A multigrid perspective on PFASST

November 28, 2016 | Dieter Moser, Robert Speck, Matthias Bolten
Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Motivation

50 Years of Time Parallel Time Integration 1
Martin J. Gander
1 Introduction 4
2 Shooting Type Time Parallel Methods 5
2.1 Nievergelt 1964 5
2.2 Bellen and Zennaro 1989 7
2.3 Chartier and Philippe 1993 9
2.4 Saha, Stadel and Tremaine 1996 10
2.5 Lions, Maday and Turinici 2001 12
3 Domain Decomposition Methods in Space-Time 16
3.1 Picard and Lindelöf 1893/1894 16
3.2 Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982 17
3.3 Gander 1996 20
3.4 Gander, Halpern and Nataf 1999 21
3.5 Recent Developments 23
4 Multigrid Methods in Space-Time 23
4.1 Hackbusch 1984 23
4.2 Lubich and Ostermann 1987 25
4.3 Horten and Vandevalle 1995 26
4.4 Emmett and Minion 2012 27
4.5 Neumüller 2014 29
5 Direct Solvers in Space-Time 30
5.1 Miranker and Liniger 1967 30
5.2 Axelson and Verwer 1985 31
5.3 Womble 1990 33
5.4 Maday and Ronquist 2008 34
5.5 Christlieb, Macdonald and Ong 2010 35
5.6 Güttel 2012 37
6 Conclusions 39
References 40

Motivation

50 Years of Time Parallel Time Integration 1
Martin J. Gander
1 Introduction 4
2 Shooting Type Time Parallel Methods 5
$2.1 \quad$ Nievergelt 1964 5
2.2 Bellen and Zennaro 1989 7
2.3 Chartier and Philippe 1993 9
2.4 Saha, Stadel and Tremaine 1996 10
2.5 Lions, Maday and Turinici 2001 12
3 Domain Decomposition Methods in Space-Time 16
3.1 Picard and Lindelöf 1893/1894 16
3.2 Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982 17
3.3 Gander 1996 20
3.4 Gander, Halpern and Nataf 1999 21
3.5 Recent Developments 23
4 Multigrid Methods in Space-Time 23
4.1 Hackbusch 1984 23
4.2 Lubich and Ostermann 1987 25
Horten and Vandevalle 199
27
4.4 Emmett and Minion 2012 29
5 Direct Solvers in Space-Tim 30
5.1 Miranker and Liniger 1967 30
5.2 Axelson and Verwer 1985 31
5.3 Womble 1990 33
5.4 Maday and Ronquist 2008 34
5.5 Christlieb, Macdonald and Ong 2010 35
5.6 Güttel 2012 37
6 Conclusions 39
References 40

Embedding PFASST into multigrid theory

- PFASST looks complicated
- PFASST shows similarities to multigrid - multigrid is extensively studied

Embedding PFASST into multigrid theory

- PFASST looks complicated
- PFASST shows similarities to multigrid
- multigrid is extensively studied

Embedding PFASST into multigrid theory

- PFASST looks complicated
- PFASST shows similarities to multigrid
- multigrid is extensively studied

Embedding PFASST into multigrid theory

- PFASST looks complicated
- PFASST shows similarities to multigrid
- multigrid is extensively studied

Now let's show that PFASST actually is a multigrid algorithm, under certain assumptions and use this to analyze the parallel performance.

Collocation formulation on a single time-step

Consider the Picard form of an initial value problem on [T_{l}, T_{l+1}]

$$
u(t)=u_{l}+\int_{T_{l}}^{t} \mathbf{A} \cdot u(s) d s
$$

discretized using spectral quadrature rules with nodes τ_{m} :

$$
(\mathbf{I}-\Delta t \mathbf{Q} \otimes \mathbf{A})(\mathbf{u})=\mathbf{u}_{l}
$$

This corresponds to a fully implicit Runge-Kutta method on [T_{l}, T_{l+1}], which we solve iteratively.

Collocation formulation on a single time-step

Consider the Picard form of an initial value problem on $\left[T_{l}, T_{l+1}\right]$

$$
u(t)=u_{l}+\int_{T_{l}}^{t} \mathbf{A} \cdot u(s) d s
$$

discretized using spectral quadrature rules with nodes τ_{m} :

$$
(\mathbf{I}-\Delta t \mathbf{Q} \otimes \mathbf{A})(\mathbf{u})=\mathbf{u}_{l}
$$

This corresponds to a fully implicit Runge-Kutta method on [T_{l}, T_{l+1}], which we solve iteratively.

Linked collocation problem

$$
\begin{aligned}
& t_{0} \text { _ We now link } L \text { time-steps together, using } \mathbf{N} \text { to transfer } \\
& { }^{\tau_{1}} \\
& { }^{\tau_{2}} \\
& t_{1} \xrightarrow{\tau_{3}} \quad\left(\begin{array}{c}
\mathbf{1}-\Delta t \mathbf{Q} \otimes \mathbf{A} \\
-\mathbf{N}
\end{array} \quad \mathbf{I - \Delta t \mathbf { Q } \otimes \mathbf { A } .}\right. \\
& T \rightarrow{ }^{\tau_{3}} \\
& \text { information from step } / \text { to step } I+1 \text {. We get: } \\
& \begin{array}{r}
\bullet^{\tau_{1}} \\
\bullet^{\tau_{2}}
\end{array} \\
& \text { information from step / to step / 1. We get. } \\
& \left(\begin{array}{cccc}
\mathbf{I}-\Delta t \mathbf{Q} \otimes \mathbf{A} & & & \\
-\mathbf{N} & \mathbf{I}-\Delta t \mathbf{Q} \otimes \mathbf{A} & & \\
& \ddots & \ddots & \\
& & -\mathbf{N} & \mathbf{I}-\Delta t \mathbf{Q} \otimes \mathbf{A}
\end{array}\right)\left(\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\vdots \\
\mathbf{u}_{L}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{u}_{0} \\
0 \\
\vdots \\
0
\end{array}\right) \\
& t_{2} \overbrace{-}^{\tau_{3}} \\
& { }^{\tau_{1}} \\
& \tau_{2} \\
& 3
\end{aligned}
$$

Linked collocation problem

t_{0}
${ }^{\tau_{1}}$
${ }^{\tau_{2}}$
$t_{1} \overbrace{-}^{\tau_{3}}$
${ }^{\tau_{1}}$
${ }^{\tau_{2}}$
$t_{2} \xlongequal{e^{\tau_{3}}} e^{\tau_{1}}$
$T \multimap \overbrace{3}$

$$
\mathbf{M}_{\mathrm{Icp}} \mathbf{U}=\mathbf{U}_{0}
$$

Linked collocation problem

t_{0} _ We now link L time-steps together, using \mathbf{N} to transfer
$\bullet^{\tau_{1}}$
$\bullet^{\tau_{2}}$

$t_{2}{ }_{0}^{{ }_{0}^{\tau_{3}}}$
$T \backsim \tau_{3}$

Linked collocation problem

Approximative Block-Gauß-Seidel

t_{0}

Approximative Block-Gauß-Seidel

... on the first subinterval

Approximative Block-Gauß-Seidel

... passing end value to the next subinterval

Approximative Block-Gauß-Seidel

\ldots on the second subinterval

Approximative Block-Gauß-Seidel

... passing end value to the next subinterval

Approximative Block-Gauß-Seidel

... on the last subinterval

Approximative Block-Gauß-Seidel

... all in one

Approximative Block-Gauß-Seidel

Approximative Block-Jacobi

... starting from the approximative Gauß-Seidel

Approximative Block-Jacobi

... one little adjustment

Approximative Block-Jacobi

... another little manipulation

Coarse Grid Correction

Coarse Grid Correction

> Do a block Jacobi step

Coarse Grid Correction

> Do a block Jacobi step

Coarse Grid Correction

$$
\begin{aligned}
& \text { Do a block Jacobi step } \\
& \text { Compute } \tau_{k}=\tilde{\mathbf{M}}_{\mathrm{lcp}} \mathbf{I}_{h}^{2 h} \mathbf{U}^{k}-\mathbf{I}_{h}^{2 h} \mathbf{M}_{\mathrm{lcp}} \mathbf{U}^{k}
\end{aligned}
$$

Coarse Grid Correction

> Do a block Jacobi step

Compute $\tau_{k}=\tilde{\mathbf{M}}_{\text {Icp }} \mathbf{I}_{h}^{2 h} \mathbf{U}^{k}-\mathbf{I}_{h}^{2 h} \mathbf{M}_{\text {Icp }} \mathbf{U}^{k}$

Coarse Grid Correction

$$
\begin{aligned}
& \text { Do a block Jacobi step } \\
& \text { Compute } \tau_{k}=\tilde{\mathbf{M}}_{\mathrm{lcp}} \mathrm{I}_{h}^{2 h} \mathbf{U}^{k}-\mathbf{I}_{h}^{2 h} \mathbf{M}_{\mathrm{lcp}} \mathbf{U}^{k} \\
& \text { Do a block Gauß-Seidel step with } \tilde{\mathbf{U}}_{0}^{k}+\tau_{k}
\end{aligned}
$$

Coarse Grid Correction

$$
\begin{aligned}
& \text { Do a block Jacobi step } \\
& \text { Compute } \tau_{k}=\tilde{\mathbf{M}}_{\mathrm{Icp}} \mathbf{I}_{h}^{2 h} \mathbf{U}^{k}-\mathbf{I}_{h}^{2 h} \mathbf{M}_{\mathrm{Icp}} \mathbf{U}^{k} \\
& \text { Do a block Gauß-Seidel step with } \tilde{\mathbf{U}}_{0}^{k}+\tau_{k}
\end{aligned}
$$

Coarse Grid Correction

> Do a block Jacobi step

Compute $\tau_{k}=\tilde{\mathbf{M}}_{\text {lcp }} \mathbf{I}_{h}^{2 h} \mathbf{U}^{k}-\mathbf{I}_{h}^{2 h} \mathbf{M}_{\text {lcp }} \mathbf{U}^{k}$
Do a block Gauß-Seidel step with $\tilde{\mathbf{U}}_{0}^{k}+\tau_{k}$
Correct $\mathbf{U}^{k+1}=\mathbf{U}^{k}+\mathbf{I}_{2 h}^{h}\left(\tilde{\mathbf{U}}^{k+1 / 2}-\mathbf{I}_{h}^{2 h} \mathbf{U}^{k}\right)$

Coarse Grid Correction

> Do a block Jacobi step

Compute $\tau_{k}=\tilde{\mathbf{M}}_{\text {lcp }} \mathbf{I}_{h}^{2 h} \mathbf{U}^{k}-\mathbf{I}_{h}^{2 h} \mathbf{M}_{\text {lcp }} \mathbf{U}^{k}$
Do a block Gauß-Seidel step with $\tilde{\mathbf{U}}_{0}^{k}+\tau_{k}$

Correct $\mathbf{U}^{k+1}=\mathbf{U}^{k}+\mathbf{I}_{2 h}^{h}\left(\tilde{\mathbf{U}}^{k+1 / 2}-\mathbf{I}_{h}^{2 h} \mathbf{U}^{k}\right)$

Coarse Grid Correction

> Do a block Jacobi step

Compute $\tau_{k}=\tilde{\mathbf{M}}_{\text {Icp }} \mathbf{I}_{h}^{2 h} \mathbf{U}^{k}-\mathbf{I}_{h}^{2 h} \mathbf{M}_{\text {Icp }} \mathbf{U}^{k}$
Do a block Gauß-Seidel step with $\tilde{\mathbf{U}}_{0}^{k}+\tau_{k}$
Correct $\mathbf{U}^{k+1}=\mathbf{U}^{k}+\mathbf{I}_{2 h}^{h}\left(\tilde{\mathbf{U}}^{k+1 / 2}-\mathbf{I}_{h}^{2 h} \mathbf{U}^{k}\right)$

Do next block Jacobi step

PFASST overview

Putting the pieces together

This can easily be written as

Putting the pieces together

This can easily be written as

$$
\begin{aligned}
& \mathbf{U}^{k+\frac{1}{2}}=\mathbf{U}^{k}+\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aG}}^{-1} \mathbf{I}_{h}^{2 h}\left(\mathbf{U}_{0}-\mathbf{M}_{\mathrm{Icp}} \mathbf{U}^{k}\right) \\
& \mathbf{U}^{k+1}=\mathbf{U}^{k+\frac{1}{2}}+\mathbf{P}_{\mathrm{aJac}}^{-1}\left(\mathbf{U}_{0}-\mathbf{M}_{\mathrm{lcp}} \mathbf{U}^{k+\frac{1}{2}}\right),
\end{aligned}
$$

which is a two-level multigrid scheme, with an approximative Block-Gauß-Seidel on the coarse level and an approximative Block-Jacobi on the fine level

Putting the pieces together

This can easily be written as

$$
\begin{aligned}
& \mathbf{U}^{k+\frac{1}{2}}=\mathbf{U}^{k}+\mathbf{I}_{2 h}^{h} \tilde{\mathrm{P}}_{\mathrm{aG}}^{-1} S_{h}^{2 h}\left(\mathbf{U}_{0}-\mathbf{M}_{\mathrm{lcp}} \mathbf{U}^{k}\right) \\
& \mathbf{U}^{k+1}=\mathbf{U}^{k+\frac{1}{2}}+\mathbf{P}_{\mathrm{aJac}}^{-1}\left(\mathbf{U}_{0}-\mathbf{M}_{\mathrm{lcp}} \mathbf{U}^{k+\frac{1}{2}}\right),
\end{aligned}
$$

which is a two-level multigrid scheme, with an approximative Block-Gauß-Seidel on the coarse level and an approximative Block-Jacobi on the fine level.

Analysis of PFASST - a modest try

The center of attention is the iteration matrix of PFASST

$$
\mathbf{T}_{\text {PFASST }}=\mathbf{I}-\left(\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathbf{I}_{h}^{2 h}+\mathbf{P}_{\mathrm{aJac}}^{-1}-\mathbf{P}_{\mathrm{aJac}}^{-1} \mathbf{M}_{\mathrm{lcp}} \mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aJac}}^{-1} \mathbf{I}_{h}^{2 h}\right) \mathbf{M}_{\mathrm{lcp}}
$$

Analysis of PFASST - a modest try

The center of attention is the iteration matrix of PFASST

$$
\begin{aligned}
\mathbf{T}_{\text {PFASST }} & =\mathbf{I}-\left(\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathbf{I}_{h}^{2 h}+\mathbf{P}_{\mathrm{aJac}}^{-1}-\mathbf{P}_{\mathrm{aJac}}^{-1} \mathbf{M}_{\text {lcp }} \mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aJac}}^{-1} \mathbf{l}_{h}^{2 h}\right) \mathbf{M}_{\text {lcp }} \\
& =\underbrace{\left(\mathbf{I}-\mathbf{P}_{\mathrm{aJac}}^{-1} \mathbf{M}_{\text {lcp }}\right)}_{\text {Post-Smoother }} \underbrace{\left(\mathbf{I}-\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathbf{l}_{h}^{2 h} \mathbf{M}_{\text {lcp }}\right)}_{\approx \text { CG-Correction }} \underbrace{\mathbf{1}}_{\text {Pre-Smoother }},
\end{aligned}
$$

Analysis of PFASST - a modest try

The center of attention is the iteration matrix of PFASST

$$
\begin{aligned}
\mathbf{T}_{\text {PFASST }} & =\mathbf{I}-\left(\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathbf{I}_{h}^{2 h}+\mathbf{P}_{\mathrm{aJac}}^{-1}-\mathbf{P}_{\mathrm{aJac}}^{-1} \mathbf{M}_{\text {lcp }} \mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aJac}}^{-1} \mathbf{l}_{h}^{2 h}\right) \mathbf{M}_{\text {lcp }} \\
& =\underbrace{\left(\mathbf{I}-\mathbf{P}_{\mathrm{aJac}}^{-1} \mathbf{M}_{\text {lcp }}\right)}_{\text {Post-Smoother }} \underbrace{\left(\mathbf{I}-\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathbf{l}_{h}^{2 h} \mathbf{M}_{\text {lcp }}\right)}_{\approx \text { CG-Correction }} \underbrace{\mathbf{1}}_{\text {Pre-Smoother }},
\end{aligned}
$$

which is decomposable into 3 layers.

Analysis of PFASST - a modest try

The center of attention is the iteration matrix of PFASST

$$
\begin{aligned}
\mathbf{T}_{\text {PFASST }} & =\mathbf{I}-\left(\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathbf{l}_{h}^{2 h}+\mathbf{P}_{\mathrm{aJac}}^{-1}-\mathbf{P}_{\mathrm{a} \text { Jac }}^{-1} \mathbf{M}_{\mathrm{lcp}} \mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aJac}}^{-1} \mathbf{I}_{h}^{2 h}\right) \mathbf{M}_{\text {lcp }} \\
& =\underbrace{\left(\mathbf{I}-\mathbf{P}_{\mathrm{a} J a c}^{-1} \mathbf{M}_{\text {lcp }}\right)}_{\text {Post-Smoother }} \underbrace{\left(\mathbf{I}-\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathrm{I}_{h}^{2 h} \mathbf{M}_{\text {lcp }}\right)}_{\approx \text { CG-Correction }} \underbrace{\mathbf{I}}_{\text {Pre-Smoother }},
\end{aligned}
$$

which is decomposable into 3 layers.

$$
\begin{array}{cccc}
\text { dof e.g. } & \text { over } 9000 & 10 & 5 \\
\mathbf{T}_{\text {PFASST }} \simeq & \mathbf{T}_{\text {space }} \otimes & \mathbf{T}_{\text {time }} \otimes & \mathbf{T}_{\text {colloc }}
\end{array}
$$

Analysis of PFASST - a modest try

The center of attention is the iteration matrix of PFASST

$$
\begin{aligned}
\mathbf{T}_{\text {PFASST }} & =\mathbf{I}-\left(\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathbf{l}_{h}^{2 h}+\mathbf{P}_{\mathrm{aJac}}^{-1}-\mathbf{P}_{\mathrm{a} \text { Jac }}^{-1} \mathbf{M}_{\mathrm{lcp}} \mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aJac}}^{-1} \mathbf{I}_{h}^{2 h}\right) \mathbf{M}_{\text {lcp }} \\
& =\underbrace{\left(\mathbf{I}-\mathbf{P}_{\mathrm{a} J a c}^{-1} \mathbf{M}_{\text {lcp }}\right)}_{\text {Post-Smoother }} \underbrace{\left(\mathbf{I}-\mathbf{I}_{2 h}^{h} \tilde{\mathbf{P}}_{\mathrm{aGS}}^{-1} \mathrm{I}_{h}^{2 h} \mathbf{M}_{\text {lcp }}\right)}_{\approx \text { CG-Correction }} \underbrace{\mathbf{I}}_{\text {Pre-Smoother }},
\end{aligned}
$$

which is decomposable into 3 layers.

Local Fourier Analysis from a matrix point of view just transformation

$$
\mathcal{F}^{-1} \mathbf{T}_{\text {PFASST }} \mathcal{F} \simeq
$$

\square

Local Fourier Analysis from a matrix point of view

 just transformation$$
\mathcal{F}^{-1} \mathbf{T}_{\text {PFASST }} \mathcal{F} \simeq \psi^{-1} \mathbf{T}_{\text {space }} \psi \otimes \mathbf{T}_{\text {time }} \otimes \mathbf{T}_{\text {colloc }}
$$

Local Fourier Analysis from a matrix point of view just transformation

$$
\begin{aligned}
\mathcal{F}^{-1} \mathbf{T}_{\text {PFASST }} \mathcal{F} & \simeq \psi^{-1} \mathbf{T}_{\text {space }} \psi \otimes \mathbf{T}_{\text {time }} \otimes \mathbf{T}_{\text {colloc }} \\
& =\left[\begin{array}{cccc}
\square & & & \\
& & & \\
& & \ddots & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &
\end{array}\right]
\end{aligned}
$$

Now we have e.g. 4500 "time collocation" blocks \mathcal{B}_{k} of size
instead of one matrix of size

Local Fourier Analysis from a matrix point of view

 just transformation$$
\begin{aligned}
\mathcal{F}^{-1} \mathbf{T}_{\text {PFASST }} \mathcal{F} & \simeq \psi^{-1} \mathbf{T}_{\text {space }} \psi \otimes \mathbf{T}_{\text {time }} \otimes \mathbf{T}_{\text {colloc }} \\
& =\left[\begin{array}{llll}
& & & \\
& & & \\
& & \ddots & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right]
\end{aligned}
$$

Now we have e.g. 4500 "time collocation" blocks \mathcal{B}_{k} of size $2 \cdot 10 \cdot 5$ instead of one matrix of size $4.5 \cdot 10^{5}$.

The convenience of blocks

spectral radii

$$
\rho(\mathbf{T})=\max _{l} \rho\left(\mathcal{B}_{l}\right)
$$

The convenience of blocks

spectral radii

$$
\rho(\mathbf{T})=\max _{l} \rho\left(\mathcal{B}_{l}\right)
$$

norms

$$
\|\mathbf{T}\|_{2}=\max _{l}\left\|\mathcal{B}_{l}\right\|_{2}
$$

The convenience of blocks
spectral radii

$$
\rho(\mathbf{T})=\max _{l} \rho\left(\mathcal{B}_{l}\right)
$$

norms

$$
\|\mathbf{T}\|_{2}=\max _{l}\left\|\mathcal{B}_{l}\right\|_{2}
$$

power

$$
\mathbf{T}^{k}=\mathcal{F} \operatorname{diag}\left(\mathcal{B}_{1}^{k}, \mathcal{B}_{2}^{k}, \ldots, \mathcal{B}_{N}^{k}\right) \mathcal{F}^{-1}
$$

A model problem

Use second order difference method to discretize the heat equation

$$
\mathbf{u}_{t}(t)=\mathbf{A} \mathbf{u}(t)
$$

A model problem

Use second order difference method to discretize the heat equation

A model problem

Use second order difference method to discretize the heat equation

$$
\begin{aligned}
\mathbf{u}_{t}(t) & =\mathbf{A} \mathbf{u}(t) \\
\mathbf{A} & =\frac{\mu}{(\Delta x)^{2}}\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & -1 \\
-1 & 2 & -1 & & \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & & -1 & 2 & -1 \\
-1 & 0 & \cdots & -1 & 2
\end{array}\right) \\
\nu & =\mu \Delta t /(\Delta x)^{2}
\end{aligned}
$$

A model problem

Figure: Numerical solution for the initial value $u_{0}=\sin (x)$.

Use second order difference method to discretize the heat equation

$$
\begin{aligned}
\mathbf{u}_{t}(t) & =\mathbf{A} \mathbf{u}(t) \\
\mathbf{A} & =\frac{\mu}{(\Delta x)^{2}}\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & -1 \\
-1 & 2 & -1 & & \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & & -1 & 2 & -1 \\
-1 & 0 & \cdots & -1 & 2
\end{array}\right) \\
\nu & =\mu \Delta t /(\Delta x)^{2}
\end{aligned}
$$

Space problem is decomposable into the modes $\mathbf{m}_{k}=\left[\exp \left(i \cdot \frac{k n}{N}\right)\right]_{n=1, \ldots, N}$.

First convergence tests

32 spatial nodes, 5 quadrature nodes and $\mu=0.01$.

First convergence tests

32 spatial nodes, 5 quadrature nodes and $\mu=0.01$.

Estimating iterations

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps Only a worst case estimation

Estimating iterations

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Estimating iterations

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Estimating iterations

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Not ideal, so what about $\|\mathbf{T}\|_{2}=\max _{\boldsymbol{I}}\left\|\mathcal{B}_{1}\right\|_{2}$?

- Matrix matrix multiplication for each iteration.
. Like the spectral radius, only a worst case estimation.

Estimating iterations

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Not ideal, so what about $\|\mathbf{T}\|_{2}=\max _{\boldsymbol{I}}\left\|\mathcal{B}_{\|}\right\|_{2}$?

- Matrix matrix multiplication for each iteration.
- Like the spectral radius, only a worst case estimation.

Estimating iterations

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Not ideal, so what about $\|\mathbf{T}\|_{2}=\max _{\boldsymbol{I}}\left\|\mathcal{B}_{\|}\right\|_{2}$?

- Matrix matrix multiplication for each iteration.
- Like the spectral radius, only a worst case estimation.
\Rightarrow back to the roots, back to counting!

Block structure and space modes

....how to count

1 Decompose spatial problem into modes \mathbf{m}_{j}
2 Spread j-th mode across all collocation points and time steps to get initial error mode:

3 Use block Fourier transformation to track j-th error mode over iterations:

Block structure and space modes

... how to count

1 Decompose spatial problem into modes \mathbf{m}_{j}
2 Spread j-th mode across all collocation points and time steps to get initial error mode:

$$
\mathbf{e}_{j}^{0}=\mathbf{m}_{j} \otimes \mathbf{1}_{L} \otimes \mathbf{1}_{M}
$$

[3 Use block Fourier transformation to track j-th error mode over iterations:

4 Estimate number of iterations $K_{\text {PFASST }}$ to achieve a certain error reduction for this mode

Block structure and space modes

... how to count

1 Decompose spatial problem into modes \mathbf{m}_{j}
2 Spread j-th mode across all collocation points and time steps to get initial error mode:

$$
\mathbf{e}_{j}^{0}=\mathbf{m}_{j} \otimes \mathbf{1}_{L} \otimes \mathbf{1}_{M}
$$

3 Use block Fourier transformation to track j-th error mode over iterations:

$$
\left\|\mathcal{F} \mathbf{e}_{j}^{k}\right\|=\left\|\mathcal{F} \mathbf{T}^{k} \mathbf{e}_{j}^{0}\right\|=\left\|\operatorname{diag}\left(\mathcal{B}_{l}^{k}\right) \mathcal{F} \mathbf{e}_{j}^{0}\right\|=\left\|\mathcal{B}_{j}^{k} \mathbf{1}_{L M}\right\| .
$$

4 Estimate number of iterations $K_{\text {PFASST }}$ to achieve a certain error reduction for this mode

Block structure and space modes

... how to count

1 Decompose spatial problem into modes \mathbf{m}_{j}
2 Spread j-th mode across all collocation points and time steps to get initial error mode:

$$
\mathbf{e}_{j}^{0}=\mathbf{m}_{j} \otimes \mathbf{1}_{L} \otimes \mathbf{1}_{M}
$$

3 Use block Fourier transformation to track j-th error mode over iterations:

$$
\left\|\mathcal{F} \mathbf{e}_{j}^{k}\right\|=\left\|\mathcal{F} \mathbf{T}^{k} \mathbf{e}_{j}^{0}\right\|=\left\|\operatorname{diag}\left(\mathcal{B}_{l}^{k}\right) \mathcal{F} \mathbf{e}_{j}^{0}\right\|=\left\|\mathcal{B}_{j}^{k} \mathbf{1}_{L M}\right\| .
$$

4 Estimate number of iterations $K_{\text {PFASST }}$ to achieve a certain error reduction for this mode

Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and $\nu=0.01$

Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and $\nu=1.0$

How to estimate the speedup

How to estimate the speedup

How to estimate the speedup

How SDC performs

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu=0.01$.

How SDC performs

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu=1.0$.

Estimated speedup

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu=0.01$.

Estimated speedup

high ν

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu=1.0$.

What's next?

Achievments until now

- A multigrid view on PFASST
- Iteration matrix in a nice form
- Plug\&Play framework
- First insights in the parallel performance

What's next?

Achievments until now

- A multigrid view on PFASST
- Iteration matrix in a nice form
- Plug\&Play framework
- First insights in the parallel performance

What's next?

Achievments until now

- A multigrid view on PFASST
- Iteration matrix in a nice form
- Plug\&Play framework
- First insights in the parallel performance

Upcoming challenges

- Local Fourier analysis
- Time coarsening
- Compare to other space time MGs
- Writing the PhD thesis

Thank you for your attention!

