1000 ms;
 - (iii) flip angle = 8°;

(iv) field of view (FOV) = 24 cm with a 256 x 256 x 170 acquisition matrix in the x-, y-, and z-dimensions,

- (v) voxel size: $1.25 \times 1.26 \times 1.2 \text{ mm}^3$.
- Covariates: gender, age, APOE ε4, and the top 5 PC scores in SNPs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Imaging Data Preprocessing

Surface fluid registration based hippocampal sub-regional analysis package (Shi et al., Neuroimage, 2013)

- Hippocampal surface registration isothermal coordinates and fluid registration
- Surface statistics computation
 - 1. multivariate tensor-based morphometry (mTBM) statistics
 - 2. radial distance

Finally, we obtained left and right hippocampus shape representations as 100×150 matrices.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ADNI Data Analysis

Top 10 SNPs (Left Hippocampus)

Top 10 SNPs (Right Hippocampus)

SNP	CHR	BP	-LOG 10(p)	SNP	CHR	BP	-LOG 10(p)
rs657132	18	2.20533e+07	7.579767	rs4681527	3	1.44e+08	6.764886
rs604345	18	2.20033e+07	6.729377	rs3108514	2	1.51279e+08	6.274511
rs582110	18	2.19954e+07	6.672876	rs12264728	10	1.3214e+08	5.961976
rs546000	18	2.20031e+07	6.672876	rs652911	10	1.3214e+08	5.739661
rs489631	18	2.1989e+07	6.620395	rs10801705	1	8.95004e+07	5.622668
rs16837577	1	1.94871e+08	6.016773	rs366346	10	1.32141e+08	5.617185
rs3812872	13	6.19869e+07	5.468391	rs7312068	12	2.94352e+07	5.604041
rs6826085	4	7.68702e+07	5.459163	rs7617465	3	1.43999e+08	5.522112
rs929714	7	1.3263e+08	5.314317	rs17605251	7	1.02746e+08	5.486603
rs2042067	7	1.32651e+08	5.306583	rs749788	2	2.84618e+06	5.474675

ADNI Data Analysis

ADNI Data Analysis: Left Hippocampus

Significant Loci Zoom

ADNI Data Analysis: Left Hippocampus

(Left Hippocampus) Top 1 SNP: rs657132 Closed Gene: HRH4

HRH4 (Histamine Receptor H4) is a Protein Coding gene. Diseases associated with HRH4: cerebellar degeneration An important paralog of this gene: CHRM4

Mirshafiey & Naddafi, Am J Alzheimers Dis Other Demen. 2013

(Right Hippocampus)

Top 1 SNP: rs4681527 Closed Gene: C3orf58

C3orf58 (Chromosome 3 Open Reading Frame 58) is a Protein Coding gene. Diseases associated with C3orf58: hypoxia

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ADNI Data Analysis

ADNI Data Analysis

Conclusion

- We have developed a FFGWAS pipeline for efficiently carrying out whole-genome analyses of multimodal imaging data.
- Our FFGWAS consists of a multivariate varying coefficient model, a global sure independence screening (GSIS) procedure, and a detection procedure based on wild bootstrap methods.
- Two key advantages of using FFGWAS include

 (i) Much smaller computational complexity;
 (ii) GSIS for screening many noisy SNPs.
- We have successfully applied FFGWAS to hippocampal surface data & genetic data of ADNI study.

A Software for FFGWAS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL