

A multigrid perspective on PFASST

November 28, 2016 | Dieter Moser, Robert Speck, Matthias Bolten Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Motivation

0 Years o	f Time Pa	arallel Time Integration	- 1
Aartin J. C	dander		
1	Introduc	tion	4
2	Shooting	g Type Time Parallel Methods	5
	2.1	Nievergelt 1964	5
	2.2	Bellen and Zennaro 1989	7
	2.3	Chartier and Philippe 1993	9
	2.4	Saha, Stadel and Tremaine 1996	10
	2.5	Lions, Maday and Turinici 2001	12
3	Domain	Decomposition Methods in Space-Time	16
	3.1	Picard and Lindelöf 1893/1894	16
	3.2	Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982	17
	3.3	Gander 1996	20
	3.4	Gander, Halpern and Nataf 1999	21
	3.5	Recent Developments	23
4	Multigri	d Methods in Space-Time	23
	4.1	Hackbusch 1984	23
	4.2	Lubich and Ostermann 1987	25
	4.3	Horten and Vandevalle 1995	26
	4.4	Emmett and Minion 2012	27
	4.5	Neumüller 2014	29
5	Direct S	olvers in Space-Time	30
	5.1	Miranker and Liniger 1967	30
	5.2	Axelson and Verwer 1985	31
	5.3	Womble 1990	33
	5.4	Maday and Ronquist 2008	34
	5.5	Christlieb, Macdonald and Ong 2010	35
	5.6	Güttel 2012	37
6	Conclus	ions	39
Refen	ences		40

Motivation

50 Years	0 Years of Time Parallel Time Integration					
Martin J.	Gander					
1	Introd	uction	4			
2	Shooti	Shooting Type Time Parallel Methods				
	2.1	Nievergelt 1964	5			
	2.2	Bellen and Zennaro 1989	7			
	2.3	Chartier and Philippe 1993	9			
	2.4	Saha, Stadel and Tremaine 1996	10			
	2.5	Lions, Maday and Turinici 2001	12			
3	Domai	in Decomposition Methods in Space-Time	16			
	3.1	Picard and Lindelöf 1893/1894	16			
	3.2	Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982	17			
	3.3	Gander 1996	20			
	3.4	Gander, Halpern and Nataf 1999	21			
	3.5	Recent Developments	23			
4	Multig	rid Methods in Space-Time	23			
	4.1	Hackbusch 1984	23			
	4.2	Lubich and Ostermann 1987	25			
	4.3	Horten and Vandevalle 1995	26			
	4.4	Emmett and Minion 2012	27			
	4.5	Neumüller 2014	29			
5	Direct	Solvers in Space-Time	30			
	5.1	Miranker and Liniger 1967	30			
	5.2	Axelson and Verwer 1985	31			
	5.3	Womble 1990	33			
	5.4	Maday and Ronquist 2008	34			
	5.5	Christlieb, Macdonald and Ong 2010	35			
	5.6	Güttel 2012	37			
6	Conclusions					
Refe	References					

- PFASST looks complicated
- PFASST shows similarities to multigrid
- multigrid is extensively studied

- PFASST looks complicated
- PFASST shows similarities to multigrid
- multigrid is extensively studied

- PFASST looks complicated
- PFASST shows similarities to multigrid
- multigrid is extensively studied

- PFASST looks complicated
- PFASST shows similarities to multigrid
- multigrid is extensively studied

Now let's show that PFASST actually is a multigrid algorithm, under certain assumptions and use this to analyze the parallel performance.

Collocation formulation on a single time-step

Consider the Picard form of an initial value problem on $[T_l, T_{l+1}]$

$$u(t) = u_l + \int_{T_l}^t \mathbf{A} \cdot u(s) ds,$$

discretized using spectral quadrature rules with nodes τ_m :

$$(\mathbf{I} - \Delta t \mathbf{Q} \otimes \mathbf{A})(\mathbf{u}) = \mathbf{u}_l$$

This corresponds to a fully implicit Runge-Kutta method on $[T_l, T_{l+1}]$, which we solve iteratively.

Collocation formulation on a single time-step

Consider the Picard form of an initial value problem on $[T_l, T_{l+1}]$

$$u(t) = u_l + \int_{T_l}^t \mathbf{A} \cdot u(s) ds,$$

discretized using spectral quadrature rules with nodes τ_m :

$$(\mathbf{I} - \Delta t \mathbf{Q} \otimes \mathbf{A})(\mathbf{u}) = \mathbf{u}_l$$

This corresponds to a fully implicit Runge-Kutta method on $[T_{l}, T_{l+1}]$, which we solve iteratively.

We now link *L* time-steps together, using **N** to transfer information from step *I* to step I + 1. We get:

 τ_1

We now link L time-steps together, using **N** to transfer t_0 . information from step l to step l + 1. We get: τ_1 *τ*2 $M_{\mathsf{lcp}}U = U_0$ $t_1 - \tau_3$ τ_1 τ_2 t2 - τ_1 τ₂

We now link *L* time-steps together, using **N** to transfer information from step *I* to step I + 1. We get:

 t_0

 t_1

t₂

 τ_1 τ_2

 τ_1 τ_2

•^{*T*1}

We now link *L* time-steps together, using **N** to transfer information from step *I* to step I + 1. We get:

- use (linear/FAS) multigrid to solve this system iteratively
- exploit cheapest coarse level to quickly propagate information forward in time
- smoother: block Jacobi + block Gauß-Seidel

t∩

t1

 τ_1 τ_2

 τ_2

 τ_1

*τ*₂

November 28, 2016

 $t_0 -$

... on the first subinterval

... passing end value to the next subinterval

... on the second subinterval

... passing end value to the next subinterval

... all in one

Approximative Block-Jacobi

... starting from the approximative Gauß-Seidel

Approximative Block-Jacobi

Approximative Block-Jacobi

... another little manipulation

November 28, 2016

Do a block Jacobi step

November 28, 2016

Do a block Jacobi step

Do a block Jacobi step

Compute
$$\tau_k = \tilde{M}_{lcp} I_h^{2h} U^k - I_h^{2h} M_{lcp} U^k$$

Do a block Jacobi step

Compute
$$au_k = ilde{\mathsf{M}}_{\mathsf{lcp}} \mathsf{I}_h^{2h} \mathsf{U}^k - \mathsf{I}_h^{2h} \mathsf{M}_{\mathsf{lcp}} \mathsf{U}^k$$

Do a block Jacobi step

Compute
$$au_k = ilde{\mathsf{M}}_{\mathsf{lcp}} \mathsf{I}_h^{2h} \mathsf{U}^k - \mathsf{I}_h^{2h} \mathsf{M}_{\mathsf{lcp}} \mathsf{U}^k$$

Do a block Gauß-Seidel step with $\tilde{\mathbf{U}}_0^k + \tau_k$

Do a block Jacobi step

Compute
$$au_k = ilde{\mathsf{M}}_{\mathsf{lcp}} \mathsf{I}_h^{2h} \mathsf{U}^k - \mathsf{I}_h^{2h} \mathsf{M}_{\mathsf{lcp}} \mathsf{U}^k$$

Do a block Gauß-Seidel step with $\tilde{\mathbf{U}}_0^k + \tau_k$

Do a block Jacobi step

Compute
$$au_k = ilde{\mathsf{M}}_{\mathsf{lcp}} \mathsf{I}_h^{2h} \mathsf{U}^k - \mathsf{I}_h^{2h} \mathsf{M}_{\mathsf{lcp}} \mathsf{U}^k$$

Do a block Gauß-Seidel step with $\tilde{\mathsf{U}}_0^k + au_k$

Correct
$$\mathbf{U}^{k+1} = \mathbf{U}^k + \mathbf{I}_{2h}^h \left(\tilde{\mathbf{U}}^{k+1/2} - \mathbf{I}_h^{2h} \mathbf{U}^k \right)$$

Do a block Jacobi step

Compute
$$au_k = ilde{\mathsf{M}}_{\mathsf{lcp}} \mathsf{I}_h^{2h} \mathsf{U}^k - \mathsf{I}_h^{2h} \mathsf{M}_{\mathsf{lcp}} \mathsf{U}^k$$

Do a block Gauß-Seidel step with $\tilde{\mathbf{U}}_0^k + \tau_{\mathbf{k}}$

Correct
$$\mathbf{U}^{k+1} = \mathbf{U}^k + \mathbf{I}_{2h}^h \left(\tilde{\mathbf{U}}^{k+1/2} - \mathbf{I}_h^{2h} \mathbf{U}^k \right)$$

Do a block Jacobi step

Compute
$$au_k = ilde{\mathsf{M}}_{\mathsf{lcp}} \mathsf{I}_h^{2h} \mathsf{U}^k - \mathsf{I}_h^{2h} \mathsf{M}_{\mathsf{lcp}} \mathsf{U}^k$$

Do a block Gauß-Seidel step with $\tilde{\mathsf{U}}_0^k + \tau_k$

Correct
$$\mathbf{U}^{k+1} = \mathbf{U}^k + \mathbf{I}_{2h}^h \left(\tilde{\mathbf{U}}^{k+1/2} - \mathbf{I}_h^{2h} \mathbf{U}^k \right)$$

Do next block Jacobi step

PFASST overview

Putting the pieces together

This can easily be written as

$$\begin{split} \mathbf{U}^{k+\frac{1}{2}} &= \mathbf{U}^{k} + \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{aGS}^{-1} \mathbf{I}_{h}^{2h} \left(\mathbf{U}_{0} - \mathbf{M}_{lcp} \mathbf{U}^{k} \right) \\ \mathbf{U}^{k+1} &= \mathbf{U}^{k+\frac{1}{2}} + \mathbf{P}_{aJac}^{-1} \left(\mathbf{U}_{0} - \mathbf{M}_{lcp} \mathbf{U}^{k+\frac{1}{2}} \right), \end{split}$$

which is a two-level multigrid scheme, with an approximative **Block-Gauß-Seidel** on the coarse level and an approximative **Block-Jacobi** on the fine level.

Putting the pieces together

This can easily be written as

$$\begin{split} \mathbf{U}^{k+\frac{1}{2}} &= \mathbf{U}^{k} + \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{a\text{GS}}^{-1} \mathbf{I}_{h}^{2h} \left(\mathbf{U}_{0} - \mathbf{M}_{\text{lcp}} \mathbf{U}^{k} \right) \\ \mathbf{U}^{k+1} &= \mathbf{U}^{k+\frac{1}{2}} + \mathbf{P}_{a\text{Jac}}^{-1} \left(\mathbf{U}_{0} - \mathbf{M}_{\text{lcp}} \mathbf{U}^{k+\frac{1}{2}} \right), \end{split}$$

which is a two-level multigrid scheme, with an approximative **Block-Gauß-Seidel** on the coarse level and an approximative **Block-Jacobi** on the fine level.

Putting the pieces together

This can easily be written as

$$\begin{split} \mathbf{U}^{k+\frac{1}{2}} &= \mathbf{U}^{k} + \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{a\text{GS}}^{-1} \mathbf{I}_{h}^{2h} \left(\mathbf{U}_{0} - \mathbf{M}_{\text{lcp}} \mathbf{U}^{k} \right) \\ \mathbf{U}^{k+1} &= \mathbf{U}^{k+\frac{1}{2}} + \mathbf{P}_{a\text{Jac}}^{-1} \left(\mathbf{U}_{0} - \mathbf{M}_{\text{lcp}} \mathbf{U}^{k+\frac{1}{2}} \right), \end{split}$$

which is a two-level multigrid scheme, with an approximative **Block-Gauß-Seidel** on the coarse level and an approximative **Block-Jacobi** on the fine level.

The center of attention is the iteration matrix of PFASST

$$\mathbf{T}_{\mathsf{PFASST}} = \mathbf{I} - \left(\mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} + \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{I}_{h}^{2h}\right) \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}}$$

The center of attention is the iteration matrix of PFASST

$$\begin{split} \mathbf{T}_{\mathsf{PFASST}} &= \mathbf{I} - \left(\mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} + \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{I}_{h}^{2h} \right) \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \\ &= \underbrace{\left(\mathbf{I} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\mathsf{Post-Smoother}} \underbrace{\left(\mathbf{I} - \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\approx \mathsf{CG-Correction}} \underbrace{\mathbf{I}}_{\mathsf{Pre-Smoother}}^{\mathsf{T}}, \end{split}$$

The center of attention is the iteration matrix of PFASST

$$\begin{split} \mathbf{T}_{\mathsf{PFASST}} &= \mathbf{I} - \left(\mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} + \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \mathbf{I}_{h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{I}_{h}^{2h} \right) \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \\ &= \underbrace{\left(\mathbf{I} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\mathsf{Post-Smoother}} \underbrace{\left(\mathbf{I} - \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\approx \mathsf{CG-Correction}} \underbrace{\mathbf{I}}_{\mathsf{Pre-Smoother}}^{\mathsf{T}}, \end{split}$$

which is decomposable into 3 layers.

The center of attention is the iteration matrix of PFASST

$$\begin{split} \mathbf{T}_{\mathsf{PFASST}} &= \mathbf{I} - \left(\mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} + \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \mathbf{I}_{h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{I}_{h}^{2h} \right) \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \\ &= \underbrace{\left(\mathbf{I} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\mathsf{Post-Smoother}} \underbrace{\left(\mathbf{I} - \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\approx \mathsf{CG-Correction}} \underbrace{\mathbf{I}}_{\mathsf{Pre-Smoother}}^{\mathsf{T}}, \end{split}$$

which is decomposable into 3 layers.

dof e.g. over 9000 10 5

 $\mathbf{T}_{\mathsf{PFASST}} \simeq \ \mathbf{T}_{\mathsf{space}} \ \otimes \ \mathbf{T}_{\mathsf{time}} \ \otimes \ \mathbf{T}_{\mathsf{colloc}}$

The center of attention is the iteration matrix of PFASST

$$\begin{split} \mathbf{T}_{\mathsf{PFASST}} &= \mathbf{I} - \left(\mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} + \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \mathbf{I}_{h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{I}_{h}^{2h} \right) \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \\ &= \underbrace{\left(\mathbf{I} - \mathbf{P}_{\mathsf{a}\mathsf{J}\mathsf{a}\mathsf{c}}^{-1} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\mathsf{Post-Smoother}} \underbrace{\left(\mathbf{I} - \mathbf{I}_{2h}^{h} \tilde{\mathbf{P}}_{\mathsf{a}\mathsf{GS}}^{-1} \mathbf{I}_{h}^{2h} \mathbf{M}_{\mathsf{l}\mathsf{c}\mathsf{p}} \right)}_{\approx \mathsf{CG-Correction}} \underbrace{\mathbf{I}}_{\mathsf{Pre-Smoother}}^{\mathsf{T}}, \end{split}$$

which is decomposable into 3 layers.

dof e.g. over 9000 10 5

The convenience of blocks

spectral radii

$$\rho(\mathbf{T}) = \max_{l} \ \rho(\mathcal{B}_{l})$$

norms

$$\|\mathbf{T}\|_2 = \max_I \|\mathcal{B}_I\|_2$$

power

$$\mathbf{T}^{k} = \mathcal{F} \operatorname{diag} \left(\mathcal{B}_{1}^{k}, \mathcal{B}_{2}^{k}, \dots, \mathcal{B}_{N}^{k} \right) \ \mathcal{F}^{-1}$$

The convenience of blocks

spectral radii

$$\rho(\mathbf{T}) = \max_{l} \ \rho(\mathcal{B}_{l})$$

norms

$$\left\|\mathbf{T}\right\|_{2} = \max_{I} \left\|\mathcal{B}_{I}\right\|_{2}$$

power

 $\mathbf{T}^k = \mathcal{F} \operatorname{diag} \left(\mathcal{B}_1^k, \mathcal{B}_2^k, \dots, \mathcal{B}_N^k
ight) \, \mathcal{F}^{-1}$

November 28, 2016

The convenience of blocks

spectral radii

$$\rho(\mathbf{T}) = \max_{l} \ \rho(\mathcal{B}_{l})$$

norms

$$\left\|\mathbf{T}\right\|_{2} = \max_{I} \left\|\mathcal{B}_{I}\right\|_{2}$$

power

$$\mathbf{T}^{k} = \mathcal{F} \operatorname{diag} \left(\mathcal{B}_{1}^{k}, \mathcal{B}_{2}^{k}, \dots, \mathcal{B}_{N}^{k} \right) \ \mathcal{F}^{-1}$$

Use second order difference method to discretize the heat equation

$$\mathbf{u}_{t}(t) = \mathbf{A}\mathbf{u}(t)$$
$$\mathbf{A} = \frac{\mu}{(\Delta x)^{2}} \begin{pmatrix} 2 & -1 & 0 & \cdots & -1 \\ -1 & 2 & -1 & & \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & -1 & 2 & -1 \\ -1 & 0 & \cdots & -1 & 2 \end{pmatrix}$$
$$\nu = \mu \Delta t / (\Delta x)^{2}$$

Space problem is decomposable into the modes $\mathbf{m}_{k} = \left[\exp\left(i \cdot \frac{kn}{N}\right)\right]_{n=1,...,N}$.

Use second order difference method to discretize the heat equation

Space problem is decomposable into the modes $\mathbf{m}_k = \left[\exp\left(i \cdot \frac{kn}{N}\right)\right]_{n=1,...,N}$.

Use second order difference method to discretize the heat equation

$$\mathbf{u}_{t}(t) = \mathbf{A}\mathbf{u}(t)$$
$$\mathbf{A} = \frac{\mu}{(\Delta x)^{2}} \begin{pmatrix} 2 & -1 & 0 & \cdots & -1 \\ -1 & 2 & -1 & & \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & -1 & 2 & -1 \\ -1 & 0 & \cdots & -1 & 2 \end{pmatrix}$$
$$\nu = \mu \Delta t / (\Delta x)^{2}$$

Space problem is decomposable into the modes $\mathbf{m}_k = \left[\exp\left(i \cdot \frac{kn}{N}\right)\right]_{n=1,\dots,N}$.

Use second order difference method to discretize the heat equation $\mathbf{u}_t(t) = \mathbf{A}\mathbf{u}(t)$ $\mathbf{A} = \frac{\mu}{\left(\Delta x\right)^2} \begin{pmatrix} 2 & -1 & 0 & \cdots & -1 \\ -1 & 2 & -1 & & \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & -1 & 2 & -1 \\ -1 & 0 & \cdots & -1 & 2 \end{pmatrix}$ $\nu = \mu \Delta t / (\Delta x)^2$

Figure: Numerical solution for the initial value $u_0 = \sin(x)$. Space problem is decomposable into the modes $\mathbf{m}_{k} = \left[\exp\left(i \cdot \frac{kn}{N}\right)\right]_{n=1,...,N}$.

First convergence tests

32 spatial nodes, 5 quadrature nodes and $\mu = 0.01$.

8 time steps

First convergence tests

8 time steps

128 time steps

32 spatial nodes, 5 quadrature nodes and $\mu = 0.01$.

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Not ideal, so what about $\|\mathbf{T}\|_2 = \max_I \|\mathcal{B}_I\|_2$?

- Matrix matrix multiplication for each iteration.
- Like the spectral radius, only a worst case estimation.

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Not ideal, so what about $\|\mathbf{T}\|_2 = \max_I \|\mathcal{B}_I\|_2$?

- Matrix matrix multiplication for each iteration.
- Like the spectral radius, only a worst case estimation.

Use the spectral radius

- Works great with a few time steps.
- Is awfully wrong for many time steps
- Only a worst case estimation

Not ideal, so what about $\|\mathbf{T}\|_2 = \max_I \|\mathcal{B}_I\|_2$?

- Matrix matrix multiplication for each iteration.
- Like the spectral radius, only a worst case estimation.
- \Rightarrow back to the roots, back to counting!

... how to count

1 Decompose spatial problem into modes **m**_j

Spread *j*-th mode across all collocation points and time steps to get initial error mode:

 $\mathbf{e}_{j}^{0}=\mathbf{m}_{j}\otimes\mathbf{1}_{L}\otimes\mathbf{1}_{M}$

Use block Fourier transformation to track *j*-th error mode over iterations:

$$\|\mathcal{F}\mathbf{e}_{j}^{k}\| = \|\mathcal{F}\mathbf{T}^{k}\mathbf{e}_{j}^{0}\| = \|\operatorname{diag}(\mathcal{B}_{l}^{k})\mathcal{F}\mathbf{e}_{j}^{0}\| = \|\mathcal{B}_{j}^{k}\mathbf{1}_{LM}\|.$$

Estimate number of iterations K_{PFASST} to achieve a certain error reduction for this mode

- ... how to count
 - **1** Decompose spatial problem into modes \mathbf{m}_j
 - Spread *j*-th mode across all collocation points and time steps to get initial error mode:

$$\mathbf{e}_j^0 = \mathbf{m}_j \otimes \mathbf{1}_L \otimes \mathbf{1}_M$$

Use block Fourier transformation to track *j*-th error mode over iterations:

 $\|\mathcal{F}\mathbf{e}_{j}^{k}\| = \|\mathcal{F}\mathbf{T}^{k}\mathbf{e}_{j}^{0}\| = \|\operatorname{diag}(\mathcal{B}_{I}^{k})\mathcal{F}\mathbf{e}_{j}^{0}\| = \|\mathcal{B}_{j}^{k}\mathbf{1}_{LM}\|.$

Estimate number of iterations K_{PFASST} to achieve a certain error reduction for this mode

- ... how to count
 - **1** Decompose spatial problem into modes \mathbf{m}_j
 - Spread *j*-th mode across all collocation points and time steps to get initial error mode:

$$\mathbf{e}_j^0 = \mathbf{m}_j \otimes \mathbf{1}_L \otimes \mathbf{1}_M$$

Use block Fourier transformation to track *j*-th error mode over iterations:

$$\|\mathcal{F}\mathbf{e}_{j}^{k}\| = \|\mathcal{F}\mathbf{T}^{k}\mathbf{e}_{j}^{0}\| = \left\|\operatorname{diag}(\mathcal{B}_{l}^{k})\mathcal{F}\mathbf{e}_{j}^{0}\right\| = \left\|\mathcal{B}_{j}^{k}\mathbf{1}_{LM}\right\|.$$

Estimate number of iterations K_{PFASST} to achieve a certain error reduction for this mode

- ... how to count
 - **1** Decompose spatial problem into modes \mathbf{m}_j
 - Spread *j*-th mode across all collocation points and time steps to get initial error mode:

$$\mathbf{e}_j^0 = \mathbf{m}_j \otimes \mathbf{1}_L \otimes \mathbf{1}_M$$

Use block Fourier transformation to track *j*-th error mode over iterations:

$$\|\mathcal{F}\mathbf{e}_{j}^{k}\| = \|\mathcal{F}\mathbf{T}^{k}\mathbf{e}_{j}^{0}\| = \left\|\operatorname{diag}(\mathcal{B}_{l}^{k})\mathcal{F}\mathbf{e}_{j}^{0}\right\| = \left\|\mathcal{B}_{j}^{k}\mathbf{1}_{LM}\right\|.$$

4 Estimate number of iterations K_{PFASST} to achieve a certain error reduction for this mode

Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and $\nu = 0.01$

Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and $\nu = 1.0$

How to estimate the speedup

How to estimate the speedup

How to estimate the speedup

How SDC performs

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu = 0.01$.

How SDC performs

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu = 1.0$.

Estimated speedup

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu = 0.01$.

Member of the Helmholtz-Associati

Estimated speedup

128 spatial nodes, 5 quadrature nodes, 128 time steps and $\nu = 1.0$.

Dieter Moser

What's next?

Achievments until now

- A multigrid view on PFASST
- Iteration matrix in a nice form
- Plug&Play framework
- First insights in the parallel performance

What's next?

Achievments until now

- A multigrid view on PFASST
- Iteration matrix in a nice form
- Plug&Play framework
- First insights in the parallel performance

What's next?

Achievments until now

- A multigrid view on PFASST
- Iteration matrix in a nice form
- Plug&Play framework
- First insights in the parallel performance

Upcoming challenges

- Local Fourier analysis
- Time coarsening
- Compare to other space time MGs
- Writing the PhD thesis

Thank you for your attention!