# Hypergeometric Functions and Hypergeometric Abelian Varieties 

Fang-Ting Tu<br>Louisiana State University

September 29th, 2016
BIRS Workshop: Modular Forms in String Theory

Classical hypergeometric functions are well-understood. They are related to

- periods of algebraic varieties
- triangle groups, modular forms on arithmetic triangle groups
- Ramanujan type identities, combinatorial identities, physical applications...
Hypergeometric functions over finite fields are developed theoretically
by Evans, Greene, Katz, McCarthy, Ono,... They are related to

Classical hypergeometric functions are well-understood. They are related to

- periods of algebraic varieties
- triangle groups, modular forms on arithmetic triangle groups
- Ramanujan type identities, combinatorial identities, physical applications...
Hypergeometric functions over finite fields are developed theoretically by Evans, Greene, Katz, McCarthy, Ono,... They are related to
- L-functions of algebraic varieties
- character sum identities
- supercongruences (Apéry or Ramanujan type) ....

Classical hypergeometric functions are well-understood. They are related to

- periods of algebraic varieties
- triangle groups, modular forms on arithmetic triangle groups
- Ramanujan type identities, combinatorial identities, physical applications...
Hypergeometric functions over finite fields are developed theoretically by Evans, Greene, Katz, McCarthy, Ono,... They are related to
- L-functions of algebraic varieties
- character sum identities
- supercongruences (Apéry or Ramanujan type) ....

For $\lambda \neq 0,1$, let $E_{\lambda}: y^{2}=x(1-x)(1-\lambda x)$ be the elliptic curve in Legendre normal form.


- A period of $E_{\lambda}$ is

$$
\Omega\left(E_{\lambda}\right)=\int_{0}^{1} \frac{d x}{y}=\int_{0}^{1} \frac{d x}{\sqrt{x(1-x)(1-\lambda x)}}
$$

and

$$
\frac{\Omega\left(E_{\lambda}\right)}{\pi}={ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
& 1
\end{array}\right] \quad:=\sum_{n=0}^{\infty}\binom{\frac{1}{2}+n-1}{n}^{2} \lambda^{n} .
$$

For $\lambda \in \mathbb{Q}$ and $\lambda \neq 0,1 \bmod p$,

$$
\# \widetilde{E_{\lambda}}\left(\mathbb{F}_{p}\right)=p+1-a_{p}(\lambda)
$$

where

$$
a_{p}(\lambda)=\sum_{x \in \mathbb{F}_{p}}\left(\frac{x(1-x)(1-\lambda x)}{p}\right) .
$$

## The value $a_{p}(\lambda)$ is

## $a_{p}(\lambda)$ can be thought as a finite field analogue of the period

$$
\Omega\left(E_{\lambda}\right)=\int_{0}^{1}(x(1-x)(1-\lambda x))^{-1 / 2} d x .
$$

For $\lambda \in \mathbb{Q}$ and $\lambda \neq 0,1 \bmod p$,

$$
\# \widetilde{E_{\lambda}}\left(\mathbb{F}_{p}\right)=p+1-a_{p}(\lambda)
$$

where

$$
a_{p}(\lambda)=\sum_{x \in \mathbb{F}_{p}}\left(\frac{x(1-x)(1-\lambda x)}{p}\right)
$$

The value $a_{p}(\lambda)$ is

- the trace of Frobenius map;
- the $p$-th Fourier coefficient of certain modular form.
$a_{p}(\lambda)$ can be thought as a finite field analogue of the period

$$
\Omega\left(E_{\lambda}\right)=\int_{0}^{1}(x(1-x)(1-\lambda x))^{-1 / 2} d x
$$

For $\lambda \in \mathbb{Q}$ and $\lambda \neq 0,1 \bmod p$,

$$
\# \widetilde{E_{\lambda}}\left(\mathbb{F}_{p}\right)=p+1-a_{p}(\lambda)
$$

where

$$
a_{p}(\lambda)=\sum_{x \in \mathbb{F}_{p}}\left(\frac{x(1-x)(1-\lambda x)}{p}\right)
$$

The value $a_{p}(\lambda)$ is

- the trace of Frobenius map;
- the $p$-th Fourier coefficient of certain modular form.
$a_{p}(\lambda)$ can be thought as a finite field analogue of the period

$$
\Omega\left(E_{\lambda}\right)=\int_{0}^{1}(x(1-x)(1-\lambda x))^{-1 / 2} d x
$$

## ${ }_{2} F_{1}$-hypergeometric Function

Let $a, b, c \in \mathbb{Q}$. The hypergeometric function ${ }_{2} F_{1}\left[\begin{array}{ll}a & b \\ & c\end{array}\right]$ is defined by

$$
{ }_{2} F_{1}\left[\begin{array}{ll}
a & b \\
& c
\end{array}\right]=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n},
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$ is the Pochhammer symbol.

For fixed $a, b, c$ and argument $z$, the function ${ }_{2} F_{1}$

## ${ }_{2} F_{1}$-hypergeometric Function

Let $a, b, c \in \mathbb{Q}$. The hypergeometric function ${ }_{2} F_{1}\left[\begin{array}{cc}a & b \\ & ; z\end{array}\right]$ is defined by

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & b \\
& c^{2}
\end{array}\right]=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n},
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$ is the Pochhammer symbol.
For fixed $a, b, c$ and argument $z$, the function ${ }_{2} F_{1}\left[\begin{array}{ccc}a & b \\ & ; z\end{array}\right]$

- can be viewed as a quotient of periods on certain algebraic varieties.
- satisfies a hypergeometric differential equation, whose monodromy group is a triangle group.


## Hypergeometric Differential Equation

For fixed $a, b, c$ and argument $z$, the function ${ }_{2} F_{1}\left[\begin{array}{ccc}a & b \\ & ; \\ & c^{2}\end{array}\right]$ satisfies the hypergeometric differential equation

$$
\operatorname{HDE}(a, b, c ; z): F^{\prime \prime}+\frac{(a+b+1) z-c}{z(1-z)} F^{\prime}+\frac{a b}{z(1-z)} F=0,
$$

with 3 regular singularities at 0,1 , and $\infty$.

## Theorem (Schwarz)

Let $f, g$ be two independent solutions to $\operatorname{HDE}(a, b ; c ; \lambda)$ at a point $z \in \mathfrak{H}$, and let $p=|1-c|, q=|c-a-b|$, and $r=|a-b|$. Then the Schwarz map $D=f / g$ gives a bijection from $\mathfrak{H} \cup \mathbb{R}$ onto a curvilinear triangle with vertices $D(0), D(1), D(\infty)$, and corresponding angles $p \pi, q \pi, r \pi$.


The universal cover of $\Delta(p, q, r)$ is one of the followings:

- the unit sphere ( $p+q+r>1$ );
- the Euclidean plane $(p+q+r=1)$;
- the hyperbolic plane $(p+q+r<1)$.

When $p, q, r$ are rational numbers in the lowest form with $0=\frac{1}{\infty}$, let $e_{i}$ be the denominators of $p, q, r$ arranged in the non-decreasing order, the monodromy group is isomorphic to the triangle group $\left(e_{1}, e_{2}, e_{3}\right)$, where

$$
\left(e_{1}, e_{2}, e_{3}\right):=\left\langle x, y \mid x^{e_{1}}=y^{e_{2}}=(x y)^{e_{3}}=i d\right\rangle
$$

## Example

For ${ }_{2} F_{1}\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ & ; \lambda\end{array}\right]$, the triangle $\Delta(p, q, r)=\Delta(0,0,0)$ is a hyperbolic triangle. The corresponding monodromy group is the arithmetic triangle group $(\infty, \infty, \infty) \simeq \Gamma(2)$.


## Example

For ${ }_{2} F_{1}\left[\begin{array}{cc}\frac{1}{84} & \frac{13}{84} \\ & \frac{1}{2}\end{array} ; \lambda\right]$, the triangle $\Delta(p, q, r)=\Delta(1 / 2,1 / 3,1 / 7)$ is a hyperbolic triangle. The corresponding monodromy group is the arithmetic triangle group $(2,3,7)$.


- Euler's integral representation of the ${ }_{2} F_{1}$ with $c>b>0$

$$
\begin{aligned}
& { }_{2} P_{1}\left[\begin{array}{lll}
a & b & ; \lambda \\
& c
\end{array}\right]=\int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-\lambda x)^{-a} d x \\
& ={ }_{2} F_{1}\left[\begin{array}{ll}
a & b \\
& c
\end{array}\right] \quad B(b, c-b),
\end{aligned}
$$

where

$$
B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

is the Beta function.

where $N=\operatorname{lcd}(a, b, c), i=N(1-b), j=N(1+b-c), k=N a$.

- Euler's integral representation of the ${ }_{2} F_{1}$ with $c>b>0$

$$
\begin{aligned}
& { }_{2} P_{1}\left[\begin{array}{lll}
a & b & ; \lambda \\
& c
\end{array}\right]=\int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-\lambda x)^{-a} d x \\
& ={ }_{2} F_{1}\left[\begin{array}{ll}
a & b \\
& c
\end{array}\right] \quad B(b, c-b),
\end{aligned}
$$

where

$$
B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

is the Beta function.

- Following Wolfart, we can realize ${ }_{2} P_{1}\left[\begin{array}{lll}a & b \\ & c\end{array} ; \lambda\right]$ as a period of

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

where $N=\operatorname{lcd}(a, b, c), i=N(1-b), j=N(1+b-c), k=N a$.

## Examples

The function $\left.B\left(\frac{12}{84}, \frac{29}{84}\right){ }_{2} F_{1}\left[\begin{array}{cc}\frac{1}{84} & \frac{13}{84} \\ & \frac{1}{2}\end{array}\right] \lambda\right]$ is a period of the curve

$$
C_{\lambda}^{[84 ; 71,55,1]}: y^{84}=x^{71}(1-x)^{55}(1-\lambda x)
$$

## Examples

The function $\left.B\left(\frac{12}{84}, \frac{29}{84}\right){ }_{2} F_{1}\left[\begin{array}{cc}\frac{1}{84} & \frac{13}{84} \\ & \frac{1}{2}\end{array}\right] \lambda\right]$ is a period of the curve

$$
C_{\lambda}^{[84 ; 71,55,1]}: y^{84}=x^{71}(1-x)^{55}(1-\lambda x)
$$

For the curve $C_{\lambda}^{[6 ; 4,3,1]}: y^{6}=x^{4}(1-x)^{3}(1-\lambda x)$,

- $B\left(\frac{1}{3}, \frac{1}{2}\right){ }_{2} F_{1}\left[\begin{array}{cc}\frac{1}{6} & \frac{1}{3} \\ & \frac{5}{6}\end{array}\right] \lambda$ is a period.
- the corresponding triangle group is $\Gamma \simeq(3,6,6)$


## Motivation

Study the arithmetic of

- generalized Legendre curves

$$
y^{N}=x^{i}(1-x)^{j}(1-z x)^{k},
$$

## which are parameterized by Shimura curves;

- general hypergeometric varieties

$$
y^{N}=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\left(1-x_{1}\right)^{j_{1}} \cdots\left(1-x_{n}\right)^{j_{n}}\left(1-z x_{1} x_{2} x_{3} \cdots x_{n}\right)^{k} .
$$

## Motivation

Study the arithmetic of

- generalized Legendre curves

$$
y^{N}=x^{i}(1-x)^{j}(1-z x)^{k},
$$

which are parameterized by Shimura curves;

- general hypergeometric varieties

$$
y^{N}=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\left(1-x_{1}\right)^{j_{1}} \cdots\left(1-x_{n}\right)^{)^{n}}\left(1-z x_{1} x_{2} x_{3} \cdots x_{n}\right)^{k} .
$$

## Period Functions over Finite Fields

Let $p$ be a prime, and $q=p^{s}$.

- Let $\mathbb{F}_{q}^{\times}$denote the group of multiplicative characters on $\mathbb{F}_{q}^{\times}$.
- Extend $\chi \in \widehat{\mathbb{F}_{q}^{x}}$ to $\mathbb{F}_{q}$ by setting $\chi(0)=0$.


## Definition

Let $\lambda \in \mathbb{F}_{q}$, and $A, B, C \in \mathbb{F}_{q}^{\times}$. Define


## Period Functions over Finite Fields

Let $p$ be a prime, and $q=p^{s}$.

- Let $\mathbb{F}_{q}^{\times}$denote the group of multiplicative characters on $\mathbb{F}_{q}^{\times}$.
- Extend $\chi \in \widehat{\mathbb{F}_{q}^{㐅}}$ to $\mathbb{F}_{q}$ by setting $\chi(0)=0$.

Definition
Let $\lambda \in \mathbb{F}_{q}$, and $A, B, C \in \widehat{\mathbb{F}_{q}^{㐅}}$. Define

$$
{ }_{2} \mathcal{P}_{1}\left(\left.\begin{array}{ll}
A & B \\
& C
\end{array} \right\rvert\, \lambda\right)=\sum_{x \in \mathbb{F}_{q}} B(x) \bar{B} C(1-x) \bar{A}(1-\lambda x) .
$$

This is a finite field analogue of

$$
{ }_{2} P_{1}\left[\begin{array}{ll}
a & b \\
& c
\end{array} ; \lambda\right]=\int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-\lambda x)^{-a} d x
$$

Let $X_{\lambda}^{[N ; i, j, k]}$ be the smooth model of

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

Let $q$ be an odd prime power, and let $i, j, k$ be natural numbers with $1 \leq i, j, k<N$. Further, let $\eta_{N} \in \widehat{\mathbb{F}_{q}^{\times}}$be a character of order $N$. Then for $\lambda \in \mathbb{F}_{q} \backslash\{0,1\}$,

$$
\# \widetilde{X}_{\lambda}^{[N ; i, j, k], "}=" 1+q+\sum_{m=1}^{N-1} \sum_{x \in \mathbb{F}_{q}} \eta_{N}^{m}\left(x^{i}(1-x)^{j}(1-\lambda x)^{k}\right)
$$

Let $X_{\lambda}^{[N ; i, j, k]}$ be the smooth model of

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

Let $q$ be an odd prime power, and let $i, j, k$ be natural numbers with $1 \leq i, j, k<N$. Further, let $\eta_{N} \in \widehat{\mathbb{F}_{q}^{\times}}$be a character of order $N$. Then for $\lambda \in \mathbb{F}_{q} \backslash\{0,1\}$,

$$
\begin{aligned}
& \# \widetilde{X}_{\lambda}^{[N ; i, j, k], "}=" 1+q+\sum_{m=1}^{N-1} \sum_{x \in \mathbb{F}_{q}} \eta_{N}^{m}\left(x^{i}(1-x)^{j}(1-\lambda x)^{k}\right) . \\
& \left.\# \widetilde{X}_{\lambda}^{[N ; i, j, k], "}=" 1+q+\sum_{m=1}^{N-1}{ }^{2} \mathcal{P}_{1}\left(\begin{array}{r}
\eta_{N}^{-k m} \\
\eta_{N}^{(i+j) m} \\
\eta_{N}^{i m}
\end{array}\right) . \lambda\right)
\end{aligned}
$$

Let $X_{\lambda}^{\left[N_{i} i, j, k\right]}$ be the smooth model of

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k} .
$$

- For each $d \mid N$, there is a natural covering from $C_{\lambda}^{\left[N_{i}^{i} ;, j, k\right]}$ to $C_{\lambda}^{[d i i, j, k]}$.
- For a given curve $C_{\lambda}^{[N, r, j, k]}$, we let $J_{\lambda}^{\text {new }}$ be the subvariety of $\operatorname{Jac}\left(X_{\lambda}^{[N i, j, j, k]}\right)$ which is not induced from $C_{\lambda}^{[d i i, j, k]}$ for all $d \mid N$, $d<N$.
- $\operatorname{dim} J_{\lambda}^{\text {new }}=\varphi(N)$.
- Let $K$ be the Galois closure of $\mathbb{Q}(\lambda)$. For any fixed prime $\ell$, one can construct a compatible family of degree- $2 \varphi(N)$ representations

via the Tate module of $J_{\lambda}^{\text {new }}$.

Let $X_{\lambda}^{\left[N_{i} i, j, k\right]}$ be the smooth model of

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k} .
$$

- For each $d \mid N$, there is a natural covering from $C_{\lambda}^{\left[N_{i}^{i} ;, j, k\right]}$ to $C_{\lambda}^{[d i i, j, k]}$.
- For a given curve $C_{\lambda}^{[N ; i, j, k]}$, we let $J_{\lambda}^{n e w}$ be the subvariety of $\operatorname{Jac}\left(X_{\lambda}^{[N i, j, j, k]}\right)$ which is not induced from $C_{\lambda}^{[d i i, j, k]}$ for all $d \mid N$, $d<N$.
- $\operatorname{dim} J_{\lambda}^{n e w}=\varphi(N)$.

Let $K$ be the Galois closure of $\mathbb{Q}(\lambda)$. For any fixed prime $\ell$, one can construct a compatible family of degree- $2 \varphi(N)$ representations

$$
\rho_{\ell}^{\text {new }}(\lambda): G_{K}:=\operatorname{Gal}(\bar{K} / K) \rightarrow G L_{2 \varphi(N)}\left(\overline{\mathbb{Z}}_{\ell}\right)
$$

via the Tate module of $J_{\lambda}^{\text {new }}$.

Let $X_{\lambda}^{[N ; i, j, k]}$ be the smooth model of

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

- For each $d \mid N$, there is a natural covering from $C_{\lambda}^{[N ; i, j, k]}$ to $C_{\lambda}^{[d ; i, j, k]}$.
- For a given curve $C_{\lambda}^{[N ; i, j, k]}$, we let $J_{\lambda}^{\text {new }}$ be the subvariety of $\operatorname{Jac}\left(X_{\lambda}^{[N ; i, j, k]}\right)$ which is not induced from $C_{\lambda}^{[d ; i, j, k]}$ for all $d \mid N$, $d<N$.
- $\operatorname{dim} J_{\lambda}^{\text {new }}=\varphi(N)$.
- Let $K$ be the Galois closure of $\mathbb{Q}(\lambda)$. For any fixed prime $\ell$, one can construct a compatible family of degree- $2 \varphi(N)$ representations

$$
\rho_{\ell}^{\mathrm{new}}(\lambda): G_{K}:=\operatorname{Gal}(\bar{K} / K) \rightarrow G L_{2 \varphi(N)}\left(\overline{\mathbb{Z}}_{\ell}\right)
$$

via the Tate module of $J_{\lambda}^{\text {new }}$.

For any good prime $\mathfrak{p} \in \mathcal{O}_{K}$ with residue field $\mathbb{F}_{q}$,

$$
\operatorname{Tr}_{\ell}{ }_{\ell}^{\text {new }}(\lambda)\left(\operatorname{Frob}_{\mathfrak{p}}\right)=-\sum_{m \in(Z / N \mathbb{Z})^{\times}}{ }_{2} \mathcal{P}_{1}\left(\begin{array}{ll}
\eta_{N}^{-k m} & \eta_{N}^{i m} \\
& \eta_{N}^{(i+j) m} \mid \lambda
\end{array}\right)
$$

## Let $\zeta$ be a primitive $N$ th root of unity. The map $A_{\zeta}:(x, y) \mapsto\left(x, \zeta^{-1} y\right)$

 induces an action on the $\rho_{\ell}$. Consequently,

For any good prime $\mathfrak{p} \in \mathcal{O}_{K}$ with residue field $\mathbb{F}_{q}$,

$$
\operatorname{Tr} \rho_{\ell}^{\text {new }}(\lambda)\left(\operatorname{Frob}_{\mathfrak{p}}\right)=-\sum_{m \in(Z / N \mathbb{Z})^{\times}}{ }_{2} \mathcal{P}_{1}\left(\begin{array}{ll}
\eta_{N}^{-k m} & \eta_{N}^{i m} \\
& \eta_{N}^{(i+j) m} \mid \lambda
\end{array}\right)
$$

Let $\zeta$ be a primitive $N$ th root of unity. The map $A_{\zeta}:(x, y) \mapsto\left(x, \zeta^{-1} y\right)$ induces an action on the $\rho_{\ell}$. Consequently,

$$
\left.\rho_{\ell}^{\operatorname{new}^{n e w}}(\lambda)\right|_{G_{K(\zeta)}}=\bigoplus_{\operatorname{gcd}(m, N)=1} \sigma_{m, \ell}(\lambda)
$$

Here $\sigma_{m, \ell}(\lambda)$ is 2-dimensional when $(n, N)=1$.

Theorem (Fuselier, Long, Ramakrishna, Swisher, T.) If $\operatorname{gcd}(m, N)=1$, then

$$
-\operatorname{Tr} \sigma_{m, \ell}\left(\operatorname{Frob}_{q}\right) \quad \text { and } \quad{ }_{2} \mathcal{P}_{1}\left(\begin{array}{ll}
\eta_{N}^{-k m} & \eta_{N}^{i m} \\
& \eta_{N}^{m(i+j)} \mid \lambda
\end{array}\right)
$$

agree up to different embeddings of $\mathbb{Q}\left(\zeta_{N}\right)$ in $\mathbb{C}$

Theorem (Fuselier, Long, Ramakrishna, Swisher, T.) $\operatorname{lfgcd}(m, N)=1$, then

$$
-\operatorname{Tr} \sigma_{m, \ell}\left(\mathrm{Frob}_{q}\right) \quad \text { and } \quad{ }_{2} \mathcal{P}_{1}\left(\left.\begin{array}{cc}
\eta_{N}^{-k m} & \eta_{N}^{i m} \\
& \eta_{N}^{(m+j)}
\end{array} \right\rvert\, \lambda\right)
$$

agree up to different embeddings of $\mathbb{Q}\left(\zeta_{N}\right)$ in $\mathbb{C}$
Theorem (Deines, Fuselier, Long, Swisher, T.)
Let $N=3,4,6$, and $N \nmid i+j+k$. Then for each $\lambda \in \overline{\mathbb{Q}}$, the
endomorphism algebra of $\mathrm{J}_{\lambda}^{\text {new }}$ contains a quaternion algebra over $\mathbb{Q}$ if and only if

$$
B\left(\frac{i}{N}, \frac{j}{N}\right) / B\left(\frac{N-k}{N}, \frac{i+j+k-N}{N}\right) \in \overline{\mathbb{Q}} .
$$

For a given $\lambda$, let $S_{m}:={ }_{2} \mathcal{P}_{1}\left(\begin{array}{cc}\eta_{N}^{-k m} & \left.\begin{array}{c}\eta_{N}^{i m} \\ (i+j) m\end{array} \right\rvert\, \lambda\end{array}\right)$.

- Atkin-Li-Liu-Long: If End(Jnew $)$ contains a quaternion algebra, then the function

$$
F\left(\eta_{N}\right):=S_{1} / S_{N-1}=J\left(\eta_{N}^{\prime}, \eta_{N}^{\prime}\right) / J\left(\eta_{N}^{-k}, \eta_{N}^{i+j+k}\right)
$$

is a character.
Yamamoto: The quotient

is algebraic.

For a given $\lambda$, let $S_{m}:={ }_{2} \mathcal{P}_{1}\left(\begin{array}{cc}\eta_{N}^{-k m} & \left.\begin{array}{l}\eta_{N}^{i m} \\ \\ \\ \eta_{N}^{i+j) m}\end{array} \right\rvert\, \lambda\end{array}\right)$.

- Atkin-Li-Liu-Long: If End(Jnew $)$ contains a quaternion algebra, then the function

$$
F\left(\eta_{N}\right):=S_{1} / S_{N-1}=J\left(\eta_{N}^{i}, \eta_{N}^{j}\right) / J\left(\eta_{N}^{-k}, \eta_{N}^{i+j+k}\right)
$$

is a character.
Yamamoto: The quotient

is algebraic.

For a given $\lambda$, let $S_{m}:={ }_{2} \mathcal{P}_{1}\left(\begin{array}{cc}\eta_{N}^{-k m} & \left.\begin{array}{c}\eta_{N}^{i m} \\ \\ \\ \eta_{N}^{(i+j) m}\end{array} \right\rvert\, \lambda\end{array}\right)$.

- Atkin-Li-Liu-Long: If End (Jnew $)$ contains a quaternion algebra, then the function

$$
F\left(\eta_{N}\right):=S_{1} / S_{N-1}=J\left(\eta_{N}^{i}, \eta_{N}^{j}\right) / J\left(\eta_{N}^{-k}, \eta_{N}^{i+j+k}\right)
$$

is a character.

- Yamamoto: The quotient

$$
B\left(\frac{i}{N}, \frac{j}{N}\right) / B\left(-\frac{k}{N}, \frac{i+j+k}{N}\right)
$$

is algebraic.

## ${ }_{2} \mathbb{F}_{1}$-hypergeometric Functions over Finite Fields

$$
\begin{array}{ccc}
\Gamma(a) & \leftrightarrow & g(A) \\
B(a, b) & \leftrightarrow J(A, B)
\end{array}
$$

Define

$$
\left.{ }_{2} \mathbb{F}_{1}\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right] \lambda\right]=\frac{1}{J(B, C \bar{B})}{ }^{2} \mathcal{P}_{1}\left(\left.\begin{array}{ll}
A & B \\
& C
\end{array} \right\rvert\, \lambda\right),
$$

which is a finite field analogue of

$$
\left.{ }_{2} F_{1}\left[\begin{array}{ll}
a & b \\
& c
\end{array}\right] \lambda\right]=\frac{1}{B(b, c-b)^{2}}{ }^{2} P_{1}\left[\begin{array}{ll}
a & b \\
& c
\end{array}\right]
$$

$$
\begin{array}{ccc}
a=\frac{i}{N} & \leftrightarrow & A=\eta_{N}^{i} \\
\Gamma(a) & \leftrightarrow & g(A) \\
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} & \leftrightarrow & J(A, B)=\frac{g(A) g(B)}{g(A B)} \text { if } A \neq \bar{A} \\
\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin 2 \pi}, \quad a \notin \mathbb{Z} & \leftrightarrow & g(A) g(\bar{A})=A(-1) q, \quad A \neq \varepsilon
\end{array}
$$

## Gauss' multiplication formula

$$
\Gamma(m a)(2 \pi)^{(m-1) / 2}=m^{m a-\frac{1}{2}} \Gamma(a) \Gamma\left(a+\frac{1}{m}\right) \cdots \Gamma\left(a+\frac{m-1}{m}\right)
$$



Hasse-Davenport relation

$$
\begin{array}{ccc}
a=\frac{i}{N} & \leftrightarrow & A=\eta_{N}^{i} \\
\Gamma(a) & \leftrightarrow & g(A) \\
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} & \leftrightarrow & J(A, B)=\frac{g(A) g(B)}{g(A B)} \text { if } A \neq \bar{A} \\
\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin a \pi}, \quad a \notin \mathbb{Z} & \leftrightarrow & g(A) g(\bar{A})=A(-1) q, \quad A \neq \varepsilon
\end{array}
$$

## Gauss' multiplication formula

$$
\begin{gathered}
\Gamma(m a)(2 \pi)^{(m-1) / 2}=m^{m a-\frac{1}{2}} \Gamma(a) \Gamma\left(a+\frac{1}{m}\right) \cdots \Gamma\left(a+\frac{m-1}{m}\right) \\
\downarrow \\
\prod_{\substack{\chi \in \widehat{\mathbb{F}_{g}^{\widehat{a}}} \\
\chi^{m}=\varepsilon}} g(\chi \psi)=-g\left(\psi^{m}\right) \psi\left(m^{-m}\right) \prod_{\substack{\chi \in \widehat{\mathbb{F}_{q}^{x}} \\
\chi^{m}=\varepsilon}} g(\chi)
\end{gathered}
$$

Hasse-Davenport relation

Theorem (Fuselier-Long-Ramakrishna-Swisher-T.)
Let $q$ be an odd prime power, $z \neq 1 \in \mathbb{F}_{q}^{\times}$, $\phi$ be the quadratic character, and $A \in \widehat{\mathbb{F}_{q}^{\times}}$of order larger than 2. Then

$$
\left.\begin{array}{rl}
{ }_{2} \mathbb{F}_{1}\left[\begin{array}{cc}
A & \phi A \\
& \phi
\end{array} ; z\right.
\end{array}\right]=\left\{\begin{array}{l}
0, \text { if } z \text { is not a square, } \\
\bar{A}^{2}(1+\sqrt{z})+\bar{A}^{2}(1-\sqrt{z}), \text { if } z \text { is a square. }
\end{array}\right.
$$

This is the analogue to the classical result

$$
\left.{ }_{2} F_{1}\left[\begin{array}{cc}
a & a+\frac{1}{2} \\
& \frac{1}{2}
\end{array}\right] z\right]=\frac{1}{2}\left((1+\sqrt{z})^{-2 a}+(1-\sqrt{z})^{-2 a}\right) .
$$

Theorem (Fuselier-Long-Ramakrishna-Swisher-T.)
Let $q$ be an odd prime power, $z \neq 1 \in \mathbb{F}_{q}^{\times}$, $\phi$ be the quadratic character, and $A \in \widehat{\mathbb{F}_{q}^{\times}}$of order larger than 2. Then

$$
\left.\left.\begin{array}{rl}
\frac{1}{J(\phi A, \bar{A})}{ }^{2} \mathcal{P}_{1}\left(\left.\begin{array}{cc}
A & \phi A \\
\phi
\end{array} \right\rvert\, z\right.
\end{array}\right)={ }_{2} \mathbb{F}_{1}\left[\begin{array}{cc}
A & \phi A \\
& \phi
\end{array} ; z\right]=\right] \quad \begin{aligned}
& 0, \text { if } z \text { is not a square, } \\
& \bar{A}^{2}(1+\sqrt{z})+\bar{A}^{2}(1-\sqrt{z}), \text { if } z \text { is a square. }
\end{aligned}
$$

This is the analogue to the classical result

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & a+\frac{1}{2} \\
& \frac{1}{2}
\end{array} ; z\right]=\frac{1}{2}\left((1+\sqrt{z})^{-2 a}+(1-\sqrt{z})^{-2 a}\right) .
$$

## Theorem (T.-Yang)

Let $p$ be a prime congruent to 1 modulo $4, \mathfrak{p}$ be a prime ideal of $\mathbb{Z}[i]$ lying above $p$. Let $\psi_{\mathfrak{p}}$ be the quartic multiplicative character on $\mathbb{F}_{p}^{\times}$ satisfying $\psi_{\mathfrak{p}}(x) \equiv x^{(p-1) / 4} \bmod \mathfrak{p}$, for every $x \in \mathbb{Z}[i]$. Then, for $a \neq 0$, 1 , if one of $a$ and $1-a$ is not a square in $\mathbb{F}_{p}^{\times}$, we have

$$
{ }_{2} \mathcal{P}_{1}\left(\left.\begin{array}{cc}
\phi \psi_{\mathfrak{p}} & \psi_{\mathfrak{p}} \\
& \phi
\end{array} \right\rvert\, a\right)=0
$$

and

$$
{ }_{2} \mathcal{P}_{1}\left(\begin{array}{cc}
\phi \psi_{\mathfrak{p}} & \psi_{\mathfrak{p}} \\
& \phi \\
& a)=2 \psi_{\mathfrak{p}}(-1) \phi(1+b) \chi(\mathfrak{p}), ~
\end{array}\right.
$$

if $a=b^{2}$ for some $b \in \mathbb{F}_{p}^{\times}$, where $\chi$ is the Hecke character associated to the elliptic curve $E: y^{2}=x^{3}-x$ satisfying $\chi(\mathfrak{p}) \in \mathfrak{p}$ for all primes $\mathfrak{p}$ of $Z[i]$.

The curve $C_{4}$ : $\quad y^{4}=x(x-1)(x-a)$ has genus 3 and it is a 2 -fold cover of the following 3 elliptic curves

$$
\begin{array}{ll}
C_{2}: & y^{2}=x(x-1)(x-a) \\
E_{+}: & y^{2}=x^{3}+(1+b)^{2} x \\
E_{-}: & y^{2}=x^{3}+(1-b)^{2} x
\end{array}
$$

We have similar results for $\psi_{p}$ of order $N=3,6,8$, and 12 .

The curve $C_{4}$ : $\quad y^{4}=x(x-1)(x-a)$ has genus 3 and it is a 2 -fold cover of the following 3 elliptic curves

$$
\begin{array}{ll}
C_{2}: & y^{2}=x(x-1)(x-a) \\
E_{+}: & y^{2}=x^{3}+(1+b)^{2} x \\
E_{-}: & y^{2}=x^{3}+(1-b)^{2} x
\end{array}
$$

We have similar results for $\psi_{\mathfrak{p}}$ of order $N=3,6,8$, and 12 .

## Quadratic Formula

Theorem (Fuselier, Long, Ramakrishna, Swisher, and T.)
Let $B, D \in \widehat{\mathbb{F}_{q}^{\rtimes}}$, and set $C=D^{2}$. When $D \neq \phi, B \neq D$ and $x \neq \pm 1$, we have

$$
\bar{C}(1-x)_{2} \mathbb{F}_{1}\left[\begin{array}{cc}
D \phi \bar{B} & D \\
& C \bar{B} ; \frac{-4 x}{(1-x)^{2}}
\end{array}\right]={ }_{2} \mathbb{F}_{1}\left[\begin{array}{cc}
B & C \\
& C \bar{B} ; x
\end{array}\right] .
$$

This is the analogue to the classical result

$$
(1-z)^{-c}{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1+c}{2}-b & \frac{c}{2} \\
& c-b+1
\end{array} ; \frac{-4 z}{(1-z)^{2}}\right]={ }_{2} F_{1}\left[\begin{array}{cc}
b & c \\
& c-b+1
\end{array}\right]
$$

Analogue to the classical result

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & a-\frac{1}{2} \\
2 a
\end{array} ; z\right]=\left(\frac{1+\sqrt{1-z}}{2}\right)^{1-2 a} .
$$

Let $q$ be an odd prime power, $z \in \mathbb{F}_{q}^{\times}, \phi$ be the quadratic character, and $A \in \mathbb{F}_{q}^{\times}$of order larger than 2 . Then
${ }_{2} \mathbb{F}_{1}\left[\begin{array}{ll}A & \phi A \\ & A^{2}\end{array} ; z\right]=\left\{\begin{array}{l}0, \text { if } \phi(1-z)=-1, \\ \bar{A}^{2}\left(\frac{1+\sqrt{1-z}}{2}\right)+\bar{A}^{2}\left(\frac{1-\sqrt{1-z}}{2}\right), \text { if } \phi(1-z)=1 .\end{array}\right.$
Remark The Galois perspective tells us that "using the dictionary directly" does not work.

Analogue to the classical result

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & a-\frac{1}{2} \\
2 a
\end{array} ; z\right]=\left(\frac{1+\sqrt{1-z}}{2}\right)^{1-2 a} .
$$

Let $q$ be an odd prime power, $z \in \mathbb{F}_{q}^{\times}, \phi$ be the quadratic character, and $A \in \mathbb{F}_{q}^{\times}$of order larger than 2 . Then
${ }_{2} \mathbb{F}_{1}\left[\begin{array}{ll}A & \phi A \\ & A^{2}\end{array} ; z\right]=\left\{\begin{array}{l}0, \text { if } \phi(1-z)=-1, \\ \bar{A}^{2}\left(\frac{1+\sqrt{1-z}}{2}\right)+\bar{A}^{2}\left(\frac{1-\sqrt{1-z}}{2}\right), \text { if } \phi(1-z)=1 .\end{array}\right.$
Remark The Galois perspective tells us that "using the dictionary directly" does not work.

Analogue to the classical result

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & a-\frac{1}{2} \\
2 a
\end{array} ; z\right]=\left(\frac{1+\sqrt{1-z}}{2}\right)^{1-2 a} .
$$

Let $q$ be an odd prime power, $z \in \mathbb{F}_{q}^{\times}, \phi$ be the quadratic character, and $A \in \mathbb{F}_{q}^{\times}$of order larger than 2 . Then
${ }_{2} \mathbb{F}_{1}\left[\begin{array}{ll}A & \phi A \\ & A^{2}\end{array} ; z\right]=\left\{\begin{array}{l}0, \text { if } \phi(1-z)=-1, \\ \bar{A}^{2}\left(\frac{1+\sqrt{1-z}}{2}\right)+\bar{A}^{2}\left(\frac{1-\sqrt{1-z}}{2}\right), \text { if } \phi(1-z)=1 .\end{array}\right.$
Remark The Galois perspective tells us that "using the dictionary directly" does not work.

Let $X_{\lambda}^{[6 ; 4,3,1]}$ and $X_{\lambda}^{[12 ; 9,5,1]}$ be the smooth models of

$$
y^{6}=x^{4}(1-x)^{3}(1-\lambda), \quad \text { and } y^{12}=x^{9}(1-x)^{5}(1-\lambda)
$$

respectively.
Theorem (Fuselier, Long, Ramakrishna, Swisher, and T.)
Let $\lambda \in \overline{\mathbb{Q}}$ such that $\lambda \neq 0, \pm 1$. Let $J_{\lambda, 1}^{\text {new }}$ (resp. $\left.J_{(-4 \lambda}^{(1-\lambda)^{2}}, 2\right)$ be the primitive part of the Jacobian variety of $X_{\lambda}^{[6 ; 4,3,1]}\left(\right.$ resp. $\left.X_{\lambda}^{[12 ; 9,5,1]}\right)$. Then

$$
\underset{\frac{-4 \lambda}{(1-\lambda)^{2}}, 2}{\text { new }} \sim J_{\lambda, 1}^{\text {new }} \oplus J_{\lambda, 1}^{\text {new }}
$$

over some number field depending on $\lambda$.
Their corresponding arithmetic traingle groups are


Let $X_{\lambda}^{[6 ; 4,3,1]}$ and $X_{\lambda}^{[12 ; 9,5,1]}$ be the smooth models of

$$
y^{6}=x^{4}(1-x)^{3}(1-\lambda), \quad \text { and } y^{12}=x^{9}(1-x)^{5}(1-\lambda)
$$

respectively.
Theorem (Fuselier, Long, Ramakrishna, Swisher, and T.)
Let $\lambda \in \overline{\mathbb{Q}}$ such that $\lambda \neq 0, \pm 1$. Let $J_{\lambda, 1}^{\text {new }}$ (resp. $\left.J_{(-4 \lambda}^{(1-\lambda)^{2}}, 2\right)$ be the primitive part of the Jacobian variety of $X_{\lambda}^{[6 ; 4,3,1]}\left(\right.$ resp. $\left.X_{\lambda}^{[12 ; 9,5,1]}\right)$. Then

$$
\underset{\frac{-4 \lambda}{(1-\lambda)^{2}}, 2}{\text { new }} \sim J_{\lambda, 1}^{\text {new }} \oplus J_{\lambda, 1}^{\text {new }}
$$

over some number field depending on $\lambda$.
Their corresponding arithmetic traingle groups are
$(2,6,6)$
|2
$(3,6,6)$

As an analogue of the classical hypergeometric series, we inductively define

$$
\begin{aligned}
& { }_{n+1} \mathcal{P}_{n}\left[\begin{array}{llll}
A_{0} & A_{1} & \ldots & A_{n} \\
& B_{1} & \ldots & B_{n}
\end{array}\right]:= \\
& \sum_{y \in \mathbb{F}_{q}} A_{n}(y) \bar{A}_{n} B_{n}(1-y) \cdot{ }_{n} \mathcal{P}_{n-1}\left[\begin{array}{llll}
A_{0} & A_{1} & \ldots & A_{n-1} ; \lambda y \\
& B_{1} & \ldots & B_{n-1}
\end{array}\right] \\
& { }_{n+1} \mathbb{F}_{n}\left[\begin{array}{llll}
A_{0} & A_{1} & \cdots & A_{n} \\
& B_{1} & \cdots & B_{n}
\end{array}\right] \\
& :=\frac{1}{\prod_{i=1}^{n} J\left(A_{i}, B_{i} \overline{A_{i}}\right)}{ }^{n+1} \mathcal{P}_{n}\left[\begin{array}{llll}
A_{0} & A_{1} & \ldots & A_{n} \\
& B_{1} & \ldots & B_{n} ; \lambda
\end{array}\right],
\end{aligned}
$$

where $A_{i}, B_{j} \in \mathbb{F}_{q}^{\times}$, and $\lambda \in \mathbb{F}_{q}$.

Example: Consider the higher dimensional analogue of the legendre curve:
$C_{n, \lambda}: \quad y^{n}=\left(x_{1} x_{2} \cdots x_{n-1}\right)^{n-1}\left(1-x_{1}\right) \cdots\left(1-x_{n-1}\right)\left(1-\lambda x_{1} x_{2} x_{3} \cdots x_{n-1}\right)$

- $C_{2, \lambda}$ are known as Legendre curves.
$1 \leq j \leq n-1$, when convergent, can be realized as a period of $C_{n+1, \lambda}$.
- Let $q=p^{0} \equiv 1(\bmod n)$ be a prime power. Let $\eta_{n}$ be a primitive order $n$ character and $\varepsilon$ the trivial multiplicative character in $\mathbb{F}_{q}^{\times}$ Then

Example: Consider the higher dimensional analogue of the legendre curve:
$C_{n, \lambda}: \quad y^{n}=\left(x_{1} x_{2} \cdots x_{n-1}\right)^{n-1}\left(1-x_{1}\right) \cdots\left(1-x_{n-1}\right)\left(1-\lambda x_{1} x_{2} x_{3} \cdots x_{n-1}\right)$

- $C_{2, \lambda}$ are known as Legendre curves.
- Up to a scalar multiple, ${ }_{n} F_{n-1}\left[\begin{array}{cccc}\frac{j}{n} & \frac{j}{n} & \cdots & \frac{j}{n} \\ & 1 & \cdots & 1\end{array}\right] \lambda$ for any $1 \leq j \leq n-1$, when convergent, can be realized as a period of $C_{n+1, \lambda}$.
Let $q=p^{e} \equiv 1(\bmod n)$ be a prime power. Let $\eta_{n}$ be a primitive order $n$ character and $\varepsilon$ the trivial multiplicative character in $\mathbb{F}_{q}^{\times}$ Then

Example: Consider the higher dimensional analogue of the legendre curve:
$C_{n, \lambda}: \quad y^{n}=\left(x_{1} x_{2} \cdots x_{n-1}\right)^{n-1}\left(1-x_{1}\right) \cdots\left(1-x_{n-1}\right)\left(1-\lambda x_{1} x_{2} x_{3} \cdots x_{n-1}\right)$

- $C_{2, \lambda}$ are known as Legendre curves.
- Up to a scalar multiple, ${ }_{n} F_{n-1}\left[\begin{array}{cccc}\frac{j}{n} & \frac{j}{n} & \cdots & \frac{j}{n} \\ & 1 & \cdots & 1\end{array}\right]$ for any $1 \leq j \leq n-1$, when convergent, can be realized as a period of $C_{n+1, \lambda}$.
- Let $q=p^{e} \equiv 1(\bmod n)$ be a prime power. Let $\eta_{n}$ be a primitive order $n$ character and $\varepsilon$ the trivial multiplicative character in $\mathbb{F}_{q}^{\times}$. Then

$$
\# C_{n, \lambda}\left(\mathbb{F}_{q}\right)=1+q^{n-1}+\sum_{i=1}^{n-1}{ }_{n} \mathcal{P}_{n-1}\left(\begin{array}{cccc}
\eta_{n}^{i} & \eta_{n}^{i} & \cdots & \eta_{n}^{i} \\
& \varepsilon & \cdots & \varepsilon
\end{array}\right)
$$

## Local L-functions of $C_{3,1}$ and $C_{4,1}$

Theorem (Deines, Long, Fuselier, Swisher, T.)
Let $\eta_{3}$, and $\eta_{4}$ denote characters of order 3 , or 4 , respectively, in $\widehat{\mathbb{F}_{q}^{\times}}$.

- Let $q \equiv 1(\bmod 3)$ be a prime power. Then

$$
{ }_{3} \mathcal{P}_{2}\left(\begin{array}{ccc}
\eta_{3} & \eta_{3} & \eta_{3} ; 1 \\
& \varepsilon & \varepsilon
\end{array}\right)=J\left(\eta_{3}, \eta_{3}\right)^{2}-J\left(\eta_{3}^{2}, \eta_{3}^{2}\right)
$$

(Greene's transformation formula)

- Let $q \equiv 1(\bmod 4)$ be a prime power. Then


## Local L-functions of $C_{3,1}$ and $C_{4,1}$

Theorem (Deines, Long, Fuselier, Swisher, T.)
Let $\eta_{3}$, and $\eta_{4}$ denote characters of order 3 , or 4 , respectively, in $\widehat{\mathbb{F}_{q}^{\times}}$.

- Let $q \equiv 1(\bmod 3)$ be a prime power. Then

$$
{ }_{3} \mathcal{P}_{2}\left(\begin{array}{ccc}
\eta_{3} & \eta_{3} & \eta_{3} ; 1 \\
& \varepsilon & \varepsilon
\end{array}\right)=J\left(\eta_{3}, \eta_{3}\right)^{2}-J\left(\eta_{3}^{2}, \eta_{3}^{2}\right)
$$

## (Greene's transformation formula)

- Let $q \equiv 1(\bmod 4)$ be a prime power. Then

$$
{ }_{4} \mathcal{P}_{3}\left(\begin{array}{cccc}
\eta_{4} & \eta_{4} & \eta_{4} & \eta_{4} ; 1 \\
& \varepsilon & \varepsilon & \varepsilon
\end{array}\right)=J\left(\eta_{4}, \phi\right)^{3}+q J\left(\eta_{4}, \phi\right)-J\left(\overline{\eta_{4}}, \phi\right)^{2} .
$$

(McCarthy's finite field version of Whipple's formula)

## Local L-functions of $C_{3,1}$ and $C_{4,1}$

Theorem (Deines, Long, Fuselier, Swisher, T.)
Let $\eta_{3}$, and $\eta_{4}$ denote characters of order 3 , or 4 , respectively, in $\widehat{\mathbb{F}_{q}^{\times}}$.

- Let $q \equiv 1(\bmod 3)$ be a prime power. Then

$$
{ }_{3} \mathcal{P}_{2}\left(\begin{array}{ccc}
\eta_{3} & \eta_{3} & \eta_{3} ; 1 \\
& \varepsilon & \varepsilon
\end{array}\right)=J\left(\eta_{3}, \eta_{3}\right)^{2}-J\left(\eta_{3}^{2}, \eta_{3}^{2}\right)
$$

(Greene's transformation formula)

- Let $q \equiv 1(\bmod 4)$ be a prime power. Then

$$
{ }_{4} \mathcal{P}_{3}\left(\begin{array}{cccc}
\eta_{4} & \eta_{4} & \eta_{4} & \eta_{4} ; 1 \\
& \varepsilon & \varepsilon & \varepsilon
\end{array}\right)=J\left(\eta_{4}, \phi\right)^{3}+q J\left(\eta_{4}, \phi\right)-J\left(\overline{\eta_{4}}, \phi\right)^{2} .
$$

(McCarthy's finite field version of Whipple's formula)

$$
C_{4,1}: y^{4}=\left(x_{1} x_{2} x_{3}\right)^{3}\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)\left(x_{1}-x_{2} x_{3}\right)
$$

Ahlgren-Ono For any odd prime $p$,

$$
{ }_{4} \mathcal{P}_{3}\left(\begin{array}{cccc}
\eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} ; 1 \\
& \varepsilon & \varepsilon & \varepsilon
\end{array}\right)=-a(p)-p
$$

where $a(p)$ is the pth coefficient of the weight-4 Hecke eigenform $\eta(2 z)^{4} \eta(4 z)^{4}$, with $\eta(z)$ being the Dedekind eta function.

The factor of the zeta function $Z_{C_{4,1}}(T, p)$ corresponding to


$$
C_{4,1}: y^{4}=\left(x_{1} x_{2} x_{3}\right)^{3}\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)\left(x_{1}-x_{2} x_{3}\right)
$$

Ahlgren-Ono For any odd prime $p$,

$$
{ }_{4} \mathcal{P}_{3}\left(\begin{array}{cccc}
\eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} & \eta_{4}^{2} ; 1 \\
& \varepsilon & \varepsilon & \varepsilon
\end{array}\right)=-a(p)-p
$$

where $a(p)$ is the pth coefficient of the weight-4 Hecke eigenform $\eta(2 z)^{4} \eta(4 z)^{4}$, with $\eta(z)$ being the Dedekind eta function.

The factor of the zeta function $Z_{C_{4,1}}(T, p)$ corresponding to

$$
y^{2}=\left(x_{1} x_{2} x_{3}\right)^{3}\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)\left(x_{1}-x_{2} x_{3}\right)
$$

is

$$
Z_{C_{4,1}^{\text {old }}}(T, p)=\frac{\left(1-a(p) T+p^{3} T^{2}\right)(1-p T)}{(1-T)\left(1-p^{3} T\right)}
$$

- ${ }_{4} \mathcal{P}_{3}\left(\begin{array}{cccc}\eta_{4} & \eta_{4} & \eta_{4} & \eta_{4} ; 1 \\ & \varepsilon & \varepsilon & \varepsilon\end{array}\right)=J\left(\eta_{4}, \phi\right)^{3}+q J\left(\eta_{4}, \phi\right)-J\left(\overline{\eta_{4}}, \phi\right)^{2}$
- Hasse-Davenport relation

Let $\mathbb{F}$ be a finite field and $\mathbb{F}_{s}$ an extension field over $\mathbb{F}$ of degree $s$. If $\chi \neq \varepsilon \in \widehat{\mathbb{F}^{\times}}$and $\chi_{s}=\chi \circ N_{\mathbb{F}_{s} / \mathbb{F}}$ a character of $\mathbb{F}_{s}$. Then

$$
(-g(\chi))^{s}=-g\left(\chi_{s}\right)
$$

- ${ }_{4} \mathcal{P}_{3}\left(\begin{array}{cccc}\eta_{4} & \eta_{4} & \eta_{4} & \eta_{4} ; 1 \\ & \varepsilon & \varepsilon & \varepsilon\end{array}\right)=J\left(\eta_{4}, \phi\right)^{3}+q J\left(\eta_{4}, \phi\right)-J\left(\overline{\eta_{4}}, \phi\right)^{2}$
- Hasse-Davenport relation

Let $\mathbb{F}$ be a finite field and $\mathbb{F}_{s}$ an extension field over $\mathbb{F}$ of degree $s$. If $\chi \neq \varepsilon \in \widehat{\mathbb{F}^{\times}}$and $\chi_{s}=\chi \circ N_{\mathbb{F}_{s} / \mathbb{F}}$ a character of $\mathbb{F}_{s}$. Then

$$
(-g(\chi))^{s}=-g\left(\chi_{s}\right)
$$

- The factor of $Z_{C_{4,1}(T, p)}$ corresponding to new part is

$$
\begin{aligned}
& \left(1+\left(\beta_{p}^{3}+\bar{\beta}_{p}^{3}\right) T+p^{3} T^{2}\right)\left(1+\left(\beta_{p}+\overline{\beta_{p}}\right) p T+p^{3} T^{2}\right) \\
& \left(1-\left(\beta_{p}^{2}+\bar{\beta}_{p}^{2}\right) T+p^{2} T^{2}\right)
\end{aligned}
$$

where $\beta_{p}=J\left(\eta_{4}, \phi\right)$.

## Batyrev-Van Straten: Calabi-Yau manifolds whose Picard Fuchs equations are hypergeometric functions of the form

$$
{ }_{4} F_{3}\left[\begin{array}{cccc}
d_{1} & 1-d_{1} & d_{2} & 1-d_{2} \\
1 & 1 & 1
\end{array}\right], \quad d_{1}, d_{2} \in\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}\right\} .
$$

Conjectures: $z=1$

- [Cohen]

- [Long] Numerically, Long finds the weight 4 cuspidal Hecke forms corresponding to $d_{1}=\frac{1}{2}$ and $d_{2}=\frac{1}{3}, \frac{1}{4}, \frac{1}{6}$.

Batyrev-Van Straten: Calabi-Yau manifolds whose Picard Fuchs equations are hypergeometric functions of the form

$$
{ }_{4} F_{3}\left[\begin{array}{cccc}
d_{1} & 1-d_{1} & d_{2} & 1-d_{2} \\
1 & 1 & 1
\end{array}\right], \quad d_{1}, d_{2} \in\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}\right\} .
$$

Conjectures: $z=1$

- [Cohen]

$$
{ }_{4} \mathbb{F}_{3}\left[\begin{array}{cccc}
\eta_{3} & \bar{\eta}_{3} & \eta_{4} & \bar{\eta}_{4} ; \\
& \varepsilon & \varepsilon & \varepsilon
\end{array}\right]=-J\left(\eta_{3}, \eta_{3}\right)^{3}-J\left(\bar{\eta}_{3}, \bar{\eta}_{3}\right)^{3}+\eta_{12}(-1) p
$$

- [Long] Numerically, Long finds the weight 4 cuspidal Hecke forms corresponding to $d_{1}=\frac{1}{2}$ and $d_{2}=\frac{1}{3}, \frac{1}{4}, \frac{1}{6}$.

