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Motivation for Imaging Genetics
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http://en.wikipedia.org/wiki/DNA_sequence

Imaging Genetics

G

BE

D Selection

E: environmental factors

G: genetic markers

D: disease 
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Overview 

• Structural MRI

• Diffusion MRI

• Functional MRI

• Complementary techniques

- Variety of acquisitions

- Measurement basics

- Limitations & artefacts

- Analysis principles

- Acquisition tips

PET EEG/MEG Calcium CT
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Neuroimaging Phenotype

Multivariate, smoothed functions, and piecewisely smoothed functions

Dimension varies from 100~500,000.

Goals

! Goal 1: From raw data to connectomics

! Goal 2: From connectomics to brain network analysis

• Inheritance analysis

• Brain Network analysis

• Prediction of phenotypes

• …
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Multi-Omic Data

Ritchie et al. (2015). 

Nature Review Genetics
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Imaging genetics allows for the 

identification of how common/rare genetic 

polymorphisms influencing molecular processes 

(e.g., serotonin signaling), bias neural pathways 

(e.g., amygdala reactivity), mediating individual 

differences in complex behavioral processes (e.g., 

trait anxiety) related to disease risk in response to 

environmental adversity.

(Hariri AR, Holmes A. 

Genetics of emotional regulation: 

the role of the serotonin transporter in neural 

function.

Trends Cogn Sci. [10:182–191])  

Motivation
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Statistical Methods for Imaging Genetics
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Statistical Methods

Hibar, et al. HBM 2012
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High Dimensional Regression Model

{Xi (g) :gÎG0}

Data

Yi = {yi(v) :vÎV}

Y

n ´ py

X

n´ px

B

px ´ py

E

n ´ py

Phenotype Genotype Error
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Hibar, et al. HBM 2012

Challenges

106

107

1013

px

py

n



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

(I) Spatially 

Heteroscedastic

Linear Model

(II) Global Sure 

Independence 

Screening 

Procedure

(III) Detection

Procedure

Fast Voxel-wise Genome-wise Analysis 

Huang, et al. Neuroimage 2015

Issues to be addressed:

-- Spatially correlated functional data 

-- Multivariate imaging phenotypes 
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Fast Functional Genome-wise AnalysiS
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Data Structure

Low Dimensional Representations

! A low dimensional representation is necessary for statistical inference 

! Whole brain tractography is complicated

(1) Connectivity matrix (2) Fiber bundles

versionsof thetract.Thesecondrow showsthedifferent candidatesfor

thistract in thesametest subject, based on usingeach atlasto decide

which fibersit should contain (Distance-based clusteringsection).The

final result for this tract was obtained by applying the label fusion

schemein Fiber label fusion section. It isnot hard to seethat the label

fusionprocesscanhelp toeliminateoutliers,and it canalsoaddmissing

fibers to a single candidate labeling of the tract. A manually edited

segmentation result is also included for comparison (see the right

bottompanel).

Figs. 6 and 7 show the label fusion results for the 17 segmented

tractsin four randomly selected subjects.Despiteindividual variations,

the overall tract shapes are consistent across the population. Fig. 8

showsthecombined WM fiber clusteringresultsfor thefour test sub-

jects. The typesof tractsand their colorsare as in Fig. 2. Theaverage

fiber number in our full set of clustering resultsis~40,000 per subject,

or roughly 1/10th of thefibersfrom theinitial tractography. Thereare

threefactorsthat affect how manyfibersareincludedinthefinal results.

First, in thiswork, wemainly focused on 17 major anatomically well-

known whitematter tracts. Therefore, only those tractsareshown in

Fig. 8. Many other less-known tracts are not shown and could be

added in futurework,although it might bemorechallengingtoreliably

find smaller tractsin themix of all theother major pathways.Second,

streamlinewhole-brain tractography generateslargenumbersof false

positive fibersand thoseneed to be removed for our ultimategoal –

populationstudies.Last,fiber clusteringmayshow enormousindividual

variation when applied acrossapopulation. However, to perform an

effectivepopulation study,weonly included fiberswhoseshapeshares

themost common characteristicsthroughout thepopulation for each

tract. This was our intent when we built our manually constructed

atlases.Clearly wewould need toadmit that someclinically interesting

variation ismissed by focusingon aset of standard tracts. But finding

additional consistent tractsacrosssubjectsischallengingand runsthe

risk of includingfalsepositives.

Quantitativevalidation

To quantitatively evaluate theproposed framework, weconverted

each of thefiber tractsto abinary image, wherevoxelsthat thetracts

cross were marked as 1, and 0 otherwise. Then we used the Dice

coefficient to assessing theoverlap or agreement between two tracts,

defined as:

D a;bð Þ¼
2 V að Þ∩V bð Þð Þ

V að Þþ V bð Þ
ð6Þ

whereV() isthevolumeof theregion that thetract penetrates.

Duetothewidevariabilitybetweendifferent tracts,weneedtotune

theparametersof our algorithm tooptimizeitsperformance.Wehave

two key parametersto adjust.OneistheHausdorff distancethreshold

used to select fibersfor each tract per atlas(dcutoff in Eq. (4)), and the

other isthepercentageof fibersincluded in thefinal label fusion stage

described in Fiber label fusion section.

Fig. 8. Back, left side,and bottomviewsof thesamefour subjects' (in Figs. 6 and 7) compositional fiber clustering resultsareshown.Theoriginal whole-brain tractography (theleftmost

column) isincluded for comparison, clearly showingtheutility of thedatareduction.

Table1

Thevaluesof theclusteringdistancethresholdand thefusion percentagefor each tract described in Tract atlasconstruction section that wereused tocluster the198subjectsin our dataset.

Tract name L/R-ATR L/R-CGC L/R-CST L/R-IFO L/R-ILF L-ARC CC-FRN CC-PRC CC-POC CC-PAR CC-TEM CC-OCC

dcutoff

mmð Þ

12 12 12 12 12 12 12 12 12 12 12 12

Fusion pct. (%) 100 85 95 95 70 95 90 95 100 95 45 100

82 Y.Jin et al. / NeuroImage100(2014) 75–90
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Sub-Cortical Structure Models

courtesy of P. Aljabar

Thalamus

Brainstem

Hippocampus

Amygdala

Caudate

Pallidum

Putamen

Accumbens

• Incorporate prior anatomical information via explicit shape models

• Have 15 different sub-cortical structures (left/right separately)
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Data Structure
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Multivariate 

Varying 

Coefficient 
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Global Sure 

Independence 
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Multivariate Varying Coefficient Model
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Multivariate Varying Coefficient Model

We need to test:

We first consider a local Wald-type statistic as:

where
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Big-data Challenges

Several big-data challenges arise from the calculation 

of               as follows.

• Calculating             across all loci and vertices can 

be computationally.

• Bandwidth selection in              across all loci can be 

also computationally.

• Holding all             in the computer hard drive 

requires substantial computer resources.

• Speeding up the calculation of               .
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FFGWAS

To solve these computational bottlenecks, we propose three 

solutions as follows.

•Calculate               under the null hypothesis         for all loci.

•Divide all loci into K groups based on their minor allele 

frequency (MAF), and select a common optimal bandwidth for 

each group.

•Develop a GSIS procedure to eliminate many ‘noisy’ loci based 

on a global Wald-type statistic.
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A Global Sure Independence Screening

(1) The global Wald-type statistic at locus g is defined as

(2) Calculate the p-values of             for all loci 

The candidate significant locus set

(3) Sort the -log 10(p)-values of             and select the top N0 loci 
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Detection Procedure

(1) The first one is to detect significant voxel-locus pairs

Wild Bootstrap method

(2) The second one is to detect significant cluster-locus pairs.
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Simulation Studies and Real Data Analysis
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Simulation Studies: Data Generation

Covariate Data (non-genetic data)

Generated from either U(0,1) or the Bernoulli distribution with

success probability 0.5.

Genetic Data 

Linkage Disequilibrium (LD) blocks   ( Haploview &  PLINK )

1. Generate 2,000 blocks;

2. Randomly select 10 SNPs in each block;

3. Chose the first 100 SNPs as the causal SNPs
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Simulation Studies: Data Generation

Step 1: Fitting the model without genetic predictors

Estimates of 

Step 2: Specifying effected Regions Of Interest associated with causal SNPs

Imaging Data 

True values

Step 3: Generating imaging data with prespecified parameters and ROIs
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Simulation Studies

Simulation results for comparisons between FFGWAS and FVGWAS in identifying

significant voxel-SNP pairs.

Simulation settings: the green and red regions in the figure, respectively,

represent Hippocampal surface, and the effected ROI associated with

the causal SNPs among first 20000 SNPs.
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Imaging Genetics for ADNI

• A longitudinal prospective study with 1700 aged between 55 to 90 years 

• Clinical Data including Clinical and Cognitive Assessments

• Genetic Data including Ilumina SNP genotyping and WGS

• MRI (fMRI, DTI, T1, T2)

• PET (PIB, Florbetapir PET and FDG-PET) 

• Chemical Biomarker

PI: Dr. Michael W. Weiner 
• detecting AD at the earliest stage and marking its progress through biomarkers; 

• developing new diagnostic methods for AD intervention, prevention, and treatment.
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ADNI Data Analysis: Dataset Description

• 708 MRI scans of AD (186), MCI (388), and healthy controls (224) from

ADNI-1.

• These scans on 462 males and 336 females are performed on a 1.5 T MRI

scanners.

• The typical protocol includes the following parameters:

(i) repetition time (TR) = 2400 ms;

(ii) inversion time (TI) = 1000 ms;

(iii) flip angle = 8o;

(iv) field of view (FOV) = 24 cm with a 256 x 256 x 170 acquisition matrix in

the x−, y−, and z−dimensions,

(v) voxel size: 1.25 x 1.26 x 1.2 mm3.

• Covariates: gender, age, APOE ε4, and the top 5 PC scores in SNPs
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Imaging Data Preprocessing
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ADNI Data Analysis

Top 10 SNPs (Right Hippocampus)Top 10 SNPs (Left Hippocampus)

SNP CHR BP -LOG 10(p)

rs657132 18 2.20533e+07 7.579767

rs604345 18 2.20033e+07 6.729377

rs582110 18 2.19954e+07 6.672876

rs546000 18 2.20031e+07 6.672876

rs489631 18 2.1989e+07 6.620395

rs16837577 1 1.94871e+08 6.016773

rs3812872 13 6.19869e+07 5.468391

rs6826085 4 7.68702e+07 5.459163

rs929714 7 1.3263e+08 5.314317

rs2042067 7 1.32651e+08 5.306583

SNP CHR BP -LOG 10(p)

rs4681527 3 1.44e+08 6.764886

rs3108514 2 1.51279e+08 6.274511

rs12264728 10 1.3214e+08 5.961976

rs652911 10 1.3214e+08 5.739661

rs10801705 1 8.95004e+07 5.622668

rs366346 10 1.32141e+08 5.617185

rs7312068 12 2.94352e+07 5.604041

rs7617465 3 1.43999e+08 5.522112

rs17605251 7 1.02746e+08 5.486603

rs749788 2 2.84618e+06 5.474675
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ADNI Data Analysis

(Right Hippocampus)(Left Hippocampus)
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ADNI Data Analysis: Left Hippocampus

Significant Loci Zoom

(Left Hippocampus) (Right Hippocampus)
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ADNI Data Analysis: Left Hippocampus

(Left Hippocampus)

(Right Hippocampus)

Top 1 SNP: rs657132

Closed Gene: HRH4

HRH4 (Histamine Receptor H4) is a Protein Coding gene. 

Diseases associated with HRH4: cerebellar degeneration

An important paralog of this gene: CHRM4

Top 1 SNP: rs4681527

Closed Gene: C3orf58

C3orf58 (Chromosome 3 Open Reading Frame 58) is a Protein Coding gene. 

Diseases associated with C3orf58: hypoxia

Mirshafiey & Naddafi,  Am J Alzheimers Dis Other Demen. 2013
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ADNI Data Analysis

0
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–log10(p) values on Hippocampus (L & R) corresponding to Top 2 SNPs
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Right

rs657132 rs604345

rs4681527 rs3108514
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ADNI Data Analysis

–log10(p) values of significant clusters on Hippocampus (L & R) corresponding to 

Top 2 SNPs
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• We have developed a FFGWAS pipeline for efficiently

carrying out whole-genome analyses of multimodal imaging

data.

• Our FFGWAS consists of a multivariate varying coefficient

model, a global sure independence screening (GSIS)

procedure, and a detection procedure based on wild

bootstrap methods.

• Two key advantages of using FFGWAS include

(i) Much smaller computational complexity;

(ii) GSIS for screening many noisy SNPs.

• We have successfully applied FFGWAS to hippocampal

surface data & genetic data of ADNI study.

Conclusion
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A Software for FFGWAS


