Zeta-polynomials for modular form periods

Ken Ono (Emory University)

Riemann's zeta-function

Definition (Riemann)

For $\operatorname{Re}(s)>1$, define the zeta-function by

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Riemann's zeta-function

Definition (Riemann)

For $\operatorname{Re}(s)>1$, define the zeta-function by

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Theorem (Fundamental Theorem)

(1) The function $\zeta(s)$ has an analytic continuation to \mathbb{C} (apart from a simple pole at $s=1$ with residue 1).

Riemann's zeta-function

Definition (Riemann)

For $\operatorname{Re}(s)>1$, define the zeta-function by

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Theorem (Fundamental Theorem)

(1) The function $\zeta(s)$ has an analytic continuation to \mathbb{C} (apart from a simple pole at $s=1$ with residue 1).
(2) We have the functional equation

$$
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-\frac{(1-s)}{2}} \cdot \Gamma\left(\frac{1-s}{2}\right) \cdot \zeta(1-s) .
$$

\$1 million prize problem

Conjecture (Riemann)

Apart from the negative evens, the zeros of $\zeta(s)$ satisfy $\operatorname{Re}(s)=\frac{1}{2}$.

\$1 million prize problem

Conjecture (Riemann)

Apart from the negative evens, the zeros of $\zeta(s)$ satisfy $\operatorname{Re}(s)=\frac{1}{2}$.

Remarks

(1) The "line of symmetry" for $s \longleftrightarrow 1-s$ is $\operatorname{Re}(s)=\frac{1}{2}$.

\$1 million prize problem

Conjecture (Riemann)

Apart from the negative evens, the zeros of $\zeta(s)$ satisfy $\operatorname{Re}(s)=\frac{1}{2}$.

Remarks

(1) The "line of symmetry" for $s \longleftrightarrow 1-s$ is $\operatorname{Re}(s)=\frac{1}{2}$.
(2) The first "gazillion" zeros satisfy RH (Odlyzko,...). $40+\%$ of the zeros satisfy RH (Selberg, Levinson, Conrey....).

The values $\zeta(-n)$

Theorem (Euler)
As a power series in t, we have

$$
\frac{t}{1-e^{-t}}=1+\frac{1}{2} t-t \sum_{n=1}^{\infty} \zeta(-n) \cdot \frac{t^{n}}{n!} .
$$

The values $\zeta(-n)$

Theorem (Euler)

As a power series in t, we have

$$
\frac{t}{1-e^{-t}}=1+\frac{1}{2} t-t \sum_{n=1}^{\infty} \zeta(-n) \cdot \frac{t^{n}}{n!}
$$

Remark

This series is also a generating function for K-groups of \mathbb{Z}.

Manin's Notion of Zeta-polynomials

Definition (Manin)

A polynomial $Z(s)$ is a zeta-polynomial if it satisfies:

Manin's Notion of Zeta-polynomials

Definition (Manin)

A polynomial $Z(s)$ is a zeta-polynomial if it satisfies:

- It is arithmetic-geometric in origin.

Manin's Notion of Zeta-polynomials

Definition (Manin)

A polynomial $Z(s)$ is a zeta-polynomial if it satisfies:

- It is arithmetic-geometric in origin.
- For $s \in \mathbb{C}$ we have $Z(s)= \pm Z(1-s)$.

Manin's Notion of Zeta-polynomials

Definition (Manin)

A polynomial $Z(s)$ is a zeta-polynomial if it satisfies:

- It is arithmetic-geometric in origin.
- For $s \in \mathbb{C}$ we have $Z(s)= \pm Z(1-s)$.
- If $Z(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.

Manin's Notion of Zeta-polynomials

Definition (Manin)

A polynomial $Z(s)$ is a zeta-polynomial if it satisfies:

- It is arithmetic-geometric in origin.
- For $s \in \mathbb{C}$ we have $Z(s)= \pm Z(1-s)$.
- If $Z(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.
- The values $Z(-n)$ have a "nice" generating function

Manin's Notion of Zeta-polynomials

Definition (Manin)

A polynomial $Z(s)$ is a zeta-polynomial if it satisfies:

- It is arithmetic-geometric in origin.
- For $s \in \mathbb{C}$ we have $Z(s)= \pm Z(1-s)$.
- If $Z(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.
- The values $Z(-n)$ have a "nice" generating function
- The values $Z(-n)$ encode arithmetic-geometric information.

Manin's Speculation Based on Numerical Calculations

Manin's Speculation Based on Numerical Calculations

Speculation (Manin)

There is a theory of zeta-polynomials for modular form periods.

Manin's Speculation Based on Numerical Calculations

Speculation (Manin)
There is a theory of zeta-polynomials for modular form periods.

Theorem (Main Theorem)
Manin's Speculation is true.

Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then the following are true:

Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others) If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then the following are true:
(1) $L(f, s)$ has an analytic continuation to \mathbb{C}.

Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others) If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then the following are true:
(1) $L(f, s)$ has an analytic continuation to \mathbb{C}.
(2) If $\Lambda(f, s):=\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma(s) L(f, s)$, then $\exists \epsilon(f) \in\{ \pm 1\}$ for which

$$
\Lambda(f, s)=\epsilon(f) \cdot \Lambda(f, k-s)
$$

Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others) If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then the following are true:
(1) $L(f, s)$ has an analytic continuation to \mathbb{C}.
(2) If $\Lambda(f, s):=\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma(s) L(f, s)$, then $\exists \epsilon(f) \in\{ \pm 1\}$ for which

$$
\Lambda(f, s)=\epsilon(f) \cdot \Lambda(f, k-s) .
$$

(3) There are numbers $\omega_{f}^{ \pm}$such that for $1 \leq j \leq k-1$

$$
L(f, j) \in \overline{\mathbb{Q}} \cdot(2 \pi i)^{j} \cdot \omega_{f}^{ \pm} .
$$

Critical Values and Weighted Moments

Definition (Deligne, Manin, Shimura)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then its critical L-values are

$$
\{L(f, 1), \quad L(f, 2), \quad L(f, 3), \ldots, \quad L(f, k-1)\} .
$$

Critical Values and Weighted Moments

Definition (Deligne, Manin, Shimura)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then its critical L-values are

$$
\{L(f, 1), \quad L(f, 2), \quad L(f, 3), \ldots, \quad L(f, k-1)\} .
$$

Definition (O-Rolen-Sprung)

If $m \geq 1$, then we define the weighted moments

$$
M_{f}(m):=\frac{1}{(k-2)!} \sum_{j=0}^{k-2}\binom{k-2}{j} \wedge(f, j+1) \cdot j^{m}
$$

The zeta-polynomials ($k \geq 4$ even)

The zeta-polynomials ($k \geq 4$ even)

Definition (O-Rolen-Sprung)

The zeta-polynomial for f is

$$
Z_{f}(s):=\sum_{h=0}^{k-2}(-s)^{h} \sum_{m=0}^{k-2-h}\binom{m+h}{h} \cdot S(k-2, m+h) \cdot M_{f}(m)
$$

The zeta-polynomials ($k \geq 4$ even)

Definition (O-Rolen-Sprung)

The zeta-polynomial for f is

$$
Z_{f}(s):=\sum_{h=0}^{k-2}(-s)^{h} \sum_{m=0}^{k-2-h}\binom{m+h}{h} \cdot S(k-2, m+h) \cdot M_{f}(m)
$$

where the (signed) Stirling numbers of the first kind are given by

$$
(x)_{n}=x(x-1)(x-2) \cdots(x-n+1)=: \sum_{m=0}^{n} S(n, m) x^{m} .
$$

The $S(n, k)$ form Pascal-type triangles

We have the recurrence

$$
S(n, k)=S(n-1, k-1)-(n-1) \cdot S(n-1, k)
$$

The $S(n, k)$ form Pascal-type triangles

We have the recurrence

$$
\begin{aligned}
& S(n, k)=S(n-1, k-1)-(n-1) \cdot S(n-1, k) . \\
& 1 \\
& 0 \quad 1 \\
& \begin{array}{lll}
0 & -1 & 1
\end{array} \\
& \begin{array}{llll}
0 & 2 & -3 & 1
\end{array} \\
& \begin{array}{cccccccccccc}
& 0 & 0 & & -6 & & 11 & & -6 & & 1 & \\
& 0 & 24 & & -50 & & 35 & & -10 & & 1 & \\
0 & & -120 & & 274 & & -225 & & 85 & & -15 & \\
1
\end{array}
\end{aligned}
$$

The $S(n, k)$ form Pascal-type triangles

We have the recurrence

$$
S(n, k)=S(n-1, k-1)-(n-1) \cdot S(n-1, k)
$$

1
$0 \quad 1$
$\begin{array}{lll}0 & -1 & 1\end{array}$

		0	0	2	-1		1					
	0	0		-6		11		-6		1		
0	0		24		-50		35		-10		1	
0	-120		274		-225		85		-15		1	

Remark

$Z_{f}(s)$ is a cobbling of layers of these weighted by moments $M_{f}(m)$.

Functional Equations and the Riemann Hypothesis

Theorem 1 (O-Rolen-Sprung)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:

Functional Equations and the Riemann Hypothesis

Theorem 1 (O-Rolen-Sprung)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
(1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.

Functional Equations and the Riemann Hypothesis

Theorem 1 (O-Rolen-Sprung)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
(1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.
(2) If $Z_{f}(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.

Functional Equations and the Riemann Hypothesis

```
Theorem 1 (O-Rolen-Sprung)
If \(f \in S_{k}\left(\Gamma_{0}(N)\right)\) is an even weight \(k \geq 4\) newform, then we have:
    (1) For all \(s \in \mathbb{C}\) we have that \(Z_{f}(s)=\epsilon(f) Z_{f}(1-s)\).
    (2) If \(Z_{f}(\rho)=0\), then \(\operatorname{Re}(\rho)=1 / 2\).
```


Remark

To completely confirm Manin's speculation we must show:

Functional Equations and the Riemann Hypothesis

> Theorem 1 (O-Rolen-Sprung)
> If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
> (1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.
> (2) If $Z_{f}(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.

Remark

To completely confirm Manin's speculation we must show:

- The values $Z_{f}(-n)$ have a "nice" generating function.

Functional Equations and the Riemann Hypothesis

> Theorem 1 (O-Rolen-Sprung)
> If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
> (1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.
> (2) If $Z_{f}(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.

Remark

To completely confirm Manin's speculation we must show:

- The values $Z_{f}(-n)$ have a "nice" generating function.
- The $Z(-n)$ encode arithmetic-geometric information.

Example of $\Delta \in S_{12}$

$$
Z_{\Delta}(s) \approx\left(5.11 \times 10^{-7}\right) s^{10}+\cdots-0.0199 s+0.00596
$$

Example of $\Delta \in S_{12}$

$$
Z_{\Delta}(s) \approx\left(5.11 \times 10^{-7}\right) s^{10}+\cdots-0.0199 s+0.00596
$$

Figure: The roots of $Z_{\Delta}(s)$

A Nice Generating Function

Theorem 2 (O-Rolen-Sprung)
Define the normalized period polynomial for f by

$$
R_{f}(z):=\sum_{j=0}^{k-2}\binom{k-2}{j} \cdot \Lambda(f, k-1-j) \cdot z^{j}
$$

A Nice Generating Function

Theorem 2 (O-Rolen-Sprung)
Define the normalized period polynomial for f by

$$
R_{f}(z):=\sum_{j=0}^{k-2}\binom{k-2}{j} \cdot \Lambda(f, k-1-j) \cdot z^{j}
$$

Then we have that

$$
\frac{R_{f}(z)}{(1-z)^{k-1}}=\sum_{n=0}^{\infty} Z_{f}(-n) z^{n} .
$$

A Nice Generating Function

Theorem 2 (O-Rolen-Sprung)
Define the normalized period polynomial for f by

$$
R_{f}(z):=\sum_{j=0}^{k-2}\binom{k-2}{j} \cdot \Lambda(f, k-1-j) \cdot z^{j}
$$

Then we have that

$$
\frac{R_{f}(z)}{(1-z)^{k-1}}=\sum_{n=0}^{\infty} Z_{f}(-n) z^{n}
$$

Remark (Euler)

$$
\frac{t}{1-e^{-t}}=1+\frac{1}{2} t-t \sum_{n=1}^{\infty} \zeta(-n) \cdot \frac{t^{n}}{n!}
$$

Arithmetic Geometric Information

Conjecture (Bloch-Kato). Let $0 \leq j \leq k-2$, and assume $L(f, j+1) \neq 0$. Then we have

$$
\frac{L(f, j+1)}{(2 \pi i)^{j+1} \Omega^{(-1)^{j+1}}}=u_{j+1} \times \frac{\operatorname{Tam}(j+1) \# Ш(j+1)}{\# H_{\mathbb{Q}}^{0}(j+1) \# H_{\mathbb{Q}}^{0}(k-1-j)}=: C(j+1)
$$

Arithmetic Geometric Information

Conjecture (Bloch-Kato). Let $0 \leq j \leq k-2$, and assume $L(f, j+1) \neq 0$. Then we have

$$
\frac{L(f, j+1)}{(2 \pi i)^{j+1} \Omega^{(-1)^{j+1}}}=u_{j+1} \times \frac{\operatorname{Tam}(j+1) \# \amalg(j+1)}{\# H_{\mathbb{Q}}^{0}(j+1) \# H_{\mathbb{Q}}^{0}(k-1-j)}=: C(j+1)
$$

Corollary (O-Rolen-Sprung)

Assuming the Bloch-Kato Conjecture, we have that

$$
M_{f}(m)=\sum_{0 \leq j \leq k-2} \widetilde{C(j+1)} j^{m} .
$$

Combinatorial Polynomials $H_{k}^{ \pm}(s)$

Definition (Binomial Coefficient)

If $x, y \in \mathbb{C}$, then the complex binomial coefficient $\binom{x}{y}$ is

$$
\binom{x}{y}:=\frac{\Gamma(x+1)}{\Gamma(y+1) \Gamma(x-y+1)} .
$$

Combinatorial Polynomials $H_{k}^{ \pm}(s)$

Definition (Binomial Coefficient)

If $x, y \in \mathbb{C}$, then the complex binomial coefficient $\binom{x}{y}$ is

$$
\binom{x}{y}:=\frac{\Gamma(x+1)}{\Gamma(y+1) \Gamma(x-y+1)} .
$$

Definition (Special Polynomials)

If $k \geq 4$ is even, then

$$
\begin{aligned}
& H_{k}^{+}(s):=\binom{s+k-2}{k-2}+\binom{s}{k-2}, \\
& H_{k}^{-}(s):=\sum_{j=0}^{k-3}\binom{s-j+k-3}{k-3} .
\end{aligned}
$$

The $\widetilde{H}_{k}^{ \pm}(-s)$ Approximate $\widetilde{Z}_{f}(s)$

Theorem 3 (O-Rolen-Sprung)
Suppose that $k \geq 4$ and $\epsilon \in\{ \pm 1\}$. Then we have that

$$
\lim _{N \rightarrow+\infty} \widetilde{Z}_{f}(s)=\widetilde{H}_{k}^{\epsilon}(-s),
$$

The $\widetilde{H}_{k}^{ \pm}(-s)$ Approximate $\widetilde{Z}_{f}(s)$

Theorem 3 (O-Rolen-Sprung)

Suppose that $k \geq 4$ and $\epsilon \in\{ \pm 1\}$. Then we have that

$$
\lim _{N \rightarrow+\infty} \widetilde{Z}_{f}(s)=\widetilde{H}_{k}^{\epsilon}(-s),
$$

where $f \in S_{k}\left(\Gamma_{0}(N)\right)$ are chosen with $\epsilon(f)=\epsilon$.

The $\widetilde{H}_{k}^{ \pm}(-s)$ Approximate $\widetilde{Z}_{f}(s)$

Theorem 3 (O-Rolen-Sprung)

Suppose that $k \geq 4$ and $\epsilon \in\{ \pm 1\}$. Then we have that

$$
\lim _{N \rightarrow+\infty} \widetilde{Z}_{f}(s)=\widetilde{H}_{k}^{\epsilon}(-s),
$$

where $f \in S_{k}\left(\Gamma_{0}(N)\right)$ are chosen with $\epsilon(f)=\epsilon$.

Remark

This offers an unexpected connection to polytopes.

Ehrhart Polynomials

Definition

Given a d-dimensional integral lattice polytope in \mathbb{R}^{n}, the Ehrhart polynomial $\mathcal{L}_{p}(x)$ is determined by

$$
\mathcal{L}_{p}(m)=\#\left\{p \in \mathbb{Z}^{n}: p \in m \mathcal{P}\right\}
$$

Ehrhart Polynomials

Definition

Given a d-dimensional integral lattice polytope in \mathbb{R}^{n}, the Ehrhart polynomial $\mathcal{L}_{p}(x)$ is determined by

$$
\mathcal{L}_{p}(m)=\#\left\{p \in \mathbb{Z}^{n}: p \in m \mathcal{P}\right\}
$$

Example

The polynomials $H_{k}^{-}(s)$ are the Ehrhart polynomials of the simplex

$$
\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{k-3},-\sum_{j=1}^{k-3} e_{j}\right\}
$$

Limits of $f \in S_{6}\left(\Gamma_{0}(N)\right)$ with $\epsilon(f)=-1$

Figure: The tetrahedron whose Ehrhart polynomial is $\mathrm{H}_{6}^{-}(s)$.

Limits of $f \in S_{6}\left(\Gamma_{0}(N)\right)$ with $\epsilon(f)=-1$

Figure: The tetrahedron whose Ehrhart polynomial is $\mathrm{H}_{6}^{-}(s)$.

$$
\begin{aligned}
& \lim _{N \rightarrow+\infty} \widetilde{Z}_{f}(s) \\
& \quad=\widetilde{H}_{6}^{-}(-s)=\left(s-\frac{1}{2}\right)\left(s-\frac{1}{2}+\frac{\sqrt{-11}}{2}\right)\left(s-\frac{1}{2}-\frac{\sqrt{-11}}{2}\right) .
\end{aligned}
$$

Theorem 1 (O-Rolen-Sprung)

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:

Theorem 1 (O-Rolen-Sprung)

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
(1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.

Theorem 1 (O-Rolen-Sprung)

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
(1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.
(2) If $Z_{f}(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.

Theorem 1 (O-Rolen-Sprung)

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
(1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.
(2) If $Z_{f}(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.

Theorem 2 (O-Rolen-Sprung)
Define the period polynomial for f by

$$
R_{f}(z):=\sum_{j=0}^{k-2}\binom{k-2}{j} \cdot \Lambda(f, k-1-j) \cdot z^{j}
$$

Theorem 1 (O-Rolen-Sprung)

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then we have:
(1) For all $s \in \mathbb{C}$ we have that $Z_{f}(s)=\epsilon(f) Z_{f}(1-s)$.
(2) If $Z_{f}(\rho)=0$, then $\operatorname{Re}(\rho)=1 / 2$.

Theorem 2 (O-Rolen-Sprung)
Define the period polynomial for f by

$$
R_{f}(z):=\sum_{j=0}^{k-2}\binom{k-2}{j} \cdot \Lambda(f, k-1-j) \cdot z^{j}
$$

Then we have that

$$
\frac{R_{f}(z)}{(1-z)^{k-1}}=\sum_{n=0}^{\infty} Z_{f}(-n) z^{n}
$$

Theorem (Rodriguez-Villegas (2002))

Suppose that $U(z) \in \mathbb{R}[z]$ is a degree e polynomial with $U(1) \neq 0$. Then there is a polynomial $H(z)$ for which

$$
\frac{U(z)}{(1-z)^{e+1}}=\sum_{n=0}^{\infty} H(n) z^{n} .
$$

Theorem (Rodriguez-Villegas (2002))

Suppose that $U(z) \in \mathbb{R}[z]$ is a degree e polynomial with $U(1) \neq 0$. Then there is a polynomial $H(z)$ for which

$$
\frac{U(z)}{(1-z)^{e+1}}=\sum_{n=0}^{\infty} H(n) z^{n} .
$$

If all roots of $U(z)$ are on $|z|=1$, then we have:

Theorem (Rodriguez-Villegas (2002))

Suppose that $U(z) \in \mathbb{R}[z]$ is a degree e polynomial with $U(1) \neq 0$. Then there is a polynomial $H(z)$ for which

$$
\frac{U(z)}{(1-z)^{e+1}}=\sum_{n=0}^{\infty} H(n) z^{n} .
$$

If all roots of $U(z)$ are on $|z|=1$, then we have:
(1) All roots of $Z(s):=H(-s)$ lie on $\operatorname{Re}(s)=1 / 2$.

Theorem (Rodriguez-Villegas (2002))

Suppose that $U(z) \in \mathbb{R}[z]$ is a degree e polynomial with $U(1) \neq 0$. Then there is a polynomial $H(z)$ for which

$$
\frac{U(z)}{(1-z)^{e+1}}=\sum_{n=0}^{\infty} H(n) z^{n}
$$

If all roots of $U(z)$ are on $|z|=1$, then we have:
(1) All roots of $Z(s):=H(-s)$ lie on $\operatorname{Re}(s)=1 / 2$.
(2) We have that

$$
Z(1-s)= \pm Z(s)
$$

Proof of Theorems 1 and 2

Proof of Theorems 1 and 2

Proof of Theorems 1 and 2

Sketch of the proof of Theorems 1 and 2.

- For even weight $k \geq 4$ newforms f we must prove that

$$
R_{f}(\rho)=0 \quad \Longrightarrow \quad|\rho|=1
$$

Proof of Theorems 1 and 2

Sketch of the proof of Theorems 1 and 2.

- For even weight $k \geq 4$ newforms f we must prove that

$$
R_{f}(\rho)=0 \quad \Longrightarrow \quad|\rho|=1
$$

- Make the definition of $Z_{f}(s):=H(-s)$ explicit (i.e. Stirling numbers and weight moments).

Generating Function for Critical Values

Generating Function for Critical Values

Definition

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then its period polynomial is

$$
r_{f}(X):=\sum_{m=0}^{k-2} L(f, k-1-m) \cdot \frac{(2 \pi i X)^{m}}{m!}
$$

Generating Function for Critical Values

Definition

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then its period polynomial is

$$
r_{f}(X):=\sum_{m=0}^{k-2} L(f, k-1-m) \cdot \frac{(2 \pi i X)^{m}}{m!}
$$

Natural Problems
(1) Determine the $r_{f}(X)$.

Generating Function for Critical Values

Definition

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then its period polynomial is

$$
r_{f}(X):=\sum_{m=0}^{k-2} L(f, k-1-m) \cdot \frac{(2 \pi i X)^{m}}{m!}
$$

Natural Problems
(1) Determine the $r_{f}(X)$.
(2) Study the "distribution" of the zeros of $r_{f}(X)$.

Example. $f \in S_{4}\left(\Gamma_{0}(8)\right)$

Let $f(\tau)=q-4 q^{3}-2 q^{5}+\cdots \in S_{4}\left(\Gamma_{0}(8)\right)$ be the unique newform.

Example. $f \in S_{4}\left(\Gamma_{0}(8)\right)$

Let $f(\tau)=q-4 q^{3}-2 q^{5}+\cdots \in S_{4}\left(\Gamma_{0}(8)\right)$ be the unique newform.
(1) We find numerically that

$$
\begin{aligned}
& L(f, 1) \approx 0.354500683730965 \\
& L(f, 2) \approx 0.690031163123398 \\
& L(f, 3) \approx 0.874695377085079
\end{aligned}
$$

Example. $f \in S_{4}\left(\Gamma_{0}(8)\right)$

Let $f(\tau)=q-4 q^{3}-2 q^{5}+\cdots \in S_{4}\left(\Gamma_{0}(8)\right)$ be the unique newform.
(1) We find numerically that

$$
\begin{aligned}
& L(f, 1) \approx 0.354500683730965 \\
& L(f, 2) \approx 0.690031163123398 \\
& L(f, 3) \approx 0.874695377085079
\end{aligned}
$$

(2) This means that

$$
r_{f}(X) \approx-6.9975 X^{2}+4.33559 i X+0.87469
$$

Example. $f \in S_{4}\left(\Gamma_{0}(8)\right)$

Let $f(\tau)=q-4 q^{3}-2 q^{5}+\cdots \in S_{4}\left(\Gamma_{0}(8)\right)$ be the unique newform.
(1) We find numerically that

$$
\begin{aligned}
& L(f, 1) \approx 0.354500683730965 \\
& L(f, 2) \approx 0.690031163123398 \\
& L(f, 3) \approx 0.874695377085079
\end{aligned}
$$

(2) This means that

$$
r_{f}(X) \approx-6.9975 X^{2}+4.33559 i X+0.87469
$$

(3) Its roots are $\pm 0.170376720591406+0.309793113352311 i$,

Example. $f \in S_{4}\left(\Gamma_{0}(8)\right)$

Let $f(\tau)=q-4 q^{3}-2 q^{5}+\cdots \in S_{4}\left(\Gamma_{0}(8)\right)$ be the unique newform.
(1) We find numerically that

$$
\begin{aligned}
& L(f, 1) \approx 0.354500683730965 \\
& L(f, 2) \approx 0.690031163123398 \\
& L(f, 3) \approx 0.874695377085079
\end{aligned}
$$

(2) This means that

$$
r_{f}(X) \approx-6.9975 X^{2}+4.33559 i X+0.87469
$$

(3) Its roots are $\pm 0.170376720591406+0.309793113352311 i$, which have norm ${ }^{2}$ approximately $0.125000000 \approx \frac{1}{8}$.
"Riemann Hypothesis" for Period Polynomials

"Riemann Hypothesis" for Period Polynomials

Conjecture (RHPP)

Suppose that $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform with $k \geq 4$.

"Riemann Hypothesis" for Period Polynomials

Conjecture (RHPP)

Suppose that $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform with $k \geq 4$. If $r_{f}(z)=0$, then $|z|=\frac{1}{\sqrt{N}}$.

"Riemann Hypothesis" for Period Polynomials

Conjecture (RHPP)

Suppose that $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform with $k \geq 4$. If $r_{f}(z)=0$, then $|z|=\frac{1}{\sqrt{N}}$.

Remark

The circle $|z|=\frac{1}{\sqrt{N}}$ is the "symmetry" for a functional equation.

Previous Work

- In 2013 Conrey, Farmer, and Immamoḡlu proved that zeros of the "odd part" of $r_{f}(X)$ have $|z|=1$ when $N=1$.

Previous Work

- In 2013 Conrey, Farmer, and Immamoḡlu proved that zeros of the "odd part" of $r_{f}(X)$ have $|z|=1$ when $N=1$.
- El-Guindy and Raji proved the $N=1$ case.

Zeta-polynomials for modular form periods
Proof of Theorems 1 and 2

Our results on RHPP

Our results on RHPP

Theorem 4 (Jin-Ma-O-Soundararajan)
The Riemann Hypothesis for period polynomials is true.

Our results on RHPP

Theorem 4 (Jin-Ma-O-Soundararajan)

The Riemann Hypothesis for period polynomials is true.

Corollary (Jin-Ma-O-Soundararajan)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then all of the zeros ρ of $R_{f}(z)$ satisfy $|\rho|=1$.

Our results on RHPP

Theorem 4 (Jin-Ma-O-Soundararajan)

The Riemann Hypothesis for period polynomials is true.

Corollary (Jin-Ma-O-Soundararajan)
If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an even weight $k \geq 4$ newform, then all of the zeros ρ of $R_{f}(z)$ satisfy $|\rho|=1$.
In particular, Theorems 1 and 2 are true.

Equidistribution

Theorem 5 (Jin-Ma-O-Soundararajan)
For fixed $\Gamma_{0}(N)$, as $k \rightarrow+\infty$, the zeros of $r_{f}(X)=0$ become equidistributed on the circle with radius $\frac{1}{\sqrt{N}}$.

Equidistribution

> Theorem 5 (Jin-Ma-O-Soundararajan)
> For fixed $\Gamma_{0}(N)$, as $k \rightarrow+\infty$, the zeros of $r_{f}(X)=0$ become equidistributed on the circle with radius $\frac{1}{\sqrt{N}}$.

Question

Can one do better than equidistribution?

Theorem 6 (Jin-Ma-O-Soundararajan)
If either N or k is large enough, then the roots of $r_{f}(X)$ are:

Theorem 6 (Jin-Ma-O-Soundararajan)
If either N or k is large enough, then the roots of $r_{f}(X)$ are:

$$
x_{\ell}=\frac{1}{i \sqrt{N}} \cdot \exp \left(i \theta_{\ell}+O\left(\frac{1}{2^{k} \sqrt{N}}\right)\right)
$$

Theorem 6 (Jin-Ma-O-Soundararajan)
If either N or k is large enough, then the roots of $r_{f}(X)$ are:

$$
x_{\ell}=\frac{1}{i \sqrt{N}} \cdot \exp \left(i \theta_{\ell}+O\left(\frac{1}{2^{k} \sqrt{N}}\right)\right)
$$

where for $0 \leq \ell \leq k-3$ we let $\theta_{\ell} \in[0,2 \pi)$ be the solution to:

$$
\frac{k-2}{2} \cdot \theta_{\ell}-\frac{2 \pi}{\sqrt{N}} \sin \left(\theta_{\ell}\right)= \begin{cases}\frac{\pi}{2}+\ell \pi & \text { if } \epsilon(f)=1 \\ \ell \pi & \text { if } \epsilon(f)=-1\end{cases}
$$

Theorem 6 (Jin-Ma-O-Soundararajan)
If either N or k is large enough, then the roots of $r_{f}(X)$ are:

$$
X_{\ell}=\frac{1}{i \sqrt{N}} \cdot \exp \left(i \theta_{\ell}+O\left(\frac{1}{2^{k} \sqrt{N}}\right)\right)
$$

where for $0 \leq \ell \leq k-3$ we let $\theta_{\ell} \in[0,2 \pi)$ be the solution to:

$$
\frac{k-2}{2} \cdot \theta_{\ell}-\frac{2 \pi}{\sqrt{N}} \sin \left(\theta_{\ell}\right)= \begin{cases}\frac{\pi}{2}+\ell \pi & \text { if } \epsilon(f)=1 \\ \ell \pi & \text { if } \epsilon(f)=-1\end{cases}
$$

Remarks (Fix k)

- The angles of the roots of $r_{f}(X)$ converge as $N \rightarrow+\infty$.

Theorem 6 (Jin-Ma-O-Soundararajan)
If either N or k is large enough, then the roots of $r_{f}(X)$ are:

$$
X_{\ell}=\frac{1}{i \sqrt{N}} \cdot \exp \left(i \theta_{\ell}+O\left(\frac{1}{2^{k} \sqrt{N}}\right)\right)
$$

where for $0 \leq \ell \leq k-3$ we let $\theta_{\ell} \in[0,2 \pi)$ be the solution to:

$$
\frac{k-2}{2} \cdot \theta_{\ell}-\frac{2 \pi}{\sqrt{N}} \sin \left(\theta_{\ell}\right)= \begin{cases}\frac{\pi}{2}+\ell \pi & \text { if } \epsilon(f)=1 \\ \ell \pi & \text { if } \epsilon(f)=-1\end{cases}
$$

Remarks (Fix k)

- The angles of the roots of $r_{f}(X)$ converge as $N \rightarrow+\infty$.
- This proves Theorem 3 that for fixed $\epsilon(f) \in\{ \pm\}$ we have

$$
\lim _{N \rightarrow+\infty} \widetilde{Z}_{f}(s)=\tilde{H}_{k}^{ \pm}(-s)
$$

Proof of RHPP when

- We care about the zeros of

$$
-2 L(f, 1) \pi^{2} X^{2}+2 \pi i L(f, 2) X+L(f, 3)=0
$$

Proof of RHPP when

- We care about the zeros of

$$
-2 L(f, 1) \pi^{2} X^{2}+2 \pi i L(f, 2) X+L(f, 3)=0
$$

- By the FE we have

$$
L(f, 3)=\frac{2 \pi^{2}}{N} \cdot \epsilon(f) \cdot L(f, 1)
$$

Proof of RHPP when

- We care about the zeros of

$$
-2 L(f, 1) \pi^{2} X^{2}+2 \pi i L(f, 2) X+L(f, 3)=0
$$

- By the FE we have

$$
L(f, 3)=\frac{2 \pi^{2}}{N} \cdot \epsilon(f) \cdot L(f, 1)
$$

- And so we care about the zeros of

$$
X^{2}-\frac{i L(f, 2)}{\pi L(f, 1)} \cdot X-\frac{\epsilon(f)}{N}=0
$$

Proof of RHPP when

- We care about the zeros of

$$
-2 L(f, 1) \pi^{2} X^{2}+2 \pi i L(f, 2) X+L(f, 3)=0
$$

- By the FE we have

$$
L(f, 3)=\frac{2 \pi^{2}}{N} \cdot \epsilon(f) \cdot L(f, 1)
$$

- And so we care about the zeros of

$$
X^{2}-\frac{i L(f, 2)}{\pi L(f, 1)} \cdot X-\frac{\epsilon(f)}{N}=0
$$

- Trivial if $L(f, 2)=0$.

Proof of RHPP when

cont.

Proof of RHPP when

cont.

- If $L(f, 2) \neq 0$, then we apply the quadratic formula.

Proof of RHPP when

cont.

- If $L(f, 2) \neq 0$, then we apply the quadratic formula.
- We need to show $\frac{N}{\pi^{2}} L(f, 3)^{2} \geq L(f, 2)^{2}$.

Proof of RHPP when

cont.

- If $L(f, 2) \neq 0$, then we apply the quadratic formula.
- We need to show $\frac{N}{\pi^{2}} L(f, 3)^{2} \geq L(f, 2)^{2}$.
- Then we use Hadamard factorization of $\Lambda(f, s)$

$$
\Lambda(f, s)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) \exp (s / \rho)
$$

Proof of RHPP when

cont.

- If $L(f, 2) \neq 0$, then we apply the quadratic formula.
- We need to show $\frac{N}{\pi^{2}} L(f, 3)^{2} \geq L(f, 2)^{2}$.
- Then we use Hadamard factorization of $\Lambda(f, s)$

$$
\Lambda(f, s)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) \exp (s / \rho)
$$

- Now we always have $3 / 2 \leq \operatorname{Re}(\rho) \leq 5 / 2$.

Proof of RHPP when

cont.

- If $L(f, 2) \neq 0$, then we apply the quadratic formula.
- We need to show $\frac{N}{\pi^{2}} L(f, 3)^{2} \geq L(f, 2)^{2}$.
- Then we use Hadamard factorization of $\Lambda(f, s)$

$$
\Lambda(f, s)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) \exp (s / \rho)
$$

- Now we always have $3 / 2 \leq \operatorname{Re}(\rho) \leq 5 / 2$.
- This means that $\Lambda(f, 3) \geq \Lambda(f, 2)$.

GENERAL STRATEGY FOR PROVING RHPP

Analytic Definition of $r_{f}(X)$

Lemma

If $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is a newform, then

$$
r_{f}(X)=-\frac{(2 \pi i)^{k-1}}{(k-2)!} \cdot \int_{0}^{i \infty} f(\tau)(\tau-X)^{k-2} d \tau .
$$

$\operatorname{PSL}_{2}(\mathbb{R})^{+}$action

Definition

If $\phi(z) \in \mathbb{C}[z]$ with $\operatorname{deg}(\phi) \leq k-2$ and $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{PSL}_{2}(\mathbb{R})^{+}$, then

$$
\phi \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z)\right.:=(a d-b c)^{1-\frac{k}{2}} \cdot(c z+d)^{k-2} \cdot \phi\left(\frac{a z+b}{c z+d}\right) .
$$

$\mathrm{PSL}_{2}(\mathbb{R})^{+}$action

Definition

If $\phi(z) \in \mathbb{C}[z]$ with $\operatorname{deg}(\phi) \leq k-2$ and $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{PSL}_{2}(\mathbb{R})^{+}$, then

$$
\phi \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z)\right.:=(a d-b c)^{1-\frac{k}{2}} \cdot(c z+d)^{k-2} \cdot \phi\left(\frac{a z+b}{c z+d}\right) .
$$

Remark

This defines a "modular action" on

$$
V_{k-2}:=\{\phi \in \mathbb{C}[z]: \operatorname{deg}(\phi) \leq k-2\}
$$

Functional Equation for $r_{f}(X)$

Lemma

If f is a newform, then $p_{f}(X):=r_{f}(X / i) \in \mathbb{R}[X]$ satisfies:

Functional Equation for $r_{f}(X)$

Lemma

If f is a newform, then $p_{f}(X):=r_{f}(X / i) \in \mathbb{R}[X]$ satisfies:

$$
p_{f}(X)= \pm i^{k}(\sqrt{N} X)^{k-2} \cdot p_{f}\left(\frac{1}{N X}\right)
$$

Functional Equation for $r_{f}(X)$

Lemma

If f is a newform, then $p_{f}(X):=r_{f}(X / i) \in \mathbb{R}[X]$ satisfies:

$$
p_{f}(X)= \pm i^{k}(\sqrt{N} X)^{k-2} \cdot p_{f}\left(\frac{1}{N X}\right)
$$

Proof.

- If $W_{N}:=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$, then Atkin-Lehner implies

$$
f \mid W_{N}= \pm f
$$

Functional Equation for $r_{f}(X)$

Lemma

If f is a newform, then $p_{f}(X):=r_{f}(X / i) \in \mathbb{R}[X]$ satisfies:

$$
p_{f}(X)= \pm i^{k}(\sqrt{N} X)^{k-2} \cdot p_{f}\left(\frac{1}{N X}\right) .
$$

Proof.

- If $W_{N}:=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$, then Atkin-Lehner implies

$$
f \mid W_{N}= \pm f
$$

- Since $W_{N}^{2}=l$ in $\operatorname{PSL}_{2}(\mathbb{R})^{+}$,

Functional Equation for $r_{f}(X)$

Lemma

If f is a newform, then $p_{f}(X):=r_{f}(X / i) \in \mathbb{R}[X]$ satisfies:

$$
p_{f}(X)= \pm i^{k}(\sqrt{N} X)^{k-2} \cdot p_{f}\left(\frac{1}{N X}\right)
$$

Proof.

- If $W_{N}:=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$, then Atkin-Lehner implies

$$
f \mid W_{N}= \pm f
$$

- Since $W_{N}^{2}=l$ in $\operatorname{PSL}_{2}(\mathbb{R})^{+}$, we get

$$
r_{f} \mid\left(1 \pm W_{N}\right)=0
$$

General Strategy

(1) Let $m:=\frac{k-2}{2}$, and define

$$
P_{f}(X):=\frac{1}{2}\binom{2 m}{m} \wedge\left(f, \frac{k}{2}\right)+\sum_{j=1}^{m}\binom{2 m}{m+j} \wedge\left(f, \frac{k}{2}+j\right) X^{j} .
$$

General Strategy

(1) Let $m:=\frac{k-2}{2}$, and define

$$
P_{f}(X):=\frac{1}{2}\binom{2 m}{m} \wedge\left(f, \frac{k}{2}\right)+\sum_{j=1}^{m}\binom{2 m}{m+j} \wedge\left(f, \frac{k}{2}+j\right) X^{j} .
$$

(2) Theorem 4 follows if the unit circle has all of the zeros of

$$
T_{f}(X):=P_{f}(X)+\epsilon(f) P_{f}(1 / X)
$$

General Strategy

(1) Let $m:=\frac{k-2}{2}$, and define

$$
P_{f}(X):=\frac{1}{2}\binom{2 m}{m} \wedge\left(f, \frac{k}{2}\right)+\sum_{j=1}^{m}\binom{2 m}{m+j} \wedge\left(f, \frac{k}{2}+j\right) X^{j}
$$

(2) Theorem 4 follows if the unit circle has all of the zeros of

$$
T_{f}(X):=P_{f}(X)+\epsilon(f) P_{f}(1 / X)
$$

(3) Letting $X \rightarrow z=e^{i \theta}$ on $|z|=1$, then $T_{f}(z)$ is a "trigonometric" polynomial in sin or \cos depending $\epsilon(f)$.

Classical Theorem of Pólya and Szegö

Classical Theorem of Pólya and Szegö

Theorem (Szegö, 1936)
Suppose that $u(\theta)$ and $v(\theta)$ are

$$
\begin{aligned}
u(\theta) & :=a_{0}+a_{1} \cos (\theta)+a_{2} \cos (2 \theta)+\cdots+a_{n} \cos (n \theta), \\
v(\theta) & :=a_{1} \sin (\theta)+a_{2} \sin (2 \theta)+\cdots+a_{n} \sin (n \theta) .
\end{aligned}
$$

Classical Theorem of Pólya and Szegö

Theorem (Szegö, 1936)
Suppose that $u(\theta)$ and $v(\theta)$ are

$$
\begin{aligned}
u(\theta) & :=a_{0}+a_{1} \cos (\theta)+a_{2} \cos (2 \theta)+\cdots+a_{n} \cos (n \theta), \\
v(\theta) & :=a_{1} \sin (\theta)+a_{2} \sin (2 \theta)+\cdots+a_{n} \sin (n \theta) .
\end{aligned}
$$

If $0 \leq a_{0} \leq a_{1} \leq a_{2} \cdots \leq a_{n-1}<a_{n}$, then both u and v have exactly n zeros in $[0, \pi)$, and these zeros are simple.

Useful inequalities

Lemma 1

The completed L-function $\Lambda(f, s)$ satisfies the following: 1) It is monotone increasing in the range $s \geq \frac{k}{2}+\frac{1}{2}$.

Useful inequalities

Lemma 1

The completed L-function $\Lambda(f, s)$ satisfies the following:

1) It is monotone increasing in the range $s \geq \frac{k}{2}+\frac{1}{2}$.
2) In particular, we have

$$
0 \leq \Lambda\left(f, \frac{k}{2}\right) \leq \Lambda\left(f, \frac{k}{2}+1\right) \leq \Lambda\left(f, \frac{k}{2}+2\right) \leq \ldots
$$

Useful inequalities

Lemma 1

The completed L-function $\Lambda(f, s)$ satisfies the following:

1) It is monotone increasing in the range $s \geq \frac{k}{2}+\frac{1}{2}$.
2) In particular, we have

$$
0 \leq \Lambda\left(f, \frac{k}{2}\right) \leq \Lambda\left(f, \frac{k}{2}+1\right) \leq \Lambda\left(f, \frac{k}{2}+2\right) \leq \ldots
$$

3) If $\epsilon(f)=-1$, then $\Lambda\left(f, \frac{k}{2}\right)=0$ and

$$
\Lambda\left(f, \frac{k}{2}+1\right) \leq \frac{1}{2} \wedge\left(f, \frac{k}{2}+2\right) \leq \frac{1}{3} \wedge\left(f, \frac{k}{2}+3\right) \leq \ldots
$$

Method of Proof.

Method of Proof.

- Use the Hadamard Factorization of $\Lambda(f, s)$

$$
\Lambda(f, s)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) \exp (s / \rho)
$$

Method of Proof.

- Use the Hadamard Factorization of $\Lambda(f, s)$

$$
\Lambda(f, s)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) \exp (s / \rho)
$$

- All the zeros lie in $\left|\operatorname{Re}(s)-\frac{k}{2}\right|<\frac{1}{2}$.

Method of Proof.

- Use the Hadamard Factorization of $\Lambda(f, s)$

$$
\Lambda(f, s)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) \exp (s / \rho)
$$

- All the zeros lie in $\left|\operatorname{Re}(s)-\frac{k}{2}\right|<\frac{1}{2}$.
- Therefore $|1-s / \rho|$ is increasing for $s \geq \frac{k}{2}+\frac{1}{2}$. \square

More useful inequalities

More useful inequalities

Lemma 2
If $0<a<b$, then

$$
\frac{L\left(f, \frac{k+1}{2}+a\right)}{L\left(f, \frac{k+1}{2}+b\right)} \leq \frac{\zeta(1+a)^{2}}{\zeta(1+b)^{2}} .
$$

More useful inequalities

Lemma 2

If $0<a<b$, then

$$
\frac{L\left(f, \frac{k+1}{2}+a\right)}{L\left(f, \frac{k+1}{2}+b\right)} \leq \frac{\zeta(1+a)^{2}}{\zeta(1+b)^{2}} .
$$

Sketch.

- Follows from comparing log derivatives $L(f, s)$ and $\zeta(s)$.

More useful inequalities

Lemma 2

If $0<a<b$, then

$$
\frac{L\left(f, \frac{k+1}{2}+a\right)}{L\left(f, \frac{k+1}{2}+b\right)} \leq \frac{\zeta(1+a)^{2}}{\zeta(1+b)^{2}}
$$

Sketch.

- Follows from comparing log derivatives $L(f, s)$ and $\zeta(s)$.
- Which give rise to exponential integral formulas for

$$
\frac{L\left(f, \frac{k+1}{2}+a\right)}{L\left(f, \frac{k+1}{2}+b\right)} \quad \text { and } \quad \frac{\zeta(1+a)^{2}}{\zeta(1+b)^{2}} .
$$

More useful inequalities

Lemma 2

If $0<a<b$, then

$$
\frac{L\left(f, \frac{k+1}{2}+a\right)}{L\left(f, \frac{k+1}{2}+b\right)} \leq \frac{\zeta(1+a)^{2}}{\zeta(1+b)^{2}}
$$

Sketch.

- Follows from comparing log derivatives $L(f, s)$ and $\zeta(s)$.
- Which give rise to exponential integral formulas for

$$
\frac{L\left(f, \frac{k+1}{2}+a\right)}{L\left(f, \frac{k+1}{2}+b\right)} \quad \text { and } \quad \frac{\zeta(1+a)^{2}}{\zeta(1+b)^{2}}
$$

- Deligne's Bound for Fourier coefficients of f.

Sketch of the proof of Theorem 4 (i.e. RHPP).

Sketch of the proof of Theorem 4 (i.e. RHPP).

- Insert Lemmas 1 and 2 into the Szegö's Theorem.

Sketch of the proof of Theorem 4 (i.e. RHPP).

- Insert Lemmas 1 and 2 into the Szegö's Theorem.
- This proves most of RHPP (infinitely many case remain).

Sketch of the proof of Theorem 4 (i.e. RHPP).

- Insert Lemmas 1 and 2 into the Szegö's Theorem.
- This proves most of RHPP (infinitely many case remain).
- Design a different argument for large weights and small levels (leaving finitely cases).

Sketch of the proof of Theorem 4 (i.e. RHPP).

- Insert Lemmas 1 and 2 into the Szegö's Theorem.
- This proves most of RHPP (infinitely many case remain).
- Design a different argument for large weights and small levels (leaving finitely cases).
- Computer calculations with sage covers the remaining forms.

Zeta-polynomials for modular form periods
Executive Summary

Our results

Our results

Theorem (O-Rolen-Sprung)
Manin's Conjecture is true.

Our results

Theorem (O-Rolen-Sprung)
Manin's Conjecture is true.
(1) Each zeta-polynomial $Z_{f}(s)$ has a FE and obeys $R H$.

Our results

Theorem (O-Rolen-Sprung)
Manin's Conjecture is true.
(1) Each zeta-polynomial $Z_{f}(s)$ has a FE and obeys $R H$.
(2) The $Z_{f}(-n)$ encode the "Bloch-Kato complex."

Our results

Theorem (O-Rolen-Sprung)
Manin's Conjecture is true.
(1) Each zeta-polynomial $Z_{f}(s)$ has a FE and obeys $R H$.
(2) The $Z_{f}(-n)$ encode the "Bloch-Kato complex."
(3) The generating function for $Z_{f}(-n)$ is nice.

Our results

Theorem (O-Rolen-Sprung)

Manin's Conjecture is true.
(1) Each zeta-polynomial $Z_{f}(s)$ has a FE and obeys $R H$.
(2) The $Z_{f}(-n)$ encode the "Bloch-Kato complex."
(3) The generating function for $Z_{f}(-n)$ is nice.
(9) For fixed k and $\epsilon(f)=\epsilon$, we have

$$
\lim _{N \rightarrow+\infty} \widetilde{Z}_{f}(s)=\widetilde{H}_{k}^{\epsilon}(-s) .
$$

Theorem 4 (Jin-Ma-O-Soundararajan)
The Riemann Hypothesis for period polynomials is true.

Theorem 4 (Jin-Ma-O-Soundararajan)

The Riemann Hypothesis for period polynomials is true.

Theorem 5 (Jin-Ma-O-Soundararajan)
For fixed $\Gamma_{0}(N)$, as $k \rightarrow+\infty$, the zeros of $r_{f}(X)=0$ become equidistributed on the circle with radius $\frac{1}{\sqrt{N}}$.

