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Zeta-polynomials for modular form periods

Introduction and Statement of Results

Riemann’s zeta-function

Definition (Riemann)

For Re(s) > 1, define the zeta-function by

ζ(s) :=
∞∑
n=1

1

ns
.

Theorem (Fundamental Theorem)

1 The function ζ(s) has an analytic continuation to C (apart
from a simple pole at s = 1 with residue 1).

2 We have the functional equation

π−
s
2 Γ
( s

2

)
ζ(s) = π−

(1−s)
2 · Γ

(
1− s

2

)
· ζ(1− s).
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Introduction and Statement of Results

$1 million prize problem

Conjecture (Riemann)

Apart from the negative evens, the zeros of ζ(s) satisfy Re(s) = 1
2 .

Remarks

1 The “line of symmetry” for s ←→ 1− s is Re(s) = 1
2 .

2 The first “gazillion” zeros satisfy RH (Odlyzko,...).
40 + % of the zeros satisfy RH (Selberg, Levinson, Conrey....).
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Introduction and Statement of Results

The values ζ(−n)

Theorem (Euler)

As a power series in t, we have

t

1− e−t
= 1 +

1

2
t − t

∞∑
n=1

ζ(−n) · t
n

n!
.

Remark

This series is also a generating function for K -groups of Z.



Zeta-polynomials for modular form periods

Introduction and Statement of Results

The values ζ(−n)

Theorem (Euler)

As a power series in t, we have

t

1− e−t
= 1 +

1

2
t − t

∞∑
n=1

ζ(−n) · t
n

n!
.

Remark

This series is also a generating function for K -groups of Z.



Zeta-polynomials for modular form periods

Introduction and Statement of Results

Manin’s Notion of Zeta-polynomials

Definition (Manin)

A polynomial Z (s) is a zeta-polynomial if it satisfies:

It is arithmetic-geometric in origin.

For s ∈ C we have Z (s) = ±Z (1− s).

If Z (ρ) = 0, then Re(ρ) = 1/2.

The values Z (−n) have a “nice” generating function

The values Z (−n) encode arithmetic-geometric information.
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Speculation (Manin)

There is a theory of zeta-polynomials for modular form periods.

Theorem (Main Theorem)

Manin’s Speculation is true.
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Introduction and Statement of Results

Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others)

If f ∈ Sk(Γ0(N)) is a newform, then the following are true:

1 L(f , s) has an analytic continuation to C.

2 If Λ(f , s) :=
(√

N
2π

)s
Γ(s)L(f , s), then ∃ ε(f ) ∈ {±1} for which

Λ(f , s) = ε(f ) · Λ(f , k − s).

3 There are numbers ω±f such that for 1 ≤ j ≤ k − 1

L(f , j) ∈ Q · (2πi)j · ω±f .
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Introduction and Statement of Results

Critical Values and Weighted Moments

Definition (Deligne, Manin, Shimura)

If f ∈ Sk(Γ0(N)) is a newform, then its critical L-values are

{L(f , 1), L(f , 2), L(f , 3), . . . , L(f , k − 1)} .

Definition (O-Rolen-Sprung)

If m ≥ 1, then we define the weighted moments

Mf (m) :=
1

(k − 2)!

k−2∑
j=0

(
k − 2

j

)
Λ(f , j + 1) · jm.
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The zeta-polynomials (k ≥ 4 even)

Definition (O-Rolen-Sprung)

The zeta-polynomial for f is

Zf (s) :=
k−2∑
h=0

(−s)h
k−2−h∑
m=0

(
m + h

h

)
· S(k − 2,m + h) ·Mf (m),

where the (signed) Stirling numbers of the first kind are given by

(x)n = x(x − 1)(x − 2) · · · (x − n + 1) =:
n∑

m=0

S(n,m)xm.
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The S(n, k) form Pascal-type triangles

We have the recurrence

S(n, k) = S(n − 1, k − 1)− (n − 1) · S(n − 1, k).

1
0 1

0 −1 1
0 2 −3 1

0 −6 11 −6 1
0 24 −50 35 −10 1

0 −120 274 −225 85 −15 1

Remark

Zf (s) is a cobbling of layers of these weighted by moments Mf (m).
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Functional Equations and the Riemann Hypothesis

Theorem 1 (O-Rolen-Sprung)

If f ∈ Sk(Γ0(N)) is an even weight k ≥ 4 newform, then we have:

1 For all s ∈ C we have that Zf (s) = ε(f )Zf (1− s).

2 If Zf (ρ) = 0, then Re(ρ) = 1/2.

Remark

To completely confirm Manin’s speculation we must show:

The values Zf (−n) have a “nice” generating function.

The Z (−n) encode arithmetic-geometric information.
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Z∆(s) ≈ (5.11× 10−7)s10 + · · · − 0.0199s + 0.00596.

Figure: The roots of Z∆(s)
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A Nice Generating Function

Theorem 2 (O-Rolen-Sprung)

Define the normalized period polynomial for f by

Rf (z) :=
k−2∑
j=0

(
k − 2

j

)
· Λ(f , k − 1− j) · z j .

Then we have that

Rf (z)

(1− z)k−1
=
∞∑
n=0

Zf (−n)zn.

Remark (Euler)

t

1− e−t
= 1 +

1

2
t − t

∞∑
n=1

ζ(−n) · t
n

n!
.
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Arithmetic Geometric Information

Corollary (O-Rolen-Sprung)

Assuming the Bloch-Kato Conjecture, we have that

Mf (m) =
∑

0≤j≤k−2

˜C (j + 1)jm.
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Combinatorial Polynomials H±k (s)

Definition (Binomial Coefficient)

If x , y ∈ C, then the complex binomial coefficient
(x
y

)
is(

x

y

)
:=

Γ(x + 1)

Γ(y + 1)Γ(x − y + 1)
.

Definition (Special Polynomials)

If k ≥ 4 is even, then

H+
k (s) :=

(
s + k − 2

k − 2

)
+

(
s

k − 2

)
,

H−k (s) :=
k−3∑
j=0

(
s − j + k − 3

k − 3

)
.



Zeta-polynomials for modular form periods

Introduction and Statement of Results

Combinatorial Polynomials H±k (s)

Definition (Binomial Coefficient)

If x , y ∈ C, then the complex binomial coefficient
(x
y

)
is(

x

y

)
:=

Γ(x + 1)

Γ(y + 1)Γ(x − y + 1)
.

Definition (Special Polynomials)

If k ≥ 4 is even, then

H+
k (s) :=

(
s + k − 2

k − 2

)
+

(
s

k − 2

)
,

H−k (s) :=
k−3∑
j=0

(
s − j + k − 3

k − 3

)
.



Zeta-polynomials for modular form periods

Introduction and Statement of Results

The H̃±k (−s) Approximate Z̃f (s)

Theorem 3 (O-Rolen-Sprung)

Suppose that k ≥ 4 and ε ∈ {±1}. Then we have that

lim
N→+∞

Z̃f (s) = H̃ε
k(−s),

where f ∈ Sk(Γ0(N)) are chosen with ε(f ) = ε.

Remark

This offers an unexpected connection to polytopes.
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Ehrhart Polynomials

Definition

Given a d-dimensional integral lattice polytope in Rn, the Ehrhart
polynomial Lp(x) is determined by

Lp(m) = # {p ∈ Zn : p ∈ mP} .

Example

The polynomials H−k (s) are the Ehrhart polynomials of the simplex

conv

e1, e2, . . . , ek−3,−
k−3∑
j=1

ej

 .
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Limits of f ∈ S6(Γ0(N)) with ε(f ) = −1

Figure: The tetrahedron whose Ehrhart polynomial is H−
6 (s).

lim
N→+∞

Z̃f (s)

= H̃−6 (−s) =

(
s − 1

2

)(
s − 1

2
+

√
−11

2

)(
s − 1

2
−
√
−11

2

)
.
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Theorem 1 (O-Rolen-Sprung)

If f ∈ Sk(Γ0(N)) is an even weight k ≥ 4 newform, then we have:

1 For all s ∈ C we have that Zf (s) = ε(f )Zf (1− s).

2 If Zf (ρ) = 0, then Re(ρ) = 1/2.

Theorem 2 (O-Rolen-Sprung)

Define the period polynomial for f by

Rf (z) :=
k−2∑
j=0

(
k − 2

j

)
· Λ(f , k − 1− j) · z j .

Then we have that

Rf (z)

(1− z)k−1
=
∞∑
n=0

Zf (−n)zn.
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Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) ∈ R[z ] is a degree e polynomial with U(1) 6= 0.
Then there is a polynomial H(z) for which

U(z)

(1− z)e+1
=
∞∑
n=0

H(n)zn.

If all roots of U(z) are on |z | = 1, then we have:

1 All roots of Z (s) := H(−s) lie on Re(s) = 1/2.

2 We have that
Z (1− s) = ±Z (s).



Zeta-polynomials for modular form periods

Proof of Theorems 1 and 2

Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) ∈ R[z ] is a degree e polynomial with U(1) 6= 0.
Then there is a polynomial H(z) for which

U(z)

(1− z)e+1
=
∞∑
n=0

H(n)zn.

If all roots of U(z) are on |z | = 1, then we have:

1 All roots of Z (s) := H(−s) lie on Re(s) = 1/2.

2 We have that
Z (1− s) = ±Z (s).



Zeta-polynomials for modular form periods

Proof of Theorems 1 and 2

Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) ∈ R[z ] is a degree e polynomial with U(1) 6= 0.
Then there is a polynomial H(z) for which

U(z)

(1− z)e+1
=
∞∑
n=0

H(n)zn.

If all roots of U(z) are on |z | = 1, then we have:

1 All roots of Z (s) := H(−s) lie on Re(s) = 1/2.

2 We have that
Z (1− s) = ±Z (s).



Zeta-polynomials for modular form periods

Proof of Theorems 1 and 2

Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) ∈ R[z ] is a degree e polynomial with U(1) 6= 0.
Then there is a polynomial H(z) for which

U(z)

(1− z)e+1
=
∞∑
n=0

H(n)zn.

If all roots of U(z) are on |z | = 1, then we have:

1 All roots of Z (s) := H(−s) lie on Re(s) = 1/2.

2 We have that
Z (1− s) = ±Z (s).



Zeta-polynomials for modular form periods

Proof of Theorems 1 and 2

Proof of Theorems 1 and 2

Sketch of the proof of Theorems 1 and 2.

For even weight k ≥ 4 newforms f we must prove that

Rf (ρ) = 0 =⇒ |ρ| = 1.

Make the definition of Zf (s) := H(−s) explicit (i.e. Stirling
numbers and weight moments).
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Generating Function for Critical Values

Definition

If f ∈ Sk(Γ0(N)) is a newform, then its period polynomial is

rf (X ) :=
k−2∑
m=0

L(f , k − 1−m) · (2πiX )m

m!
.

Natural Problems

1 Determine the rf (X ).

2 Study the “distribution” of the zeros of rf (X ).
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Example. f ∈ S4(Γ0(8))

Let f (τ) = q−4q3−2q5 + · · · ∈ S4(Γ0(8)) be the unique newform.

1 We find numerically that

L(f , 1) ≈ 0.354500683730965,

L(f , 2) ≈ 0.690031163123398,

L(f , 3) ≈ 0.874695377085079.

2 This means that

rf (X ) ≈ −6.9975X 2 + 4.33559iX + 0.87469.

3 Its roots are ±0.170376720591406 + 0.309793113352311i ,
which have norm2 approximately 0.125000000 ≈ 1

8 .
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“Riemann Hypothesis” for Period Polynomials

Conjecture (RHPP)

Suppose that f ∈ Sk(Γ0(N)) is a newform with k ≥ 4.
If rf (z) = 0, then |z | = 1√

N
.

Remark

The circle |z | = 1√
N

is the “symmetry” for a functional equation.
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In 2013 Conrey, Farmer, and Immamoḡlu proved that zeros of
the “odd part” of rf (X ) have |z | = 1 when N = 1.

El-Guindy and Raji proved the N = 1 case.
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Our results on RHPP

Theorem 4 (Jin-Ma-O-Soundararajan)

The Riemann Hypothesis for period polynomials is true.

Corollary (Jin-Ma-O-Soundararajan)

If f ∈ Sk(Γ0(N)) is an even weight k ≥ 4 newform, then all of the
zeros ρ of Rf (z) satisfy |ρ| = 1.
In particular, Theorems 1 and 2 are true.
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Equidistribution

Theorem 5 (Jin-Ma-O-Soundararajan)

For fixed Γ0(N), as k → +∞, the zeros of rf (X ) = 0 become
equidistributed on the circle with radius 1√

N
.

Question

Can one do better than equidistribution?
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Theorem 6 (Jin-Ma-O-Soundararajan)

If either N or k is large enough, then the roots of rf (X ) are:

X` =
1

i
√
N
· exp

(
iθ` + O

(
1

2k
√
N

))
,

where for 0 ≤ ` ≤ k − 3 we let θ` ∈ [0, 2π) be the solution to:

k − 2

2
· θ` −

2π√
N

sin(θ`) =

{
π
2 + `π if ε(f ) = 1,

`π if ε(f ) = −1.

Remarks (Fix k)

The angles of the roots of rf (X ) converge as N → +∞.

This proves Theorem 3 that for fixed ε(f ) ∈ {±} we have

lim
N→+∞

Z̃f (s) = H̃±k (−s).
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Easy Case of Theorem 4

Proof of RHPP when k = 4

We care about the zeros of

−2L(f , 1)π2X 2 + 2πiL(f , 2)X + L(f , 3) = 0.

By the FE we have

L(f , 3) =
2π2

N
· ε(f ) · L(f , 1).

And so we care about the zeros of

X 2 − iL(f , 2)

πL(f , 1)
· X − ε(f )

N
= 0.

Trivial if L(f , 2) = 0.
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Easy Case of Theorem 4

Proof of RHPP when k = 4 cont.

If L(f , 2) 6= 0, then we apply the quadratic formula.

We need to show N
π2L(f , 3)2 ≥ L(f , 2)2.

Then we use Hadamard factorization of Λ(f , s)

Λ(f , s) = eA+Bs
∏
ρ

(
1− s

ρ

)
exp(s/ρ).

Now we always have 3/2 ≤ Re(ρ) ≤ 5/2.

This means that Λ(f , 3) ≥ Λ(f , 2).
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Proof of RHPP when k = 4 cont.

If L(f , 2) 6= 0, then we apply the quadratic formula.

We need to show N
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Analytic Definition of rf (X )

Lemma

If f ∈ Sk(Γ0(N)) is a newform, then

rf (X ) = −(2πi)k−1

(k − 2)!
·
∫ i∞

0
f (τ)(τ − X )k−2dτ.
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Proving RHPP

PSL2(R)+ action

Definition

If φ(z) ∈ C[z ] with deg(φ) ≤ k − 2 and
(
a b
c d

)
∈ PSL2(R)+, then

φ|
(
a b
c d

)
(z):=(ad − bc)1− k

2 · (cz + d)k−2 · φ
(
az + b

cz + d

)
.

Remark

This defines a “modular action” on

Vk−2 := {φ ∈ C[z ] : deg(φ) ≤ k − 2} .
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Proving RHPP

Functional Equation for rf (X )

Lemma

If f is a newform, then pf (X ) := rf (X/i) ∈ R[X ] satisfies:

pf (X ) = ±ik
(√

NX
)k−2

· pf
(

1

NX

)
.

Proof.

If WN :=
(

0 −1
N 0

)
, then Atkin-Lehner implies

f |WN = ±f .

Since W 2
N = I in PSL2(R)+, we get

rf |(1±WN) = 0.
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General Strategy

1 Let m := k−2
2 , and define

Pf (X ) :=
1

2

(
2m
m

)
Λ

(
f ,

k

2

)
+

m∑
j=1

(
2m

m + j

)
Λ

(
f ,

k

2
+ j

)
X j .

2 Theorem 4 follows if the unit circle has all of the zeros of

Tf (X ) := Pf (X ) + ε(f )Pf (1/X ).

3 Letting X → z = e iθ on |z | = 1, then Tf (z) is a
“trigonometric” polynomial in sin or cos depending ε(f ).



Zeta-polynomials for modular form periods

Proving RHPP

General Strategy

1 Let m := k−2
2 , and define

Pf (X ) :=
1

2

(
2m
m

)
Λ

(
f ,

k

2

)
+

m∑
j=1

(
2m

m + j

)
Λ

(
f ,

k

2
+ j

)
X j .

2 Theorem 4 follows if the unit circle has all of the zeros of

Tf (X ) := Pf (X ) + ε(f )Pf (1/X ).

3 Letting X → z = e iθ on |z | = 1, then Tf (z) is a
“trigonometric” polynomial in sin or cos depending ε(f ).



Zeta-polynomials for modular form periods

Proving RHPP

General Strategy

1 Let m := k−2
2 , and define

Pf (X ) :=
1

2

(
2m
m

)
Λ

(
f ,

k

2

)
+

m∑
j=1

(
2m

m + j

)
Λ

(
f ,

k

2
+ j

)
X j .

2 Theorem 4 follows if the unit circle has all of the zeros of

Tf (X ) := Pf (X ) + ε(f )Pf (1/X ).

3 Letting X → z = e iθ on |z | = 1, then Tf (z) is a
“trigonometric” polynomial in sin or cos depending ε(f ).



Zeta-polynomials for modular form periods

Proving RHPP

Classical Theorem of Pólya and Szegö

Theorem (Szegö, 1936)

Suppose that u(θ) and v(θ) are

u(θ) := a0 + a1 cos(θ) + a2 cos(2θ) + · · ·+ an cos(nθ),

v(θ) := a1 sin(θ) + a2 sin(2θ) + · · ·+ an sin(nθ).

If 0 ≤ a0 ≤ a1 ≤ a2 · · · ≤ an−1 < an, then both u and v have
exactly n zeros in [0, π), and these zeros are simple.
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Proving RHPP

Useful inequalities

Lemma 1

The completed L-function Λ(f , s) satisfies the following:

1) It is monotone increasing in the range s ≥ k
2 + 1

2 .

2) In particular, we have

0 ≤ Λ

(
f ,

k

2

)
≤ Λ

(
f ,

k

2
+ 1

)
≤ Λ

(
f ,

k

2
+ 2

)
≤ . . . .

3) If ε(f ) = −1, then Λ
(
f , k2

)
= 0 and

Λ

(
f ,

k

2
+ 1

)
≤ 1

2
Λ

(
f ,

k

2
+ 2

)
≤ 1

3
Λ

(
f ,

k

2
+ 3

)
≤ . . . .
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Method of Proof.

Use the Hadamard Factorization of Λ(f , s)

Λ(f , s) = eA+Bs
∏
ρ

(
1− s

ρ

)
exp(s/ρ).

All the zeros lie in
∣∣Re(s)− k

2

∣∣ < 1
2 .

Therefore |1− s/ρ| is increasing for s ≥ k
2 + 1

2 .
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More useful inequalities

Lemma 2

If 0 < a < b, then

L
(
f , k+1

2 + a
)

L
(
f , k+1

2 + b
) ≤ ζ(1 + a)2

ζ(1 + b)2
.

Sketch.

Follows from comparing log derivatives L(f , s) and ζ(s).

Which give rise to exponential integral formulas for

L
(
f , k+1

2 + a
)

L
(
f , k+1

2 + b
) and

ζ(1 + a)2

ζ(1 + b)2
.

Deligne’s Bound for Fourier coefficients of f .
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Sketch of the proof of Theorem 4 (i.e. RHPP).

Insert Lemmas 1 and 2 into the Szegö’s Theorem.

This proves most of RHPP (infinitely many case remain).

Design a different argument for large weights and small
levels (leaving finitely cases).

Computer calculations with sage covers the remaining forms.
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Executive Summary

Our results

Theorem (O-Rolen-Sprung)

Manin’s Conjecture is true.

1 Each zeta-polynomial Zf (s) has a FE and obeys RH.

2 The Zf (−n) encode the “Bloch-Kato complex.”

3 The generating function for Zf (−n) is nice.

4 For fixed k and ε(f ) = ε, we have

lim
N→+∞

Z̃f (s) = H̃ε
k(−s).
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Executive Summary

Theorem 4 (Jin-Ma-O-Soundararajan)

The Riemann Hypothesis for period polynomials is true.

Theorem 5 (Jin-Ma-O-Soundararajan)

For fixed Γ0(N), as k → +∞, the zeros of rf (X ) = 0 become
equidistributed on the circle with radius 1√

N
.
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