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Embedding PFASST into multigrid theory

PFASST looks complicated
PFASST shows similarities to multigrid
multigrid is extensively studied

Now let’s show that PFASST actually is a multigrid algorithm,
under certain assumptions and use this to analyze the parallel

performance.
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Collocation formulation on a single time-step

Consider the Picard form of an initial value problem on [Tl ,Tl+1]

u(t) = ul +
∫ t

Tl

A · u(s)ds,

discretized using spectral quadrature rules with nodes τm:

(I−∆tQ⊗ A)(u) = ul

This corresponds to a fully implicit Runge-Kutta method on [Tl ,Tl+1],
which we solve iteratively.

++ − · =

November 28, 2016 Dieter Moser 3 22
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Linked collocation problem

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

We now link L time-steps together, using N to transfer
information from step l to step l + 1. We get:


I−∆tQ⊗ A

−N I−∆tQ⊗ A
. . . . . .

−N I−∆tQ⊗ A



u1
u2
...
uL

 =


u0
0
...
0



use (linear/FAS) multigrid to solve this system iteratively
exploit cheapest coarse level to quickly propagate
information forward in time
smoother: block Jacobi + block Gauß-Seidel

November 28, 2016 Dieter Moser 4 22
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We now link L time-steps together, using N to transfer
information from step l to step l + 1. We get:

MlcpU = U0

use (linear/FAS) multigrid to solve this system iteratively
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Approximative Block-Gauß-Seidel

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T
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Approximative Block-Gauß-Seidel
... on the first subinterval

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

u0

+

P−1
SDC

+

+ u0

−

− M

·

· u0

=

= u1
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Approximative Block-Gauß-Seidel
... passing end value to the next subinterval

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

N

·

u1

=

u2
0
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Approximative Block-Gauß-Seidel
... on the second subinterval

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

++ − · =
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Approximative Block-Gauß-Seidel
... on the last subinterval

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T
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Approximative Block-Gauß-Seidel
... all in one

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

U0 + P−1
aGS U0− Mlcp ·U0 = U1

+




−1 − ·

 =
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Approximative Block-Jacobi
... starting from the approximative Gauß-Seidel

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

P−1
aJac

+




−1 − ·
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Approximative Block-Jacobi
... one little adjustment

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

P−1
aJac

+




−1 − ·
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Approximative Block-Jacobi
... another little manipulation

t0
τ1

τ2

τ3t1
τ1

τ2

τ3t2
τ1

τ2

τ3T

P−1
aJac

+




−1 − ·
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Coarse Grid Correction
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Coarse Grid Correction

Do a block Jacobi step
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Coarse Grid Correction

Do a block Jacobi step

Compute τk = M̃lcpI
2h
h Uk − I2h

h MlcpU
k
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2h
h Uk − I2h

h MlcpU
k

Do a block Gauß-Seidel step with Ũk
0 + τk
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Coarse Grid Correction

Do a block Jacobi step

Compute τk = M̃lcpI
2h
h Uk − I2h

h MlcpU
k

Do a block Gauß-Seidel step with Ũk
0 + τk

Correct Uk+1 = Uk + Ih2h
(
Ũk+1/2 − I2h

h Uk)
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Coarse Grid Correction

Do a block Jacobi step

Compute τk = M̃lcpI
2h
h Uk − I2h

h MlcpU
k

Do a block Gauß-Seidel step with Ũk
0 + τk

Correct Uk+1 = Uk + Ih2h
(
Ũk+1/2 − I2h

h Uk)
Do next block Jacobi step
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PFASST overview
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Putting the pieces together

This can easily be written as

Uk+ 1
2 = Uk + Ih2hP̃−1

aGSI
2h
h

(
U0 −MlcpU

k
)

Uk+1 = Uk+ 1
2 + P−1

aJac
(
U0 −MlcpU

k+ 1
2

)
,

which is a two-level multigrid scheme, with an
approximative Block-Gauß-Seidel on the coarse
level and an approximative Block-Jacobi on the
fine level.
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Analysis of PFASST - a modest try

The center of attention is the iteration matrix of PFASST

TPFASST = I−
(
Ih2hP̃−1

aGSI
2h
h + P−1

aJac − P−1
aJacMlcp I

h
2hP̃−1

aJacI
2h
h

)
Mlcp

=
(
I− P−1

aJacMlcp
)

︸ ︷︷ ︸
Post-Smoother

(
I− Ih2hP̃−1

aGSI
2h
h Mlcp

)
︸ ︷︷ ︸

≈CG-Correction

I︸︷︷︸
Pre-Smoother

,

which is decomposable into 3 layers.

November 28, 2016 Dieter Moser 10 22
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Local Fourier Analysis from a matrix point of view
just transformation

F−1TPFASSTF ' ψ
−1Tspaceψ ⊗ Ttime ⊗ Tcolloc

=

 . . .


Now we have e.g. 4500 “time collocation” blocks Bk of size 2 · 10 · 5
instead of one matrix of size 4.5 · 105 .
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The convenience of blocks

spectral radii
ρ(T) = max

l
ρ(Bl )

norms
‖T‖2 = max

l
‖Bl‖2

power
Tk = F diag

(
Bk

1 ,Bk
2 , . . . ,Bk

N
)
F−1

November 28, 2016 Dieter Moser 12 22
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A model problem

Figure: Numerical solution
for the initial value
u0 = sin(x).

Use second order difference method to discretize
the heat equation

ut(t) = Au(t)

A = µ

(∆x)2


2 −1 0 · · · −1
−1 2 −1

0
. . . . . . . . . 0

... −1 2 −1
−1 0 · · · −1 2


ν = µ∆t/ (∆x)2

Space problem is decomposable into the modes
mk =

[
exp

(
i · kn

N
)]

n=1,...,N .

November 28, 2016 Dieter Moser 13 22
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First convergence tests
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32 spatial nodes, 5 quadrature nodes and µ = 0.01.
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Estimating iterations

Use the spectral radius

Works great with a few time steps.
Is awfully wrong for many time steps
Only a worst case estimation

Not ideal, so what about ‖T‖2 = maxl ‖Bl‖2?

Matrix matrix multiplication for each iteration.
Like the spectral radius, only a worst case estimation.

⇒ back to the roots, back to counting!
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Block structure and space modes
. . . how to count

1 Decompose spatial problem into modes mj

2 Spread j-th mode across all collocation points and time steps to get
initial error mode:

e0
j = mj ⊗ 1L ⊗ 1M

3 Use block Fourier transformation to track j-th error mode over
iterations:

‖Fek
j ‖ = ‖FTke0

j ‖ =
∥∥diag(Bk

l )Fe0
j
∥∥ =

∥∥Bk
j 1LM

∥∥ .
4 Estimate number of iterations KPFASST to achieve a certain error

reduction for this mode

November 28, 2016 Dieter Moser 16 22



M
em

be
ro

ft
he

He
lm

ho
ltz

-A
ss

oc
ia

tio
n

Block structure and space modes
. . . how to count

1 Decompose spatial problem into modes mj

2 Spread j-th mode across all collocation points and time steps to get
initial error mode:

e0
j = mj ⊗ 1L ⊗ 1M

3 Use block Fourier transformation to track j-th error mode over
iterations:

‖Fek
j ‖ = ‖FTke0

j ‖ =
∥∥diag(Bk

l )Fe0
j
∥∥ =

∥∥Bk
j 1LM

∥∥ .
4 Estimate number of iterations KPFASST to achieve a certain error

reduction for this mode

November 28, 2016 Dieter Moser 16 22



M
em

be
ro

ft
he

He
lm

ho
ltz

-A
ss

oc
ia

tio
n

Block structure and space modes
. . . how to count

1 Decompose spatial problem into modes mj

2 Spread j-th mode across all collocation points and time steps to get
initial error mode:

e0
j = mj ⊗ 1L ⊗ 1M

3 Use block Fourier transformation to track j-th error mode over
iterations:

‖Fek
j ‖ = ‖FTke0

j ‖ =
∥∥diag(Bk

l )Fe0
j
∥∥ =

∥∥Bk
j 1LM

∥∥ .
4 Estimate number of iterations KPFASST to achieve a certain error

reduction for this mode

November 28, 2016 Dieter Moser 16 22



M
em

be
ro

ft
he

He
lm

ho
ltz

-A
ss

oc
ia

tio
n

Block structure and space modes
. . . how to count

1 Decompose spatial problem into modes mj

2 Spread j-th mode across all collocation points and time steps to get
initial error mode:

e0
j = mj ⊗ 1L ⊗ 1M

3 Use block Fourier transformation to track j-th error mode over
iterations:

‖Fek
j ‖ = ‖FTke0

j ‖ =
∥∥diag(Bk

l )Fe0
j
∥∥ =

∥∥Bk
j 1LM

∥∥ .
4 Estimate number of iterations KPFASST to achieve a certain error

reduction for this mode

November 28, 2016 Dieter Moser 16 22



M
em

be
ro

ft
he

He
lm

ho
ltz

-A
ss

oc
ia

tio
n

Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and ν = 0.01
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Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and ν = 1.0
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How to estimate the speedup

L · TC
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How to estimate the speedup

L · TC

KPFASST · (TF + TC)
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How to estimate the speedup

S =
∑L

l=1
KSDC,l ·TF

L·TC+KPFASST·(TF+TC)
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How SDC performs

128 spatial nodes, 5 quadrature nodes, 128 time steps and ν = 0.01.
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How SDC performs

128 spatial nodes, 5 quadrature nodes, 128 time steps and ν = 1.0.
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Estimated speedup

low ν

high ν

128 spatial nodes, 5 quadrature nodes, 128 time steps and ν = 0.01.
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Estimated speedup

low ν high ν

128 spatial nodes, 5 quadrature nodes, 128 time steps and ν = 1.0.
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What’s next?

Achievments until now
A multigrid view on PFASST
Iteration matrix in a nice form
Plug&Play framework
First insights in the parallel
performance

Upcoming challenges
Local Fourier analysis
Time coarsening
Compare to other space time MGs
Writing the PhD thesis
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Thank you for your attention!

November 28, 2016 Dieter Moser 22 22


	Motivation
	Problem formulation
	Define special smoother
	Analysis of PFASST

