Formal groups and related topics of some Calabi-Yau threefolds

Yasuhiro Goto, Hokkaido Univ. of Education September 28, 2016 at Banff

Contents

1. Introduction

- 2. Formal groups of K3 surfaces
- 3. Formal groups of Calabi-Yau threefolds



Happy Birthday and Thank You! Noriko

1. Introduction

1-1. One-dimensional formal groups

R: a commutative ring with identity element 1.

Definition 1. A <u>commutative</u> formal group (law) F of dimension <u>one</u> over R is a formal power series $F(x, y) \in R[[x, y]]$ satisfying

$$F(x,0) = F(0,x) = x, F(x,F(y,z)) = F(F(x,y),z), F(x,y) = F(y,x).$$

(*) If R has no nilpotent elements, F(x,y) = F(y,x) is always true [Lazard-Serre].

Definition 2. The multiplication-by-n map $[n]_F$ is defined inductively by setting $[1]_F(x) = x$ and

 $[n]_F(x) = F([n-1]_F(x), x).$

Example 1. (1) For the <u>additive</u> formal group law $F(x,y) = \mathbb{G}_a(x,y) = x + y$, $[n]_F(x) = nx.$

(2) For the <u>multiplicative</u> formal group law $F(x,y) = \mathbb{G}_m(x,y) = x + y - xy$,

$$[n]_F(x) = 1 - (1 - x)^n.$$

1-2. Formal groups of elliptic curves

Let E be an elliptic curve in \mathbb{P}^2_k over a field k:

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}.$$

The group law μ : $E(k) \times E(k) \rightarrow E(k)$ induces the ring homomorphism

$$\mu^*:\mathcal{O}_O\to\mathcal{O}_O\otimes\mathcal{O}_O$$

on the local ring at infinity O. This extends to the completion and gives rise to a formal group law of E:

$$\Gamma(t_1, t_2) = t_1 + t_2 + \sum_{i,j \ge 1} c_{ij} t_1^i t_2^j.$$

1-3. Formal groups in positive characteristic

Suppose that k is a field of characteristic p > 0. Then the multiplication-by-p map $[p]_F$ becomes as follows:

• If $[p]_F(x) \neq 0$, then

$$[p]_F(x) = cx^{p^h} + \text{higher-degree terms}, \quad (c \neq 0).$$

The integer $h (\geq 1)$ is called the height of F and denoted by ht(F).

• If $[p]_F(x) = 0$, then F is said to have infinite height.

Example 2. (1) ht $(\mathbb{G}_a) = \infty$, as $[p]_{\mathbb{G}_a}(x) = px = 0$. (2) ht $(\mathbb{G}_m) = 1$, as $[p]_{\mathbb{G}_m}(x) = 1 - (1 - x)^p \equiv x^p \pmod{p}$.

Properties

Let F and G be (one-dimensional) formal groups over an algebraically closed field k.

• If $ht(F) = \infty$, then F is isomorphic to \mathbb{G}_a over k.

• If $ht(F) < \infty$ and $ht(G) < \infty$, then F and G are isomorphic over k if and only if ht(F) = ht(G).

 \implies The height classifies the isomorphism classes of formal groups over an algebraically closed field k.

1-4. Formal groups of Calabi-Yau varieties

k: an algebraically closed field of characteristic p > 0

Definition 3. X is a Calabi-Yau variety over k of dimension n if it is a projective variety over k of dim = n with $\omega_X \cong \mathcal{O}_X$ and $h^{0,i} = \dim H^i(X, \mathcal{O}) = 0$ for 0 < i < n.

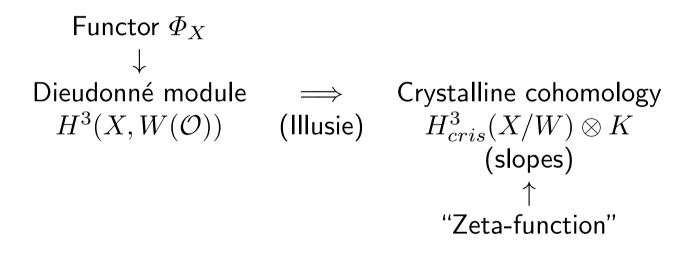
We consider infinitesimal deformation of X.

Definition 4. For a finite local k-algebra A with residue field k, the functor

$$\Phi_X(A) = \ker(H^n_{et}(X_A, \mathbb{G}_m) \longrightarrow H^n_{et}(X, \mathbb{G}_m))$$

is called the Artin-Mazur functor of X, where $X_A = X \times \text{Spec } A$ and \mathbb{G}_m is the sheaf of multiplicative groups. The formal group of an elliptic curve can be generalized to Calabi-Yau varieties.

Theorem (M. Artin and Mazur) If X is Calabi-Yau, Φ_X is representable by a commutative formal group of dimension $P_g = 1$, called the formal group of X.



Height of Φ_X can be computed from slopes of the Newton polygon of the zeta-function of X (Artin-Mazur).

1-5. Questions

- Is height h bounded?
- Does *h* take every value within its range?
- Find a concrete model of X for each h.

2. Formal groups of K3 **surfaces**

2-1. Result of M. Artin and Mazur

For K3 surfaces, Φ is also called the formal Brauer group of X. **Theorem** (M. Artin and Mazur). For K3 surfaces X,

 $h := ht(\Phi) = 1, 2, \cdots, 10$ or ∞ .

If h is finite, then $\rho(X) \leq 22 - 2h$, where $\rho(X) = \operatorname{rank} NS(X)$ (= rank Pic(X) for K3 surfaces) is the Picard number of X.

[M. Artin] X is called supersingular if $h = \infty$ (i.e. $\Phi \cong \hat{\mathbb{G}}_a$).

[Shioda] X is called supersingular if $\rho(X) = 22$

Theorem (M. Artin, Shioda; Maulik, Charles et. al.) (1) $\rho(X) = 22$ and $h = \infty$ are equivalent.

(2) If $\rho(X) = 22$, then disc $NS(X) = -p^{2\sigma_0}$ with $1 \le \sigma_0 \le 10$, and σ_0 is called the Artin invariant of X.

h and σ_0 give a stratification on the moduli space \mathcal{M} of polarized K3 surfaces over k. Let

$$\{h \ge i\} := \{X \mid ht \Phi \ge i\}$$
$$\{\sigma_0 \le j\} = \{X \mid \rho(X) = 22 \text{ and } \sigma_0 \le j\}.$$

$$\begin{array}{ll} \operatorname{dim} \mathbf{19} & \operatorname{dim} \mathbf{9} \\ \mathcal{M} &= \{h \ge 1\} \supset \dots \supset \{h \ge 10\} \supset \{h \ge 11\} = \{h = \infty\} \\ &= \{\sigma_0 \le 10\} \supset \{\sigma_0 \le 9\} \supset \dots \supset \{\sigma_0 = 1\} \\ &\operatorname{dim} \mathbf{0} \end{array}$$

2-2. Concrete models

Theorem (Yui [1999]) Using weighted diagonal or quasi-diagonal K3 surfaces, Yui gave concrete examples of K3 surfaces for h = 1, 2, 3, 4, 6 or 10 (in some characteristic).

Theorem (G. [2002]) Using weighted K3 surfaces of <u>Delsarte type</u>, we find concrete examples of K3 surfaces for h = 5, 8 or 9 (in some characteristic).

Note: Examples of h = 7 are still open.

Example 3.

$$S: x_0^8 x_1 + x_1^6 x_2 + x_2^3 + x_3^2 x_0 = 0 \quad \subset \mathbb{P}^3(1, 1, 3, 4)$$

with $p \neq 2, 3$. Then

$$h = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{32} \\ 2 & \text{if } p \equiv \pm 15 \pmod{32} \\ 4 & \text{if } p \equiv \pm 7, \ \pm 9 \pmod{32} \\ 8 & \text{if } p \equiv \pm 3, \ \pm 5, \ \pm 11, \ \pm 13 \\ \infty & \text{otherwise.} \pmod{32} \end{cases}$$

3. Formal groups of Calabi-Yau threefolds

3-1. Height of formal groups

X: Calabi-Yau threefold over an algebraically closed field k of characteristic p > 0 with $h := ht(\Phi_X)$.

Theorem (van der Geer and Katsura) If $h \neq \infty$, then $h \leq h^{1,2} + 1$.

- Is *h* bounded?
- Is Hodge number $h^{1,2} = \dim H^2(X, \Omega_X)$ bounded?

 \implies We will see what values we find for h.

3-2. Weighted threefolds of Delsarte type

• $\mathbb{P}^4(Q)$: Weighted projective 4-space of weight Q, where $Q = (w_0, w_1, w_2, w_3, w_4)$ and $\deg x_i = w_i$.

There are 7555 weighted projective 4-spaces containing quasismooth Calabi-Yau hypersurfaces.

• X_A : weighted projective 3-fold of Delsarte type with matrix $A = (a_{ij})$

$$X_A: \sum_{i=0}^{4} x_0^{a_{i0}} x_1^{a_{i1}} x_2^{a_{i2}} x_3^{a_{i3}} x_4^{a_{i4}} = 0$$

of degree $m := \sum_{j=0}^{4} w_j a_{ij}$ in 5 monomials.

Properties

Let $d = |\det A|$ (assume $p \nmid d$).

• If X_A is <u>quasi-smooth</u>, then X_A has only cyclic quotient singularities.

• X_A is birational to a finite quotient of Fermat 3-fold F_d defined by $y_0^d + \cdots + y_4^d = 0 \subset \mathbb{P}^4$:

$$\begin{array}{cccc}
F_d \\
\downarrow \\
X_A & \longleftarrow & X \text{ (crepant resolution)}
\end{array}$$

Cohomology group

There exists a finite group action Γ_A such that X_A is birational to F_d/Γ_A , where Γ_A acts on F_d coordinatewise and

$$H^{3}(F_{d}/\Gamma_{A}) = \bigoplus_{\underline{\alpha} \in \mathcal{A}} V(\underline{\alpha})$$

where dim $V(\underline{\alpha}) = 1$ and \mathcal{A} is an index set of vectors:

$$\mathcal{A} = \{ \underline{\boldsymbol{\alpha}} = (\alpha_0, \cdots, \alpha_4) \in \mathbb{Z}/d\mathbb{Z} \times \cdots \times \mathbb{Z}/d\mathbb{Z} \mid \cdots \}.$$

One can compute the slopes of the zeta-function of F_d/Γ_A from vectors $\underline{\alpha} = (\alpha_0, \cdots, \alpha_4)$.

Then there is a unique vector $\underline{\alpha}_X = (\alpha_0, \cdots, \alpha_4)$ such that

- $(\alpha_0, \cdots, \alpha_4)A \equiv (0, \cdots, 0) \pmod{d}$
- $\alpha_0 + \cdots + \alpha_4 = d$.

Put

$$e_X := \frac{d}{\gcd(\alpha_0, \cdots, \alpha_4)}$$

 $\implies e_X$ is the smallest modulus that describes the main part of $H^3(\widetilde{X})$. Roughly, e_X is the smallest degree of Fermat threefolds that birationally cover X_A .

• For each $\underline{\alpha} = (\alpha_0, \cdots, \alpha_4)$, define an integer

$$\|\underline{\alpha}\| = \sum_{i=0}^{4} \left\langle \frac{\alpha_i}{d} \right\rangle - 1$$

where $< \alpha_i/d >$ denotes the fractional part of α_i/d . (It takes four values $\|\underline{\alpha}\| = 0, 1, 2$ or 3.)

• Let f be the order of p modulo m. Put

$$H = \{ p^i \pmod{m} \mid 0 \le i < f \}$$

and define

$$A_H(\underline{\alpha}) = \sum_{t \in H} \|t\underline{\alpha}\|$$

3-3. Calculations of height (Fermat type)

As a special case of X_A , consider a Calabi-Yau threefold of weighted Fermat type of degree m:

$$X_A: x_0^{m_0} + x_1^{m_1} + x_2^{m_2} + x_3^{m_3} + x_4^{m_4} = 0 \subset \mathbb{P}^4(Q)$$

There are 147 weights giving such threefolds.

Theorem Let X be a crepant resolution of X_A as above. Then $e_X = m$. Let f be the order of p modulo m. Then

(1) $h := \operatorname{ht} \Phi_X < \infty$ if and only if $\|p^i \underline{\alpha}_X\| = 1$ for all $i \ (0 < i < f)$.

(2) If h is finite, then h = f.

Proof. (1) Write K for the quotient field of the ring W(k) of Witt vectors over k. Then

$$\begin{split} \mathsf{ht}\,\Phi_{\widetilde{X}} < \infty & \Leftrightarrow \dim_{K}(H^{3}_{cris}(\widetilde{X}) \otimes K_{[0,1[}) \geq 1 \\ & \Leftrightarrow \#\{\underline{\alpha} \in \mathfrak{A} | A_{H}(\underline{\alpha}) < f\} \geq 1 \\ & \Leftrightarrow A_{H}(\underline{\alpha}_{X}) < f \\ & \Leftrightarrow \|p^{i}\underline{\alpha}_{X}\| = 1 \text{ for all } i \ (0 < i < f) \end{split}$$

$$\begin{split} h &= \dim_K(H^3_{cris}(\widetilde{X}) \otimes K_{[0,1[}) \\ &= \#\{\underline{\alpha} \in \mathfrak{A} | A_H(\underline{\alpha}) < f\} \\ &= \text{the length of the } H\text{-orbit of } \underline{\alpha}_X \\ &= f \end{split}$$

Proposition If X is a Calabi-Yau threefold of weighted Fermat type, then following are the values for ht Φ_X :

1	2	3	4	5	6	7	8	9	10
11	12		14		16		18		20
21	22								

If X is a weighted hypersurface of Delsarte type in $\mathbb{P}^4(Q)$ with a finite group action G such that $(\widetilde{X}, \widetilde{Y})$ is a mirror pair.

Then by [van der Geer and Katsura],

 $\operatorname{ht}(\widetilde{X}) \leq h^{2,1}(\widetilde{X}) + 1 \quad \text{ and } \quad \operatorname{ht}(\widetilde{Y}) \leq h^{2,1}(\widetilde{Y}) + 1 = h^{1,1}(\widetilde{X}) + 1$

and by [Stienstra], $ht(\widetilde{X}) = ht(\widetilde{Y})$. Hence

 $\mathsf{ht}\,(\widetilde{X}) \leq \min\{h^{2,1}(\widetilde{X}), h^{1,1}(\widetilde{X})\} + 1.$

To obtain a big h, better to have $h^{2,1}(\widetilde{X})\approx h^{1,1}(\widetilde{X}).$

Example 4.

$$X: x_0^{1806} + x_1^{43} + x_2^7 + x_3^3 + x_4^2 = 0 \quad \subset \mathbb{P}^4(1, 42, 258, 602, 903)$$

of degree 1806 ($p \nmid 1806$). Then $e_X = 1806$, $h^{1,1} = h^{2,1} = 251$ and

$$h = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{1806} \\ 2 & \text{if } p \equiv 85, \cdots \pmod{1806} \\ & \cdots \\ 21 & \text{if } p \equiv 169, \cdots \pmod{1806} \\ 42 & \text{if } p \equiv 421, \cdots \pmod{1806} \\ \infty & \text{otherwise} \end{cases}$$

Remark. Compared with K3 surfaces, less frequent to get finite h.

3-4. Calculations of height (quasi-diagonal type)

As another special case of X_A , consider a Calabi-Yau threefold of weighted quasi-diagonal type of degree m:

$$X_A: x_0^{m_0}x_1 + x_1^{m_1} + x_2^{m_2} + x_3^{m_3} + x_4^{m_4} = 0 \subset \mathbb{P}^4(Q).$$

There are 137 weights giving such threefolds.

Remark. We also computed with the following quasi-diagonal threefolds, but could not find new values for h:

$$\begin{aligned} x_0^{m_0} x_2 + x_1^{m_1} + x_2^{m_2} + x_3^{m_3} + x_4^{m_4} &= 0 \\ x_0^{m_0} + x_1^{m_1} x_2 + x_2^{m_2} + x_3^{m_3} + x_4^{m_4} &= 0 \\ x_0^{m_0} + x_1^{m_1} + x_2^{m_2} + x_3^{m_3} + x_3 x_4^{m_4} &= 0 \end{aligned}$$

Theorem. Let X be a crepant resolution of X_A of degree m as above. Set

$$M = \mathsf{lcm}(m_0, m_2, m_3, m_4),$$

 $M_i = M/m_i \ (i = 0, 2, 3, 4)$ and $M_1 = M - M_0 - M_2 - M_3 - M_4$. Let f be the order of p modulo M. Then

(1)
$$e_X = M$$
 and $\underline{\alpha}_X = (M_0, M_1, M_2, M_3, M_4)$.

- (2) $h := ht \Phi_X < \infty$ if and only if $\|p^i \underline{\alpha}_X\| = 1$ for all $i \ (0 < i < f)$.
- (3) If h is finite, then h = f.

Proposition Following are the values for the height of Calabi-Yau threefolds of weighted quasi-diagonal type for some characteristic:

1	2	3	4	5	6	7	8	9	10
11	12		14	15	16		18		20
21	22	23	24			27	28		
30									
41	42			46					

82

Remark: Examples of h = 46 or h = 82 are not self-mirror.

Example 5.

$$X: x_0^{83}x_1 + x_1^{84} + x_2^7 + x_3^3 + x_4^2 = 0 \quad \subset \mathbb{P}^4(1, 1, 12, 28, 42)$$

of degree 84 ($p \nmid 84$). Then $e_X = 3486$, $h^{1,1} = 11$, $h^{2,1} = 491$ and

$$h = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{3486} \\ 2 & \text{if } p \equiv 1163, 3319 \pmod{3486} \\ & \dots \\ 41 & \text{if } p \equiv 127, 169, 253, \dots \pmod{3486} \\ 82 & \text{if } p \equiv 43, 85, 211, \dots \pmod{3486} \\ \infty & \text{otherwise} \end{cases}$$