Generating weights for modules of vector-valued modular forms

Luca Candelori, joint w/ Cameron Franc (U. Saskatchewan)

Louisiana State University
BIRS, Sep. 26th, 2016

Motivations

- Partition functions of modules over VOA \rightarrow vector-valued modular forms.

Motivations

- Partition functions of modules over VOA \rightarrow vector-valued modular forms.
- Theory of general vector-valued modular forms for integral weight $k \in \mathbb{Z}$ (Bantay, Gannon, Knopp, Marks, Mason,...)

Motivations

- Partition functions of modules over VOA \rightarrow vector-valued modular forms.
- Theory of general vector-valued modular forms for integral weight $k \in \mathbb{Z}$ (Bantay, Gannon, Knopp, Marks, Mason,...)
- From number theory: vectors of theta functions, Weil representation, Jacobi forms, mostly weight $\frac{1}{2} \mathbb{Z}$ (Borcherds, Bruinier, Eichler-Zagier, Skoruppa, ...)

Main Problem

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex f.d. representation, $M_{k}(\rho)$ the space of holomorphic vector-valued modular forms of weight k,

$$
M(\rho):=\bigoplus_{k \in \mathbb{Z}} M_{k}(\rho)
$$

viewed as a graded module over $M(1)=\mathbb{C}\left[E_{4}, E_{6}\right]$.

Main Problem

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex f.d. representation, $M_{k}(\rho)$ the space of holomorphic vector-valued modular forms of weight k,

$$
M(\rho):=\bigoplus_{k \in \mathbb{Z}} M_{k}(\rho)
$$

viewed as a graded module over $M(1)=\mathbb{C}\left[E_{4}, E_{6}\right]$.

Theorem (Mason-Marks, Gannon, C.-Franc,...)

$M(\rho)$ is a free module of rank $n=\operatorname{dim} \rho$ over $M(1)$.

Main Problem

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex f.d. representation, $M_{k}(\rho)$ the space of holomorphic vector-valued modular forms of weight k,

$$
M(\rho):=\bigoplus_{k \in \mathbb{Z}} M_{k}(\rho)
$$

viewed as a graded module over $M(1)=\mathbb{C}\left[E_{4}, E_{6}\right]$.

Theorem (Mason-Marks, Gannon, C.-Franc,...)

$M(\rho)$ is a free module of rank $n=\operatorname{dim} \rho$ over $M(1)$.

Main Problem

Given ρ, find the weights k_{1}, \ldots, k_{n} of the generators for $M(\rho)$, the generating weights.

Vector valued modular forms

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex, f.d. representation.

Definition

A ρ-valued modular form of weight $k \in \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow V$ such that

$$
f(\gamma \tau)=(c \tau+d)^{k} \rho(\gamma) f(\tau)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$.

Vector valued modular forms

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex, f.d. representation.

Definition

A ρ-valued modular form of weight $k \in \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow V$ such that

$$
f(\gamma \tau)=(c \tau+d)^{k} \rho(\gamma) f(\tau)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$.
Let $\mathscr{M}:=\left[\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]$

Vector valued modular forms

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex, f.d. representation.

Definition

A ρ-valued modular form of weight $k \in \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow V$ such that

$$
f(\gamma \tau)=(c \tau+d)^{k} \rho(\gamma) f(\tau)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
Let $\mathscr{M}:=\left[\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]$

- $\gamma \mapsto(c \tau+d)^{k}$ gives a line bundle \mathcal{L}_{k} over \mathscr{M}.

Vector valued modular forms

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex, f.d. representation.

Definition

A ρ-valued modular form of weight $k \in \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow V$ such that

$$
f(\gamma \tau)=(c \tau+d)^{k} \rho(\gamma) f(\tau)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
Let $\mathscr{M}:=\left[\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]$

- $\gamma \mapsto(c \tau+d)^{k}$ gives a line bundle \mathcal{L}_{k} over \mathscr{M}.
- ρ gives a local system $\mathcal{V}(\rho)$ over \mathscr{M}.

Vector valued modular forms

Let $\rho: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a complex, f.d. representation.

Definition

A ρ-valued modular form of weight $k \in \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow V$ such that

$$
f(\gamma \tau)=(c \tau+d)^{k} \rho(\gamma) f(\tau)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
Let $\mathscr{M}:=\left[\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]$

- $\gamma \mapsto(c \tau+d)^{k}$ gives a line bundle \mathcal{L}_{k} over \mathscr{M}.
- ρ gives a local system $\mathcal{V}(\rho)$ over \mathscr{M}.
- f is a section of $\mathcal{V}_{k}(\rho):=\mathcal{V}(\rho) \otimes \mathcal{L}_{k}$.

Geography of $\overline{\mathscr{M}}$

The compactification $\overline{\mathscr{M}}$ of \mathscr{M} is given by the diagram:

Geography of $\overline{\mathscr{M}}$

The compactification $\overline{\mathscr{M}}$ of \mathscr{M} is given by the diagram:

Vector bundles on $\overline{\mathscr{M}}$ correspond to triples $(\mathcal{V}, \mathcal{W}, \phi)$, where \mathcal{V} is a vector bundle on \mathscr{M}, \mathcal{W} is a vector bundle on $\left[\mu_{2} \backslash \mathbf{D}\right]$ and

$$
\phi: \iota_{1}^{*} \mathcal{V} \simeq \iota_{2}^{*} \mathcal{W}
$$

is a bundle isomorphism lying over $\tau \mapsto q$.

Examples

(1) $\overline{\mathcal{L}}_{k}:=\left(\mathcal{L}_{k}, \mathcal{M}_{k}, \phi(z, \tau)=(z, q)\right)$, where $\mathcal{M}_{k}=\left[\mu_{2} \backslash \mathbb{C} \times \mathbf{D}\right]$, action given by $(\pm 1)(z, q)=\left((\pm 1)^{k} z, q\right)$.

Examples

(1) $\overline{\mathcal{L}}_{k}:=\left(\mathcal{L}_{k}, \mathcal{M}_{k}, \phi(z, \tau)=(z, q)\right)$, where $\mathcal{M}_{k}=\left[\mu_{2} \backslash \mathbb{C} \times \mathbf{D}\right]$, action given by $(\pm 1)(z, q)=\left((\pm 1)^{k} z, q\right)$.
$H^{0}\left(\overline{\mathscr{M}}, \overline{\mathcal{L}}_{k}\right)=M_{k}(1)$, the space of holomorphic modular forms of weight k

Examples

(1) $\overline{\mathcal{L}}_{k}:=\left(\mathcal{L}_{k}, \mathcal{M}_{k}, \phi(z, \tau)=(z, q)\right)$, where $\mathcal{M}_{k}=\left[\mu_{2} \backslash \mathbb{C} \times \mathbf{D}\right]$, action given by $(\pm 1)(z, q)=\left((\pm 1)^{k} z, q\right)$.
$H^{0}\left(\overline{\mathscr{M}}, \overline{\mathcal{L}}_{k}\right)=M_{k}(1)$, the space of holomorphic modular forms of weight k
(2) $\overline{\mathcal{S}}_{k}:=\left(\mathcal{L}_{k}, \mathcal{M}_{k}, \phi(z, \tau)=(q z, q)\right)$

Examples

(1) $\overline{\mathcal{L}}_{k}:=\left(\mathcal{L}_{k}, \mathcal{M}_{k}, \phi(z, \tau)=(z, q)\right)$, where $\mathcal{M}_{k}=\left[\mu_{2} \backslash \mathbb{C} \times \mathbf{D}\right]$, action given by $(\pm 1)(z, q)=\left((\pm 1)^{k} z, q\right)$.
$H^{0}\left(\overline{\mathscr{M}}, \overline{\mathcal{L}}_{k}\right)=M_{k}(1)$, the space of holomorphic modular forms of weight k
(2) $\overline{\mathcal{S}}_{k}:=\left(\mathcal{L}_{k}, \mathcal{M}_{k}, \phi(z, \tau)=(q z, q)\right)$
$H^{0}\left(\overline{\mathscr{M}}, \overline{\mathcal{S}}_{k}\right)=S_{k}(1)$, the space of cusp forms of weight k

Canonical extension of $\mathcal{V}(\rho)$

- Let $\mathcal{W}(\rho)=\left[\mu_{2} \backslash V \times \mathbf{D}\right]$, action $(\pm 1)(v, q)=\left(\rho\left(\pm I_{2}\right) v, q\right)$

Canonical extension of $\mathcal{V}(\rho)$

- Let $\mathcal{W}(\rho)=\left[\mu_{2} \backslash V \times \mathbf{D}\right]$, action $(\pm 1)(v, q)=\left(\rho\left(\pm I_{2}\right) v, q\right)$
- Let $\phi: V \times \mathfrak{h} \rightarrow V \times \mathbf{D},(v, \tau) \mapsto\left(e^{2 \pi i L \tau} v, q\right)$, where

$$
\rho\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=e^{2 \pi i L}
$$

Canonical extension of $\mathcal{V}(\rho)$

- Let $\mathcal{W}(\rho)=\left[\mu_{2} \backslash V \times \mathbf{D}\right]$, action $(\pm 1)(v, q)=\left(\rho\left(\pm I_{2}\right) v, q\right)$
- Let $\phi: V \times \mathfrak{h} \rightarrow V \times \mathbf{D},(v, \tau) \mapsto\left(e^{2 \pi i L \tau} v, q\right)$, where

$$
\rho\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=e^{2 \pi i L}
$$

- $\overline{\mathcal{V}}_{L}(\rho):=\left(\mathcal{V}(\rho), \mathcal{W}(\rho), \phi_{L}\right)$

Canonical extension of $\mathcal{V}(\rho)$

- Let $\mathcal{W}(\rho)=\left[\mu_{2} \backslash V \times \mathbf{D}\right]$, action $(\pm 1)(v, q)=\left(\rho\left(\pm I_{2}\right) v, q\right)$
- Let $\phi: V \times \mathfrak{h} \rightarrow V \times \mathbf{D},(v, \tau) \mapsto\left(e^{2 \pi i L \tau} v, q\right)$, where

$$
\rho\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=e^{2 \pi i L}
$$

- $\overline{\mathcal{V}}_{L}(\rho):=\left(\mathcal{V}(\rho), \mathcal{W}(\rho), \phi_{L}\right)$

Suppose all eigenvalues of L have real part in $[0,1)$. Then $H^{0}\left(\overline{\mathscr{M}}, \overline{\mathcal{V}}_{L, k}(\rho)=: \overline{\mathcal{V}}_{k}(\rho)\right)=M_{k}(\rho)$, the space of holomorphic ρ-valued modular forms of weight k.

Canonical extension of $\mathcal{V}(\rho)$

- Let $\mathcal{W}(\rho)=\left[\mu_{2} \backslash V \times \mathbf{D}\right]$, action $(\pm 1)(v, q)=\left(\rho\left(\pm I_{2}\right) v, q\right)$
- Let $\phi: V \times \mathfrak{h} \rightarrow V \times \mathbf{D},(v, \tau) \mapsto\left(e^{2 \pi i L \tau} v, q\right)$, where

$$
\rho\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=e^{2 \pi i L}
$$

- $\overline{\mathcal{V}}_{L}(\rho):=\left(\mathcal{V}(\rho), \mathcal{W}(\rho), \phi_{L}\right)$

Suppose all eigenvalues of L have real part in $[0,1)$. Then $H^{0}\left(\overline{\mathscr{M}}, \overline{\mathcal{V}}_{L, k}(\rho)=: \overline{\mathcal{V}}_{k}(\rho)\right)=M_{k}(\rho)$, the space of holomorphic ρ-valued modular forms of weight k.

Suppose all eigenvalues of L have real part in $(0,1]$. Then $H^{0}\left(\overline{\mathscr{M}}, \overline{\mathcal{V}}_{L, k}(\rho)=: \overline{\mathcal{S}}_{k}(\rho)\right)=S_{k}(\rho)$, the space of ρ-valued cusp forms of weight k.

The free-module Theorem

Let

$$
M(\rho):=\bigoplus_{k \in \mathbb{Z}} M_{k}(\rho),
$$

viewed as a graded module over $M(1)=\mathbb{C}\left[E_{4}, E_{6}\right]$.

The free-module Theorem

Let

$$
M(\rho):=\bigoplus_{k \in \mathbb{Z}} M_{k}(\rho)
$$

viewed as a graded module over $M(1)=\mathbb{C}\left[E_{4}, E_{6}\right]$.

Theorem (Mason-Marks, Gannon, C.-Franc,...)

(i) $M(\rho)$ is a free module of rank $n=\operatorname{dim} \rho$ over $M(1)$.
(ii) If $k_{1} \leq \ldots \leq k_{n}, k_{j} \in \mathbb{Z}$, are the weights of the free generators, then

$$
\sum_{j=1}^{n} k_{j}=12 \operatorname{Tr}(L)
$$

(iii) If ρ is unitary, then $0 \leq k_{j} \leq 11$.

Finding the generating weights

Main Question

Given ρ, find the weights k_{1}, \ldots, k_{n} of the generators for $M(\rho)$, the generating weights of $M(\rho)$.

Finding the generating weights

Main Question

Given ρ, find the weights k_{1}, \ldots, k_{n} of the generators for $M(\rho)$, the generating weights of $M(\rho)$.

- We have

$$
\sum_{k \in \mathbb{Z}} \operatorname{dim} M_{k}(\rho) t^{k}=\frac{t^{k_{1}}+\ldots+t^{k_{n}}}{\left(1-t^{4}\right)\left(1-t^{6}\right)} \in \mathbb{Z} \llbracket t \rrbracket
$$

so the question is equivalent to finding $\operatorname{dim} M_{k}(\rho)$ for all k.

The metaplectic group

- The metaplectic group $\mathrm{Mp}_{2}(\mathbb{Z})$ is the unique nontrivial central extension

$$
1 \rightarrow \mu_{2} \rightarrow \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow 1
$$

The metaplectic group

- The metaplectic group $\mathrm{Mp}_{2}(\mathbb{Z})$ is the unique nontrivial central extension

$$
1 \rightarrow \mu_{2} \rightarrow \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow 1
$$

- $\left(A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi(\tau)\right) \in \mathrm{Mp}_{2}(\mathbb{Z}), A \in \mathrm{SL}_{2}(\mathbb{Z}), \phi^{2}=c \tau+d$, $\tau \in \mathfrak{h}$.

The metaplectic group

- The metaplectic group $\mathrm{Mp}_{2}(\mathbb{Z})$ is the unique nontrivial central extension

$$
1 \rightarrow \mu_{2} \rightarrow \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow 1
$$

- $\left(A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi(\tau)\right) \in \mathrm{Mp}_{2}(\mathbb{Z}), A \in \mathrm{SL}_{2}(\mathbb{Z}), \phi^{2}=c \tau+d$, $\tau \in \mathfrak{h}$.
- Multiplication:
$\left(A_{1}, \phi_{1}(\tau)\right) \cdot\left(A_{2}, \phi_{2}(\tau)\right)=\left(A_{1} A_{2}, \phi_{1}\left(A_{2} \tau\right) \phi_{2}(\tau)\right)$.

The metaplectic group

- The metaplectic group $\mathrm{Mp}_{2}(\mathbb{Z})$ is the unique nontrivial central extension

$$
1 \rightarrow \mu_{2} \rightarrow \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow 1
$$

- $\left(A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi(\tau)\right) \in \mathrm{Mp}_{2}(\mathbb{Z}), A \in \mathrm{SL}_{2}(\mathbb{Z}), \phi^{2}=c \tau+d$, $\tau \in \mathfrak{h}$.
- Multiplication:
$\left(A_{1}, \phi_{1}(\tau)\right) \cdot\left(A_{2}, \phi_{2}(\tau)\right)=\left(A_{1} A_{2}, \phi_{1}\left(A_{2} \tau\right) \phi_{2}(\tau)\right)$.
- Generators: $T:=\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right), \quad S:=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sqrt{\tau}\right)$

Vector valued modular forms of weight $k \in \frac{1}{2} \mathbb{Z}$

Let $\rho: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be complex, finite-dimensional representation.

Definition

A ρ-valued modular form of weight $k \in \frac{1}{2} \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow V$ such that

$$
f(\gamma \tau)=\phi^{2 k} \rho(M) f(\tau)
$$

for all $M=(\gamma, \phi) \in \operatorname{Mp}_{2}(\mathbb{Z})$.

Vector valued modular forms of weight $k \in \frac{1}{2} \mathbb{Z}$

Let $\rho: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be complex, finite-dimensional representation.

Definition

A ρ-valued modular form of weight $k \in \frac{1}{2} \mathbb{Z}$ is a holomorphic function $f: \mathfrak{h} \rightarrow V$ such that

$$
f(\gamma \tau)=\phi^{2 k} \rho(M) f(\tau)
$$

for all $M=(\gamma, \phi) \in \operatorname{Mp}_{2}(\mathbb{Z})$.

- Growth conditions at ∞ are specified by a matrix L such that $\rho(T)=e^{2 \pi i L}$
- Denote by $M_{k}(\rho)$ (resp. $\left.S_{k}(\rho)\right)$ the space of holomorphic modular forms (resp. cusp forms).

The free-module Theorem

Let

$$
M(\rho):=\bigoplus_{k \in \frac{1}{2} \mathbb{Z}} M_{k}(\rho),
$$

viewed as a module over $M(1)=\mathbb{C}\left[E_{4}, E_{6}\right]$.

The free-module Theorem

Let

$$
M(\rho):=\bigoplus_{k \in \frac{1}{2} \mathbb{Z}} M_{k}(\rho),
$$

viewed as a module over $M(1)=\mathbb{C}\left[E_{4}, E_{6}\right]$.

Theorem (C., Franc, 2015)

(i) $M(\rho)$ is a free module of rank $n=\operatorname{dim} \rho$ over $M(1)$.
(ii) If $k_{1} \leq \ldots \leq k_{n}, k_{j} \in \frac{1}{2} \mathbb{Z}$, are the weights of the free generators, then

$$
\sum_{j=1}^{n} k_{j}=12 \operatorname{Tr}(L)
$$

(iii) If ρ is unitary, then $0 \leq k_{j} \leq 23 / 2$.

Finding the generating weights

Main Question

Given ρ, find the weights k_{1}, \ldots, k_{n} of the generators for $M(\rho)$, the generating weights of $M(\rho)$.

Finding the generating weights

Main Question

Given ρ, find the weights k_{1}, \ldots, k_{n} of the generators for $M(\rho)$, the generating weights of $M(\rho)$.

- We have

$$
\sum_{k \in \frac{1}{2} \mathbb{Z}} \operatorname{dim} M_{k}(\rho) t^{k}=\frac{t^{k_{1}}+\ldots+t^{k_{n}}}{\left(1-t^{4}\right)\left(1-t^{6}\right)} \in \mathbb{Z} \llbracket t^{1 / 2} \rrbracket
$$

so the question is equivalent to finding $\operatorname{dim} M_{k}(\rho)$ for all k.

Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group D together with a quadratic form $q: D \rightarrow \mathbb{Q} / \mathbb{Z}$, whose associated bilinear form we denote by $b(x, y):=q(x+y)-q(x)-q(y)$.

Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group D together with a quadratic form $q: D \rightarrow \mathbb{Q} / \mathbb{Z}$, whose associated bilinear form we denote by $b(x, y):=q(x+y)-q(x)-q(y)$.

E.g.

For $m>0$ even, let $\Lambda=\left(\mathbb{Z}, x \mapsto \frac{m}{2} x^{2}\right)$, a rank 1 lattice. The discriminant form of Λ is the finite quadratic module

$$
A_{m}:=\left(\mathbb{Z} / m \mathbb{Z}, x \mapsto \frac{x^{2}}{2 m}\right)
$$

The Weil Representation

Let (D, q) be a finite quadratic module. Let $\mathbb{C}(D)$ be the \mathbb{C}-vector space of functions $f: D \rightarrow \mathbb{C}$. This space has a canonical basis $\left\{\delta_{x}\right\}_{x \in D}$ of delta functions, i.e. $\delta_{x}(y)=\delta_{x, y}$.

The Weil Representation

Let (D, q) be a finite quadratic module. Let $\mathbb{C}(D)$ be the \mathbb{C}-vector space of functions $f: D \rightarrow \mathbb{C}$. This space has a canonical basis $\left\{\delta_{x}\right\}_{x \in D}$ of delta functions, i.e. $\delta_{x}(y)=\delta_{x, y}$.

Definition

The Weil representation $\rho_{D}: \mathrm{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}(D))$ is defined with respect to the basis $\left\{\delta_{x}\right\}_{x \in D}$ by

$$
\begin{aligned}
\rho_{D}(T)\left(\delta_{x}\right) & =e^{-2 \pi i q(x)} \delta_{x} \\
\rho_{D}(S)\left(\delta_{x}\right) & =\frac{\sqrt{i^{\mathrm{sig}(D)}}}{\sqrt{|D|}} \sum_{y \in D} e^{2 \pi i b(x, y)} \delta_{y},
\end{aligned}
$$

where $\frac{1}{\sqrt{|D|}} \sum_{x \in D} e^{2 \pi i q(x)}=\sqrt{i}^{\mathrm{sig}(D)}$.

Generating weights of Weil representations

Main Question

Given D, find the generating weights of $M\left(\rho_{D}\right)$.
(Equivalent to finding $\operatorname{dim} M_{k}\left(\rho_{D}\right)$ for all $k \in \frac{1}{2} \mathbb{Z}$).

Generating weights of Weil representations

Main Question

Given D, find the generating weights of $M\left(\rho_{D}\right)$.
(Equivalent to finding $\operatorname{dim} M_{k}\left(\rho_{D}\right)$ for all $k \in \frac{1}{2} \mathbb{Z}$).

E.g.

For $D=A_{m}, k \in \frac{1}{2}+\mathbb{Z}$, we have

$$
M_{k}\left(\rho_{A_{m}}\right) \simeq J_{k+1 / 2, m / 2},
$$

i.e. Jacobi forms of weight $k+1 / 2$, index $m / 2$ and

$$
M\left(\rho_{D}\right) \simeq J_{m / 2}
$$

the (free) $\mathbb{C}\left[E_{4}, E_{6}\right]$-module of Jacobi forms of index $m / 2$.

Attempt to compute $\operatorname{dim} M_{k}\left(\rho_{D}\right)$ via Riemann-Roch

- Form the vector bundle $\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)$ over $\overline{\mathscr{M}}_{1 / 2}=\overline{\left[\mathrm{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]}$.

Attempt to compute $\operatorname{dim} M_{k}\left(\rho_{D}\right)$ via Riemann-Roch

- Form the vector bundle $\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)$ over $\overline{\mathscr{M}}_{1 / 2}=\overline{\left[\mathrm{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]}$.
- Compute $\chi\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)=\operatorname{dim} M_{k}\left(\rho_{D}\right)-\operatorname{dim} H^{1}\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)$

Attempt to compute $\operatorname{dim} M_{k}\left(\rho_{D}\right)$ via Riemann-Roch

- Form the vector bundle $\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)$ over $\overline{\mathscr{M}}_{1 / 2}=\overline{\left[\mathrm{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]}$.
- Compute $\chi\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)=\operatorname{dim} M_{k}\left(\rho_{D}\right)-\operatorname{dim} H^{1}\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)$
- When is the H^{1} term zero?

Attempt to compute $\operatorname{dim} M_{k}\left(\rho_{D}\right)$ via Riemann-Roch

- Form the vector bundle $\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)$ over $\overline{\mathscr{M}_{1 / 2}}=\overline{\left[\mathrm{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}\right]}$.
- Compute $\chi\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)=\operatorname{dim} M_{k}\left(\rho_{D}\right)-\operatorname{dim} H^{1}\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)$
- When is the H^{1} term zero?

Theorem (Case $A_{2 p}, p>3$ prime, $k \in 1 / 2+\mathbb{Z}$)

Let L_{p} such that $e^{2 \pi i L_{p}}=\rho_{A_{2 p}}(T)$, and with eigenvalues in $[0,1)$.

$$
\chi\left(\overline{\mathcal{W}}_{k}\left(\rho_{A_{2 p}}\right)\right)=\frac{5+k}{12} p-\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)+(-1)^{2 k}\left(\delta+\frac{5+k}{12}\right)+\epsilon_{ \pm}
$$

Here

$$
\delta:=\frac{1}{8}\left(2+\left(\frac{-1}{p}\right)\right), \quad \epsilon_{ \pm}:=\frac{1}{6}\left(1 \pm\left(\frac{p}{3}\right)\right)
$$

Case $A_{2 p}$

For $\rho=\rho_{A_{2 p}}, p$ prime, we have:
(i) $M_{k}(\rho)=0$ if $k<0$.

Case $A_{2 p}$

For $\rho=\rho_{A_{2 p}}, p$ prime, we have:
(i) $M_{k}(\rho)=0$ if $k<0$.
(ii) $M_{k}(\rho)=0$ if $k \in \mathbb{Z}$.

Case $A_{2 p}$

For $\rho=\rho_{A_{2 p}}, p$ prime, we have:
(i) $M_{k}(\rho)=0$ if $k<0$.
(ii) $M_{k}(\rho)=0$ if $k \in \mathbb{Z}$.

Serre Duality: $\operatorname{dim} H^{1}\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)=\operatorname{dim} S_{2-k}\left(\rho^{*}\right)$

Case $A_{2 p}$

For $\rho=\rho_{A_{2 p}}, p$ prime, we have:
(i) $M_{k}(\rho)=0$ if $k<0$.
(ii) $M_{k}(\rho)=0$ if $k \in \mathbb{Z}$.

Serre Duality: $\operatorname{dim} H^{1}\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)=\operatorname{dim} S_{2-k}\left(\rho^{*}\right)$
(iii) $\operatorname{dim} M_{k}(\rho)=\chi\left(\overline{\mathcal{W}}_{k}(\rho)\right), k>3 / 2$

Case $A_{2 p}$

For $\rho=\rho_{A_{2 p}}, p$ prime, we have:
(i) $M_{k}(\rho)=0$ if $k<0$.
(ii) $M_{k}(\rho)=0$ if $k \in \mathbb{Z}$.

Serre Duality: $\operatorname{dim} H^{1}\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)=\operatorname{dim} S_{2-k}\left(\rho^{*}\right)$
(iii) $\operatorname{dim} M_{k}(\rho)=\chi\left(\overline{\mathcal{W}}_{k}(\rho)\right), k>3 / 2$
(iv) $M_{1 / 2}(\rho)=0$ (Serre-Stark, Skoruppa)

Case $A_{2 p}$

For $\rho=\rho_{A_{2 p}}, p$ prime, we have:
(i) $M_{k}(\rho)=0$ if $k<0$.
(ii) $M_{k}(\rho)=0$ if $k \in \mathbb{Z}$.

Serre Duality: $\operatorname{dim} H^{1}\left(\overline{\mathcal{W}}_{k}\left(\rho_{D}\right)\right)=\operatorname{dim} S_{2-k}\left(\rho^{*}\right)$
(iii) $\operatorname{dim} M_{k}(\rho)=\chi\left(\overline{\mathcal{W}}_{k}(\rho)\right), k>3 / 2$
(iv) $M_{1 / 2}(\rho)=0$ (Serre-Stark, Skoruppa)
(v) $\operatorname{dim} M_{3 / 2}(\rho)=\chi\left(\overline{\mathcal{W}}_{3 / 2}(\rho)\right)$ (i.e. $H^{1}=0$, Skoruppa).

Computations

E.g.

For $p=5$, the generating weights for $M\left(\rho_{A_{10}}\right)$ are

$$
\frac{1}{2}(7,9,11,11,13,15,15,17,19,21)
$$

Computations

E.g.

For $p=5$, the generating weights for $M\left(\rho_{A_{10}}\right)$ are

$$
\frac{1}{2}(7,9,11,11,13,15,15,17,19,21)
$$

E.g.

For $p=7$, the generating weights for $M\left(\rho_{A_{14}}\right)$ are

$$
\frac{1}{2}(7,7,9,11,11,11,13,13,15,15,17,17,19,21)
$$

Computations

E.g.

For $p=5$, the generating weights for $M\left(\rho_{A_{10}}\right)$ are

$$
\frac{1}{2}(7,9,11,11,13,15,15,17,19,21)
$$

E.g.

For $p=7$, the generating weights for $M\left(\rho_{A_{14}}\right)$ are

$$
\frac{1}{2}(7,7,9,11,11,11,13,13,15,15,17,17,19,21)
$$

Try some larger primes $p=61,1151,4139,13109, \ldots$

$$
p=4139
$$

$p=13109$

Generating weights for $m=2 p, p \geq 5$

$$
\begin{aligned}
& \text { weight }=1 / 2 \mid \text { multiplicity }=0 \\
& \\
& 3 / 2 \left\lvert\, \frac{13}{24}(p+1)-\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)-\delta-\epsilon_{+}\right. \\
& 5 / 2 \left\lvert\, \frac{15}{24}(p-1)-\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)+\delta\right. \\
& 7 / 2 \left\lvert\, \frac{17}{24}(p+1)-\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)-\delta+\epsilon_{+}\right. \\
& 9 / 2 \left\lvert\, \frac{19}{24}(p-1)-\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)+\delta+\epsilon_{-}\right. \\
& 11 / 2 \left\lvert\, \frac{1}{3}(p+1)+\epsilon_{+}\right. \\
& 13 / 2 \left\lvert\, \frac{1}{3}(p-1)-\epsilon_{-}\right. \\
& \\
& 15 / 2 \left\lvert\, \frac{-5}{24}(p+1)+\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)+\delta-\epsilon_{+}\right. \\
& \\
& 17 / 2 \left\lvert\, \frac{-7}{24}(p-1)+\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)-\delta-\epsilon_{-}\right. \\
& \\
& 19 / 2 \left\lvert\, \frac{-9}{24}(p+1)+\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)+\delta\right. \\
& \\
& 21 / 2 \left\lvert\, \frac{-11}{24}(p-1)+\frac{1}{2} \operatorname{Tr}\left(L_{p}\right)-\delta+\epsilon_{-}\right. \\
& \\
& 23 / 2 \mid 0
\end{aligned}
$$

Distribution as $p \rightarrow \infty$

Theorem (C., Franc, Kopp, 2016)

Let p be an odd prime and let $m=2 p, p>3$. Then

$$
\operatorname{Tr}\left(L_{p}\right)=\left\{\begin{array}{lll}
p+\frac{1}{2} h_{p}-\frac{1}{4} & p \equiv 1 & (\bmod 4), \\
p+2 h_{p}-\frac{1}{4} & p \equiv 3 & (\bmod 8), \\
p+h_{p}-\frac{1}{4} & p \equiv 7 & (\bmod 8) .
\end{array}\right.
$$

where h_{p} is the class number of $\mathbb{Q}(\sqrt{-p})$.

Distribution as $p \rightarrow \infty$

Theorem (C., Franc, Kopp, 2016)

Let p be an odd prime and let $m=2 p, p>3$. Then

$$
\operatorname{Tr}\left(L_{p}\right)=\left\{\begin{array}{lll}
p+\frac{1}{2} h_{p}-\frac{1}{4} & p \equiv 1 & (\bmod 4), \\
p+2 h_{p}-\frac{1}{4} & p \equiv 3 & (\bmod 8), \\
p+h_{p}-\frac{1}{4} & p \equiv 7 & (\bmod 8)
\end{array}\right.
$$

where h_{p} is the class number of $\mathbb{Q}(\sqrt{-p})$.
Corollary
If $\rho=\rho_{A_{2 p}}$, then

$$
\frac{\operatorname{Tr}\left(L_{p}\right)}{2 p} \rightarrow 1 / 2, \quad p \rightarrow \infty
$$

Distribution of weights for $m=2 p$, as $p \rightarrow \infty$

$$
\begin{array}{rl|l}
\text { weight }=1 / 2 & \text { proportion }=0 \\
3 / 2 & 1 / 48 \\
5 / 2 & 3 / 48 \\
7 / 2 & 5 / 48 \\
9 / 2 & 7 / 48 \\
11 / 2 & 8 / 48 \\
13 / 2 & 8 / 48 \\
15 / 2 & 7 / 48 \\
17 / 2 & 5 / 48 \\
19 / 2 & 3 / 48 \\
21 / 2 & 1 / 48 \\
23 / 2 & 0
\end{array}
$$

Future directions

- Compute the weight distribution for all m.

Future directions

- Compute the weight distribution for all m.
- How general is this distribution, among families of Weil representations? Among all unitary representations?

Future directions

- Compute the weight distribution for all m.
- How general is this distribution, among families of Weil representations? Among all unitary representations?
- Deduce bounds for weight 1 (scalar) modular forms?

Future directions

- Compute the weight distribution for all m.
- How general is this distribution, among families of Weil representations? Among all unitary representations?
- Deduce bounds for weight 1 (scalar) modular forms?
- Applications to CFT?

Future directions

- Compute the weight distribution for all m.
- How general is this distribution, among families of Weil representations? Among all unitary representations?
- Deduce bounds for weight 1 (scalar) modular forms?
- Applications to CFT?

Moral of the story

Generating weights might be easier to study than dimensions

