Time integration for MCTDH

Christian Lubich
Univ. Tübingen

Exploiting New Advances in Mathematics to Improve Calculations in Quantum Molecular Dynamics, BIRS, Banff, 25 January 2016

Talk based on: Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics, Appl. Math. Res. Express 2015, 311-328.

Outline

MCTDH recap

Projector-splitting integrator for the matrix case

MCTDH integrator

Outline

MCTDH recap

Projector-splitting integrator for the matrix case

MCTDH integrator

Setting

Time-dependent Schrödinger equation

$$
i \frac{\partial \psi}{\partial t}=\mathcal{H} \psi
$$

for the wavefunction $\psi=\psi\left(x_{1}, \ldots, x_{d}, t\right)$

MCTDH: model reduction via low-rank tensor approximation

Meyer, Manthe \& Cederbaum 1990 (first MCTDH paper) Meyer, Gatti \& Worth 2009 (MCTDH book)

Galerkin method / Full configuration interaction

With L^{2}-orthonormal basis functions φ_{j}^{n} (for $j=1, \ldots, K$ in each mode $n=1, \ldots, d$), approximate the wave function by

$$
\psi\left(x_{1}, \ldots, x_{d}, t\right) \approx \sum_{i_{1}=1}^{K} \cdots \sum_{i_{d}=1}^{K} a_{i_{1}, \ldots, i_{d}}(t) \varphi_{i_{1}}^{1}\left(x_{1}\right) \ldots \varphi_{i_{d}}^{d}\left(x_{d}\right),
$$

where the time-dependent coefficient tensor

$$
A(t)=\left(a_{i_{1}, \ldots, i_{d}}(t)\right) \in \mathbb{C}^{K \times \cdots \times K}=\mathbb{C}^{K^{d}}
$$

satisfies a linear tensor differential equation

$$
i \dot{A}(t)=H[A(t)]
$$

with a discrete Hamiltonian $H: \mathbb{C}^{K^{d}} \rightarrow \mathbb{C}^{K^{d}}$.

This system is not directly tractable because of its sheer size.

Tucker tensor format

Approximate, with $r \ll K$,

$$
a_{i_{1}, \ldots, i_{d}} \approx \sum_{j_{1}=1}^{r} \ldots \sum_{j_{d}=1}^{r} c_{j_{1}, \ldots, j_{d}} u_{i_{1}, j_{1}}^{1} \ldots u_{i_{d}, j_{d}}^{d} .
$$

Single-particle matrices $\boldsymbol{U}_{n}=\left(u_{i j}^{n}\right) \in \mathbb{C}^{K \times r}($ for $n=1, \ldots, d)$ have orthonormal columns $\boldsymbol{u}_{j}^{n} \in \mathbb{C}^{K}$.
Core tensor $C=\left(c_{j_{1}, \ldots, j_{d}}\right) \in \mathbb{C}^{r \times \cdots \times r}$.
Storage is reduced from K^{d} to $r^{d}+d K r$ entries.

Shorthand tensor notation

$$
A \approx Y=C \times_{1} \boldsymbol{U}_{1} \cdots \times_{d} \boldsymbol{U}_{d}=C \underset{n=1}{X_{1}^{d}} \boldsymbol{U}_{n} .
$$

The MCTDH method combines

- low-rank tensor approximation in the Tucker format with the
- Dirac-Frenkel time-dependent variational principle.
$\mathcal{M}_{r}=$ manifold of all Tucker tensors where each single-mode matrix unfolding of the core tensor is of full rank r
$T_{Y} \mathcal{M}_{r}=$ tangent space of \mathcal{M}_{r} at $Y \in \mathcal{M}_{r}$

Approximate $A(t) \approx Y(t) \in \mathcal{M}_{r}$ by

$$
\langle i \dot{Y}(t)-H[Y(t)], \delta Y\rangle=0 \quad \text { for all } \quad \delta Y \in T_{Y(t)} \mathcal{M}_{r}
$$

With the orthogonal projection $P(Y)$ onto the tangent space $T_{Y} \mathcal{M}_{r}$, this can be equivalently stated as

$$
i \dot{Y}(t)=P(Y(t)) H[Y(t)]
$$

ODE on a tensor manifold

$$
\begin{aligned}
i \dot{C} & =H[Y] \stackrel{d}{X} \boldsymbol{U}_{n=1}^{*} \\
i \dot{\boldsymbol{U}}_{n} & =\left(\boldsymbol{I}-\boldsymbol{U}_{n} \boldsymbol{U}_{n}^{*}\right) \operatorname{mat}_{n}\left(H[Y] \underset{k \neq n}{X} \boldsymbol{U}_{n}^{*}\right) \boldsymbol{C}_{(n)}^{+}
\end{aligned}
$$

with the pseudo-inverse $\boldsymbol{C}_{(n)}^{+}=\boldsymbol{C}_{n}^{*}\left(\boldsymbol{C}_{(n)} \boldsymbol{C}_{(n)}^{*}\right)^{-1}$ of the n-mode matricization of the core tensor $\boldsymbol{C}_{(n)}=\operatorname{mat}_{n}(C)$, and with

$$
Y(t)=C(t){\underset{n=1}{d}}_{X} \boldsymbol{U}_{n}(t)
$$

which is taken as the approximation to $A(t)$.

These differential equations need to be solved numerically.

III-conditioned MCTDH density matrices

MCTDH equations contain the inverse of the density matrices

$$
\rho_{n}=C_{(n)} C_{(n)}^{*}
$$

These matrices are typically ill-conditioned. This leads to a severe stepsize restriction with usual numerical integrators.

Ad-hoc remedy: regularization of the density matrices $\boldsymbol{\rho}_{n}=\boldsymbol{C}_{(n)} \boldsymbol{C}_{(n)}^{*}$ to $\boldsymbol{\rho}_{n}+\sigma^{2} \boldsymbol{I}$ with a not too small $\sigma>0$.

Novelty in this talk: Numerical integrator for the MCTDH equations of motion which can use stepsizes that are not restricted by ill-conditioned density matrices, without any regularization.

A step of the integrator alternates between

- orthogonal matrix decompositions and
- solving linear systems of differential equations (by Lanczos).

The MCTDH density matrices are nowhere computed, nor are their inverses.

Outline

MCTDH recap

Projector-splitting integrator for the matrix case

MCTDH integrator

Equivalent formulations of dynamical low-rank approximation

- $\dot{Y} \in T_{Y} \mathcal{M}_{r} \quad$ such that $\quad\|\dot{Y}-\dot{A}\|=\min !$
- $\langle\dot{Y}-\dot{A}, \delta Y\rangle=0 \quad$ for all $\delta Y \in T_{Y} \mathcal{M}_{r}$
- $\dot{Y}=P(Y) \dot{A}$ with $P(Y)=$ orth. projection onto $T_{Y} \mathcal{M}_{r}$:

$$
P(Y) \dot{A}=\dot{A} P_{\mathcal{R}\left(Y^{\top}\right)}-P_{\mathcal{R}(Y)} \dot{A} P_{\mathcal{R}\left(Y^{\top}\right)}+P_{\mathcal{R}(Y)} \dot{A}
$$

Idea: split the projection
L. \& Oseledets 2014

Splitting integrator, abstract form

1. Solve the differential equation

$$
\dot{Y}_{I}=\dot{A} P_{\mathcal{R}\left(Y_{1}^{T}\right)}
$$

with initial value $Y_{l}\left(t_{0}\right)=Y_{0}$ for $t_{0} \leq t \leq t_{1}$.
2. Solve

$$
\dot{Y}_{\| I}=-P_{\mathcal{R}\left(Y_{\| I}\right)} \dot{A} P_{\mathcal{R}\left(Y_{\| I}^{T}\right)}
$$

with initial value $Y_{I I}\left(t_{0}\right)=Y_{l}\left(t_{1}\right)$ for $t_{0} \leq t \leq t_{1}$.
3. Solve

$$
\dot{Y}_{I I I}=P_{\mathcal{R}}\left(Y_{I I I}\right) \dot{A}
$$

with initial value $Y_{I I I}\left(t_{0}\right)=Y_{I I}\left(t_{1}\right)$ for $t_{0} \leq t \leq t_{1}$.
Finally, take $Y_{1}=Y_{I I I}\left(t_{1}\right)$ as an approximation to $Y\left(t_{1}\right)$.

Solving the split differential equations

Write rank-r matrix $Y \in \mathbb{C}^{m \times n}$ (non-uniquely) as

$$
Y=U S V^{*}
$$

where $U \in \mathbb{C}^{m \times r}$ and $V \in \mathbb{C}^{n \times r}$ have orthonormal columns, and $S \in \mathbb{C}^{r \times r}$. Then, the projection becomes

$$
P(Y) \dot{A}=\dot{A} V V^{*}-U U^{*} \dot{A} V V^{*}+U U^{*} \dot{A}
$$

The solution of 1 . is given by

$$
Y_{l}=U_{l} S_{l} V_{l}^{T} \quad \text { with } \quad\left(U_{l} S_{l}\right)^{\cdot}=\dot{A} V_{l}, \quad \dot{V}_{l}=0:
$$

$$
U_{l}(t) S_{l}(t)=U_{l}\left(t_{0}\right) S_{l}\left(t_{0}\right)+\left(A(t)-A\left(t_{0}\right)\right) V_{l}\left(t_{0}\right), \quad V_{l}(t)=V_{l}\left(t_{0}\right)
$$

and similarly for 2 . and 3 .

Splitting integrator, practical form
Start from $Y_{0}=U_{0} S_{0} V_{0}^{\top} \in \mathcal{M}_{r}$.

1. With the increment $\Delta A=A\left(t_{1}\right)-A\left(t_{0}\right)$, set

$$
K_{1}=U_{0} S_{0}+\Delta A V_{0}
$$

and orthogonalize:

$$
K_{1}=U_{1} \widetilde{S}_{1},
$$

where $U_{1} \in \mathbb{R}^{m \times r}$ has orthonormal columns, and $\widetilde{S}_{1} \in \mathbb{R}^{r \times r}$.
2. Set $\widetilde{S}_{0}=\widetilde{S}_{1}-U_{1}^{T} \Delta A V_{0}$.
3. Set $L_{1}=V_{0} \widetilde{S}_{0}^{T}+\Delta A^{T} U_{1}$ and orthogonalize:

$$
L_{1}=V_{1} S_{1}^{T}
$$

where $V_{1} \in \mathbb{R}^{n \times r}$ has orthonormal columns, and $S_{1} \in \mathbb{R}^{r \times r}$.
The algorithm computes a factorization of the rank- r matrix

$$
Y_{1}=U_{1} S_{1} V_{1}^{T} \approx Y\left(t_{1}\right)
$$

Splitting integrator, cont.

- Use symmetrized variant (Strang splitting)
- For a matrix differential equation $i \dot{A}=H[A]$: in substep 1. solve

$$
i \dot{K}=H\left[K V_{0}^{T}\right] V_{0}, \quad K\left(t_{0}\right)=U_{0} S_{0}
$$

by a step of a numerical method (e.g., Lanczos), and similarly in substeps 2 . and 3.

ODEs for dynamical low-rank approximation

$$
Y=U S V^{T}
$$

with

$$
\begin{aligned}
& \dot{U}=\left(I_{m}-U U^{T}\right) \dot{A} V S^{-1} \\
& \dot{V}=\left(I_{n}-V V^{T}\right) \dot{A}^{T} U S^{-T} \\
& \dot{S}=U^{T} \dot{A} V
\end{aligned}
$$

What if S is ill-conditioned? (effective rank smaller than r)

An exactness result for the splitting method

If $A(t)$ has rank r, then the splitting integrator is exact:

$$
Y_{1}=A\left(t_{1}\right)
$$

Ordering of the splitting is essential! (KSL, not KLS)

Approximation is robust to small singular values

CL, Ivan Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT 54 (2014), 171-188.
E. Kieri, CL, Hanna Walach, Discretized dynamical low-rank approximation in the presence of small singular values, Preprint 2015, submitted.

Remarks on the proof

The method splits $P(Y)=P_{l}(Y)-P_{I I}(Y)+P_{I I I}(Y)$ in

$$
\dot{Y}=P(Y) F(t, Y)
$$

Difficulty: cannot use the Lipschitz continuity of the tangent space projection $P(\cdot)$ and its subprojections, because the Lipschitz constants become large for small singular values.

Rescue:

- use the previous exactness result
- use the conservation of the subprojections in the substeps

Outline

MCTDH recap

Projector-splitting integrator for the matrix case

MCTDH integrator

Relating back to the matrix case

The Tucker tensor $Y=C X_{n=1}^{d} \boldsymbol{U}_{n}$ has the n-mode matrix unfolding

$$
\boldsymbol{Y}_{(n)}=\boldsymbol{U}_{n} \boldsymbol{C}_{(n)} \bigotimes_{k \neq n} \boldsymbol{U}_{k}^{\top},
$$

where $\boldsymbol{C}_{(n)} \in \mathbb{C}^{r \times r^{d-1}}$ is the n-mode matrix unfolding of the core tensor $C \in \mathbb{C}^{r^{d}}$. We orthonormalize

$$
\boldsymbol{C}_{(n)}^{\top}=\boldsymbol{Q}_{n} \boldsymbol{S}_{n}^{\top}
$$

where $\boldsymbol{Q}_{n} \in \mathbb{C}^{r^{d-1} \times r}$ has orthonormal columns, and $\boldsymbol{S}_{n} \in \mathbb{C}^{r \times r}$. On introducing $\boldsymbol{V}_{n}^{\top}=\boldsymbol{Q}_{n}^{\top} \bigotimes_{k \neq n} \boldsymbol{U}_{k}^{\top}$, we have, like in the matrix case,

$$
\boldsymbol{Y}_{(n)}=\boldsymbol{U}_{n} \boldsymbol{S}_{n} \boldsymbol{V}_{n}^{\top}
$$

In MCTDH terminology, the columns of \boldsymbol{V}_{n} represent an orthonormalized set of single-hole functions.

Tucker tensor tangent space projector

Tucker tensor $Y=C X_{n=1}^{d} \boldsymbol{U}_{n}$ has the n-mode matrix unfolding

$$
\boldsymbol{Y}_{(n)}=\boldsymbol{U}_{n} \boldsymbol{S}_{n} \boldsymbol{V}_{n}^{\top},
$$

where $\boldsymbol{S}_{n} \in \mathbb{C}^{r \times r}$, and $\boldsymbol{V}_{n}=\left(\bigotimes_{k \neq n} \boldsymbol{U}_{k}\right) \boldsymbol{Q}_{n} \in \mathbb{C}^{K^{d-1} \times r}$ has orthonormal columns. For $Z \in \mathbb{C}^{K \times \cdots \times K}$ and for $n=1, \ldots, d$ we denote

$$
\begin{aligned}
& P_{n}^{+}(Y) Z=\operatorname{ten}_{n}\left(\boldsymbol{Z}_{(n)} \overline{\boldsymbol{V}}_{n} \boldsymbol{V}_{n}^{\top}\right) \\
& P_{n}^{-}(Y) Z=\operatorname{ten}_{n}\left(\boldsymbol{U}_{n} \boldsymbol{U}_{n}^{*} \boldsymbol{Z}_{(n)} \overline{\boldsymbol{V}}_{n} \boldsymbol{V}_{n}^{\top}\right) \\
& P_{0}(Y) Z=Z \underset{n=1}{\underset{X}{X}} \boldsymbol{U}_{n} \boldsymbol{U}_{n}^{*} .
\end{aligned}
$$

Then, the orthogonal projection $P(Y)$ onto the tangent space $T_{Y} \mathcal{M}_{r}$ is given as

$$
P(Y)=\sum_{n=1}^{d}\left(P_{n}^{+}(Y)-P_{n}^{-}(Y)\right)+P_{0}(Y)
$$

The splitting integrator that results from the above additive decomposition of the tangent space projection alternates between

- orthogonal matrix decompositions and
- solving linear systems of single-particle differential equations, which can be done efficiently by Lanczos approximations.

The splitting integrator can be implemented at a

- computational cost per time step that is about the same as for existing MCTDH integrators, but
- allowing for larger time steps
- without requiring any regularization.

The MCTDH density matrices are nowhere computed, nor are their inverses.

Implementation and extensions

- First implementation and tests by Benedikt Kloss (excellent master student with Irene Burghardt): Python implementation, compact code, observes good behaviour and speedup compared with MCTDH code
- Extension to multilayer MCTDH conceptually straightforward (hierarchical Tucker tensor format)
- Projector-splitting integrator for tensor trains (= MPS) in:

CL, I. Oseledets, B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal. 53 (2015), 917-941.
J. Haegeman, CL, I. Oseledets, B. Vandereycken, F. Verstraete, Unifying time evolution and optimization with matrix product states, arXiv:1408.5056.

- Extension to MCTDHF and MCTDHB for fermions/bosons feasible (needs yet to be done)

Propagation of the basis, forward loop
For $n=1, \ldots, d$ do the following:

1. For the n-mode matrix unfolding $C_{(n)}^{0, n-1} \in \mathbb{C}^{r \times r^{d-1}}$ of the core tensor $C^{0, n-1}$ decompose, using QR or SVD,

$$
\left(\boldsymbol{C}_{(n)}^{0, n-1}\right)^{\top}=\boldsymbol{Q}_{n}^{0} \boldsymbol{S}_{n}^{0, \top}
$$

where $\boldsymbol{Q}_{n}^{0} \in \mathbb{C}^{r^{d-1} \times r}$ has orthonormal cols., and $\boldsymbol{S}_{n}^{0} \in \mathbb{C}^{r \times r}$.
2. Set $\boldsymbol{K}_{n}^{0}=\boldsymbol{U}_{n}^{0} \boldsymbol{S}_{n}^{0}$.
3. With $\boldsymbol{V}_{n}^{0, T}=\boldsymbol{Q}_{n}^{0, \top} \otimes_{k<n} \boldsymbol{U}_{n}^{1 / 2, \top} \otimes \otimes_{k>n} \boldsymbol{U}_{n}^{0, T} \in \mathbb{C}^{r \times K^{d-1}}$ solve the linear initial value problem on $\mathbb{C}^{K \times r}$ from t^{0} to $t^{1 / 2}$,

$$
i \dot{\boldsymbol{K}}_{n}(t)=\operatorname{mat}_{n} H\left[\operatorname{ten}_{n}\left(\boldsymbol{K}_{n}(t) \boldsymbol{V}_{n}^{0, \top}\right)\right] \overline{\boldsymbol{V}_{n}^{0}}, \quad \boldsymbol{K}_{n}\left(t^{0}\right)=\boldsymbol{K}_{n}^{0}
$$

4. Decompose, using QR or SVD,

$$
\boldsymbol{K}_{n}\left(t^{1 / 2}\right)=\boldsymbol{U}_{n}^{1 / 2} \widetilde{\boldsymbol{S}}_{n}^{1 / 2}
$$

where $\boldsymbol{U}_{n}^{1 / 2} \in \mathbb{C}^{K \times r}$ has orthonormal cols., and $\widetilde{\boldsymbol{S}}_{n}^{1 / 2} \in \mathbb{C}^{r \times r}$.
5. Solve the linear initial value problem on $\mathbb{C}^{r \times r}$ backward in time from $t^{1 / 2}$ to t^{0},
$i \dot{\boldsymbol{S}}_{n}(t)=\boldsymbol{U}_{n}^{1 / 2, *} \operatorname{mat}_{n} H\left[\operatorname{ten}_{n}\left(\boldsymbol{U}_{n}^{1 / 2} \boldsymbol{S}_{n}(t) \boldsymbol{V}_{n}^{0, \mathrm{~T}}\right)\right] \overline{\boldsymbol{V}_{n}^{0}}, \quad \boldsymbol{S}_{n}\left(t^{1 / 2}\right)=\widetilde{\boldsymbol{S}}_{n}^{1 /}$
and set $\widetilde{\boldsymbol{S}}_{n}^{0}=\boldsymbol{S}_{n}\left(t^{0}\right)$.
6. Define the core tensor $C^{0, n} \in \mathbb{C}^{r^{d}}$ by setting its n-mode matrix unfolding to

$$
\left(\boldsymbol{C}_{(n)}^{0, n}\right)^{\top}=\boldsymbol{Q}_{n}^{0} \widetilde{\boldsymbol{S}}_{n}^{0, \top}
$$

Propagation of the core tensor

Solve the linear initial value problem on $\mathbb{C}^{r^{d}}$ from t^{0} to t^{1},

Set $C^{1, d}=C\left(t^{1}\right)$.

Propagation of the basis, backward loop

For $n=d$ down to 1 do the following:
6^{\prime}. For the n-mode matrix unfolding $C_{(n)}^{1, n} \in \mathbb{C}^{r \times r^{d-1}}$ of the core tensor $C^{1, n}$ decompose, using QR or SVD,

$$
\left(\boldsymbol{C}_{(n)}^{1, n}\right)^{\top}=\boldsymbol{Q}_{n}^{1} \hat{\boldsymbol{S}}_{n}^{1, \top}
$$

where $\boldsymbol{Q}_{n}^{1} \in \mathbb{C}^{r^{d-1} \times r}$ has orthonormal cols., and $\widehat{\boldsymbol{S}}_{n}^{1} \in \mathbb{C}^{r \times r}$.
5'. With the notation $\boldsymbol{V}_{n}^{1, \top}=\boldsymbol{Q}_{n}^{1, \top} \otimes_{k<n} \boldsymbol{U}_{n}^{1 / 2, \top} \otimes \otimes_{k>n} \boldsymbol{U}_{n}^{1, \top}$ solve the linear initial value problem on $\mathbb{C}^{r \times r}$ backward in time from t^{1} to $t^{1 / 2}$,
$i \dot{\boldsymbol{S}}_{n}(t)=\boldsymbol{U}_{n}^{1 / 2,{ }^{*}} \operatorname{mat}_{n} H\left[\operatorname{ten}_{n}\left(\boldsymbol{U}_{n}^{1 / 2} \boldsymbol{S}_{n}(t) \boldsymbol{V}_{n}^{1, \top}\right)\right] \overline{\boldsymbol{V}_{n}^{1}}, \quad \boldsymbol{S}_{n}\left(t^{1}\right)=\widehat{\boldsymbol{S}}_{n}^{1}$,
and set $\widehat{\boldsymbol{S}}_{n}^{1 / 2}=\boldsymbol{S}_{n}\left(t^{1 / 2}\right)$.

Propagation of the basis, backward loop (cont.)
4^{\prime}. Set $\boldsymbol{K}_{n}^{1 / 2}=\boldsymbol{U}_{n}^{1 / 2} \widehat{\boldsymbol{S}}_{n}^{1 / 2}$.
3'. Solve the linear initial value problem on $\mathbb{C}^{K \times r}$ from $t^{1 / 2}$ to t^{1},

$$
i \dot{\boldsymbol{K}}_{n}(t)=\operatorname{mat}_{n} H\left[\operatorname{ten}_{n}\left(\boldsymbol{K}_{n}(t) \boldsymbol{V}_{n}^{1, \boldsymbol{T}}\right)\right] \overline{\boldsymbol{V}_{n}^{1}}, \quad \boldsymbol{K}_{n}\left(t^{1 / 2}\right)=\boldsymbol{K}_{n}^{1 / 2} .
$$

2'. Decompose, using QR or SVD,

$$
\boldsymbol{K}_{n}\left(t^{1}\right)=\boldsymbol{U}_{n}^{1} \boldsymbol{S}_{n}^{1},
$$

where $\boldsymbol{U}_{n}^{1 / 2} \in \mathbb{C}^{K \times r}$ has orthonormal columns, and $\boldsymbol{S}_{n}^{1} \in \mathbb{C}^{r \times r}$.
1^{\prime}. Define the core tensor $C^{1, n-1} \in \mathbb{C}^{r^{d}}$ by setting its n-mode matrix unfolding to

$$
\left(\boldsymbol{C}_{(n)}^{1, n-1}\right)^{\top}=\boldsymbol{Q}_{n}^{1} \boldsymbol{S}_{n}^{1, \top}
$$

Finally, take the core tensor at time t^{1} as $C^{1}=C^{1,0}$. The algorithm has thus computed the factors in the Tucker tensor decomposition $Y^{1}=C^{1} X_{n=1}^{d} \boldsymbol{U}_{n}^{1}$.

$$
\dot{A}=F(t, A), \quad A\left(t_{0}\right)=Y_{0} \in \mathcal{M}_{r}
$$

- F is locally Lipschitz-continuous
- $\|(I-P(Y)) F(t, Y)\| \leq \varepsilon$ for all $Y \in \mathcal{M}_{r}$.
$Y_{n} \in \mathcal{M}_{r}$ result of the projector-splitting integrator after n steps with stepsize h

Theorem

$$
\left\|Y_{n}-A\left(t_{n}\right)\right\| \leq c_{1} \varepsilon+c_{2} h \quad \text { for } t_{n} \leq T,
$$

where c_{1}, c_{2} depend only on the local Lipschitz constant and bound of F, and on T.

[^0]
[^0]: E. Kieri, CL, Hanna Walach, Discretized dynamical low-rank approximation in the presence of small singular values, Preprint 2015, submitted.

